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The paper presents a methodology for the optimal design of multilayer thermal protection based on
high-porosity open- cell foam, taking into account the foam morphology. The vector of design parame-
ters includes the thicknesses of layers, porosity and cell diameter of open-cell foam and should ensure
required operation temperature on the boundaries of layers and a minimum of the total mass of the
system. The optimization problem is solved using a computational scheme, which combines the pro-
jected Lagrangian method with the quadratic subproblem and the penalty function method. The penalty
function method provides a good initial estimate of the optimal parameters’ values for the projected
Lagrangian method with excellent local convergence properties. To illustrate the implementation of the
developed algorithm and the corresponding software, the problem of choosing the optimal layer thicknesses
for the multilayer thermal protection of a spacecraft along with the cell diameter and porosity of foam is
considered.
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NOMENCLATURE

A – Jacobian matrix of constraints,
B – parameter characterized a boundary condition,
F – parameter characterized a boundary condition,
bmin – minimum strut diameter,
bmax – maximum strut diameter,
C – volumetric heat capacity,
cs – specific heat capacity of the solid phase,
dl – layer thickness,
a – cell diameter,
ε – emissivity,
H – Hessian matrix,
I – radiative emissive power,
J – minimized function,
kR – radiative conductivity,
L – number of layers in system,
N – number of desired parameters,
Nτ – number of steps by time,
p – vector of parameters,
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q – heat flux,
R – contact thermal resistance,
r – solid surface reflectivity,
s – search direction,
T – temperature,
T llim – temperature constraint at the boundary of layer,
X – coordinate of layer boundary,
α – absorption coefficient,
β – extinction coefficient,
β∗R – Rosseland mean extinction coefficient,
γ – step length,
δ – porosity,
λl – thermal conductivity,
λn – thermal conductivity in the absence of radiation,
λs – thermal conductivity of solid phase,
ρ – density,
σ – scattering coefficient,
kB – Boltzmann constant,
τ – time,
Φ(θ) – scattering phase function,
ψT – vector of Lagrange multiplier,
ω – scattering albedo.

Subscripts
b – blackbody,
R – radiative,
s – solid phase,
λ – wavelength.

1. INTRODUCTION

During the operation, structures and systems of solar and planetary probes are subjected to extreme
heat loads. The design of reliable and efficient thermal protection of such space vehicles is very
critical because its failure leads to catastrophic consequences for the whole mission.

Often the successful fulfillment of the mission’s scientific goals greatly depends on the practical
solution of problems related to the choice of the thermal protection concept and high-temperature
heat-resistant construction materials. The relative weight of the space vehicle thermal protection
remains significant, thus making the problem of increasing its weight efficiency actual.

The most promising way to solve this problem is to use light heat-shielding and heat-insulating
materials. Highly porous cellular materials have great potential for manufacturing of high-
temperature thermal insulation. The benefits of such materials include extremely low density,
high-temperature capability, sufficient strength at the operating temperatures, and low thermal
conductivity.

Highly porous cellular materials are fabricated by applying a layer of inorganic material (me-
tals, oxides, carbides, etc.) to the surface of a highly porous open-cell organic matrix, for example,
polyurethane foam, and subsequently removing the structure-forming matrix by thermal destruc-
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tion in a special medium. The manufacturing technology of open-cell carbon foam is based on the
pyrolysis of polyurethane foam, previously impregnated with phenol-formaldehyde resin.

Open-cell carbon foam can serve as the basis for the production of composite materials with
unique thermal, mechanical, spectral and chemical properties. These materials are obtained by
infiltration of graphite, refractory metals (niobium, tantalum, tungsten, molybdenum, rhenium) or
ceramics (oxides, nitrides, carbides, borides and silicides of any metal) into the carbon foam.

The open-cell foams are characterized by high homogeneity of the structure and a small devi-
ation of the cell sizes from the mean value. The structure of open-cell carbon foam consists of an
interconnected network of solid struts (see Fig. 1). The unit cell appears to closely resemble a pen-
tagon dodecaeder with twelve pentagonal faces. Sometimes the unit cell is also presented as a cube
or a 14-faceted tetrakaidecahedron. In common foams, four struts are connected, making a strut
juncture. From microscope analysis, it can be observed that the struts have varying thickness, and
the cross-section of struts formed at the junction of three cells is concave, triangularly incurved.
Namely, it seems to be inscribed in an equilateral triangle (see Fig. 2). Along with the pentagonal
faces, tetragonal and hexagonal faces are found in the structure of the material. In addition, there is
anisotropy of cell sizes associated with the foaming process. However, despite the noted deviations
in the morphology of cells, the materials are assumed to be identical in all three directions.

Fig. 1. Structure parameters of open-cell foam.

Fig. 2. Strut cross-section’s shape.
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The main parameters of open-cell carbon foams describing the structure of the material are
the average cell size and the porosity characterizing the space inside the cells. The size of the cell
determines the length and number of struts per unit volume of material, and the porosity controls
the cross-section shape and actual size of struts and strut junctions.

Physical properties of cellular materials are not only determined by their base material but
also significantly by their microstructure (cell dimensions, length and cross-sectional dimensions of
the struts), the technology of fabrication, and operating conditions. This implies the possibility to
create open-cell materials with desirable properties, optimal for specific applications.

The design parameters describing the structure of highly porous cellular materials should have
a great influence on the radiation properties of the material, be easily measured using the available
means for image processing of the samples’ microstructure and controlled during the manufacturing
process of the material.

Theoretical results obtained using Monte Carlo methods show that porosity and average cell
diameter have the greatest effects on the radiation properties of open-cell foams [6]. Variations
of strut diameter along the length and strut’s cross-section shape have moderate effects on the
extinction coefficient of the porous medium. Dispersion of cell size from the average value does not
have a noticeable effect on the radiation properties of the material [6]. Thus, the porosity and cell
diameter of open-cell foam can be considered as the design parameters, characterizing the structure
of highly porous cellular materials.

This paper presents a methodology for the optimal design of multilayer thermal insulation
based on high-porosity open-cell foam, taking into account the dependence of thermal properties
on the foam’s morphology. The cell diameter and porosity of foam are determined together with the
thickness of layers for multi-layer thermal insulation, ensuring required operational temperature on
the boundaries of layers and a minimum of the total mass of the system.

A wide variety of research papers [2, 3, 10–16, 19–22] presents optimization procedures for the de-
sign of multilayer thermal protection systems whose parameters will satisfy formulated constraints
and minimize optimization criterion. In most cases, the numerical methods are applied to define the
layers’ thicknesses, ensuring required operational temperature at the discrete points of the system
and the minimum of the total mass.

One of the most popular nonlinear programming methods, widely used to solve the problem
under consideration [10, 14], is the penalty function method, which reduces the initial problem of
nonlinear function minimization with nonlinear constraints to a sequence of unconstrained mini-
mization problems.

The paper [14] presents an iterative scheme for estimating the thickness of multilayer thermal
insulation of the minimum mass with allowance for temperature restrictions for each layer. The
problem of unconstrained optimization is solved using the conjugate gradient method for a fixed
value of the penalty parameter. The gradient of the penalty function is calculated from the solution
of a boundary-value problem adjoint to the initial boundary-value problem, and the step size in the
chosen direction is estimated using the sensitivity functions. In [10], the unconstrained minimum
of the penalty function is defined using the deformed polyhedron method, which does not require
the calculation of the derivatives of the penalty function.

In [16, 19], the optimization problem is solved using genetic algorithms related to evolutionary
search methods, which are based on the concepts of genetic inheritance and natural selection,
imitating the processes of development of a population of individuals. These algorithms are effective
in cases where the objective function is discontinuous, non-differentiable, or strongly nonlinear.

In [22], the optimization procedure is based on the globally convergent method of moving
asymptotes [21], which requires the calculation of the gradients of the objective and constraint
functions.

In [15], the algorithm for the optimal design of multilayer thermal protection is based on a sequen-
tial quadratic programming (SQP) method. The desired parameter vector is defined as the solution
of the linearly constrained subproblem with the objective function based on the Lagrangian func-
tion. The linear constraints are chosen so that the space of minimization would be restricted within
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the subspace of vectors orthogonal to the active constraints’ gradients. The Lagrangian function is
projected into the reduced subspace of vectors that satisfy the constraints.

The widely used penalty function method has several advantages over other optimization meth-
ods. The region in which iterates converge to a solution for this method substantially exceeds the
convergence region of other methods, and the algorithms that implement this method are extremely
simple. However, the method turns out to be unacceptable for solving optimization problems with
high accuracy. Difficulties arise if a too large value of the penalty parameter is chosen, since this
makes the optimization problem ill-conditioned.

The penalty function method is especially effective for estimation of initial approximation of the
solution, which could be then improved using a method that exhibits good local convergence prop-
erties. In this work, the optimization problem is solved using a two-phase computational scheme,
which combines the projected Lagrangian method with the quadratic subproblem and the penalty
function method. The penalty function method provides a good initial estimate of the optimal pa-
rameters vector for the projected Lagrangian method with excellent local convergence properties.

2. OPTIMAL DESIGN

The traditional thermal design problem statement implies determining layers’ thickness for multi-
layer thermal insulation, ensuring required operational temperature on the boundaries of layers
and minimum of the total mass of the system. In this work, the cell diameter and porosity, that
characterize the material’s morphology, are chosen along with the thicknesses of the layers in order
to obtain an additional weight advantage of thermal insulation.

The optimal design problem of multi-layer thermal insulation is considered, assuming that a sys-
tem consists of L layers made of different materials with density ρl, l = 1,2, ..., L and thickness dl,
where the layer n is manufactured of a high-porous cellular material. It is assumed that layers l ≠ n
are opaque and layer n is semitransparent.

The density of the porous layer is expressed through the density ρs of the base material, forming
the foam, and porosity δ:

ρn = (1 − δ)ρs.

In general case, only the thickness of lk-th layers k = 1,2, ...,N , N ≤ L, is desired. The thickness
of the rest of the layers can be assigned proceeding from technological and strength considerations.
The design parameters vector p includes the thickness of layers k = 1,2, ...,N , N ≤ L, porosity δ
and cell diameter a of the highly porous cellular material, forming layer n.

The criterion for estimation of the design parameters vector is defined by the local mass func-
tional:

J(p) =
N

∑
k=1

ρkdk. (1)

The best estimates should minimize the functional (1) and satisfy the following constraints:

dk > 0, k = 1,2, ...,N, (2)

amin ≤ a ≤ amax, (3)

0.85 < δ ≤ δmax, (4)

T (Xl, τ) ≤ T
l
lim, l = 1,2, ..., L, τ ∈ (τmin, τmax]. (5)

The constraints include simple bounds on the variables (2)–(4) and nonlinear constraints on the
maximum allowable temperature at the boundary of layers (5). The upper and lower bounds amin,



52 M.O. Salosina, O.M. Alifanov, A.V. Nenarokomov

amax, δmax are specified, taking into account the porosity and average cell diameter available for
manufactured materials.

It is assumed that heat transfer in multilayer thermal protection is one-dimensional by the spatial
coordinate, and a temperature distribution Tl(x, τ) at the layers l ≠ n is covered by the quasi-linear
heat conduction, whose coefficients Cl and λl are functions of temperature:

Cl (Tl)
∂Tl
∂τ

=
∂

∂x
(λl (Tl)

∂Tl
∂x

) , (6)

x ∈ (Xl−1,Xl), l ≠ n, τ ∈ (τmin, τmax].
A uniform initial temperature distribution in the system is assumed:

Tl (x, τmin) = T0l, x ∈ [Xl−1,Xl] , l = 1,2, ..., L.

At both sides of the system, there can be the boundary conditions of the first, second or third
kind or the boundary condition taking into account heat flux radiated by the surface of the thermal
protection:

−B1λ1 (T1 (X0, τ))
∂T1 (X0, τ)

∂x
+ F1T1 (X0, τ) = q1(τ), (7)

−B2λL (TL (XL, τ))
∂TL (XL, τ)

∂x
+ F2TL (XL, τ) = q2(τ), (8)

−λL (TL)
∂TL (XL, τ)

∂x
= −qA (τ) + qR, (9)

where qA(τ) is the absorbed heat flux, and qR = εkBT
4 is the heat flux radiated by the heated

surface of the thermal protection.
A contact heat transfer between opaque layers is characterized by contact thermal resistances,

which are also functions of temperature:

λl (Tl)
∂Tl (Xl, τ)

∂x
= λl+1 (Tl+1)

∂Tl+1 (Xl, τ)

∂x
, (10)

−λl (Tl)Rl (Tl)
∂Tl (Xl, τ)

∂x
= Tl (Xl, τ) − Tl+1 (Xl, τ) , (11)

l = 1,2, ..., L − 1, τ ∈ (τmin, τmax].
Radiative-conductive heat transfer in a porous layer n is described by the equation:

Cn
∂Tn
∂τ

=
∂

∂x
(λn

∂Tn
∂x

) −
∂qR(x)

∂x
. (12)

The volumetric heat capacity of the foam is

Cn = (1 − δ)ρscs. (13)

The thermal conductivity of the three-dimensional array of solid struts forming the foam struc-
ture in the absence of radiation can be expressed by the following simplified relation:

λn =
1

3
(1 − δ)λs. (14)

The coefficient 1/3 is consistent both with the experimental data [17] and theoretical analysis,
which takes into account the average number of struts, oriented in each of the orthogonal x, y, and
z directions.
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Open-cell foam is commonly considered as semi-transparent media, absorbing, emitting and
scattering radiation [1, 4–6, 9, 17]. Heat transfer in such media is described by the radiative transfer
equation whose solution requires significant computing resources. In engineering applications such as
thermal protection system, it is convenient to approximate radiative flux by the Rosseland equation,
applicable for optically thick media whose thickness is not less than several photon mean free paths.
This approximation leads to appreciable errors in describing the process near the boundaries since
it does not take into account radiation from the boundary surfaces. However, within the optically
thick layer, the influence of the boundary effects is negligible, since the radiation from the boundary
surfaces does not reach the inner layers. The approximation gives a simple expression for the
radiation flux using radiative conductivity:

qR = −kR
dT

dx
,

kR =
16n2kBT

3

3βR
. (15)

The effective index of refraction can be taken as n = 1, as the foam porosity is very high (∼97%).
The effects of absorption and scattering are taken into account through the Rosseland mean

extinction coefficient βR defined by the following relation:

1

βR
=

∞

∫

0

1

β∗λ

∂Iλb (T )

∂Ib (T )
dλ.

The spectral extinction coefficient β∗λ is calculated as follows:

β∗λ = αλ + σ
∗

λ.

To account for anisotropic scattering, a weighted scattering coefficient describing the deviation
of the radiation via the asymmetry factor is introduced:

σ∗λ = σλ ⋅ (1 − ⟨cos θ⟩λ) with the asymmetry factor ⟨cos θ⟩λ =
1

2

π

∫

0

Φ (θ) cos θ sin θ dθ.

The solid struts forming the foam structure are assumed to have random orientation and to
be thick enough to be considered as opaque. As it has been assumed in several works [1, 4–6, 9],
the phase function is presented by a diffuse scattering phase function of opaque particles, and the
diffraction contribution is neglected due to the extremely large values of the diffraction phase
function in the forward direction. According to [6], the scattering phase function of the open-cell
foam obtained using numerical Monte Carlo methods closely matches the scattering phase function
of large convex diffusely reflecting particles oriented randomly. The scattering phase function for
such particles is identical to the scattering phase function for large opaque spheres made of the same
substance with the same surface properties. Under the assumption of complete and diffuse reflection
obeying the Lambert law, the scattering phenomena for large spherical particles is described by the
following expression:

Φ (θ) =
8

3π
(sin θ − θ cos θ) . (16)

For scattering phase function (16), the asymmetry factor is ⟨cos θ⟩ ≈ −0.4444.
Since the particles forming the open cell foam are assumed opaque, scattering is limited to the

diffuse reflection and, additionally, reflectivity is considered independent of incidence angle, the
scattering albedo ωλis equal to the reflectivity rλ [4]: ωλ = rλ.
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So, the spectral extinction coefficient adjusted for anisotropic scattering is given by:

β∗λ ≈ (1 − rλ) ⋅ β + rλ ⋅ β ⋅ (1 + 0.4444) ,

1

βR
=

1

β

∞

∫

0

1

(1 + 0.4444ρλ)

∂Iλb (T )

∂Ib (T )
dλ.

In [6], there has been proposed an analytical relation to calculate the extinction coefficient
β directly from the knowledge of the geometrical characteristics of the foam structure. The relation
has been obtained using Monte Carlo simulations for digitally generated foam structures that
closely replicate the microstructure of the real foams and take into account the detailed geometrical
characteristics of struts. This equation including the average equivalent diameter a, porosity δ, the
ratio of the minimum and maximum strut diameters t = bmin/bmax (see Fig. 1) and normalized
curvature k (see Fig. 2) as independent variables are used for estimation of extinction coefficient
in the present work:

β =
2.62

√
1 − δ [1 + 0.22 (1 − k)2] [1 − 0.22 (1 − t)2]

a
.

At the boundaries of the porous layer n, the following conditions are fulfilled:

−λn−1 (Tn−1)
∂Tn−1 (Xn−1, τ)

∂x
= −λn (Tn)

∂Tn (Xn, τ)

∂x
+ qR (Tn) , (17)

Tn−1 (Xn−1, τ) = Tn (Xn−1, τ) , (18)

−λn (Tn)
∂Tn (Xn, τ)

∂x
+ qR (Tn) = −λn+1 (Tn+1)

∂Tn+1 (Xn+1, τ)

∂x
, (19)

Tn (Xn, τ) = Tn+1 (Xn, τ) . (20)

The optimization problem, which consists of minimizing an objective function (1) subject to
constraints (2)–(5), is solved using a two-phase algorithm based on the projected Lagrangian method
with the quadratic subproblem and the penalty function method. The penalty function method is
characterized by a large region of convergence and provides a good initial estimate of the optimal
parameters’ values for the projected Lagrangian method with excellent local convergence properties.

Since penalty functions, generating infeasible iterates are not appropriate for constraints (2)–(4),
it is convenient to use the inverse barrier function [7] as a penalty function, which provides an
approximate solution of problem (1)–(5) inside the feasible region. Penalty function has the form:

P (p, r) = J(p) + r (
K

∑
k=1

1

pk
+
m

∑
i=1

1

Ti(p)
), (21)

where Ti – temperature constraints on the boundaries of the layers. For the numerical solution,
a boundary value problem (6)–(20) is approximated on the finite-difference grid with Nτ steps by
time. Therefore, the constraints (5) can be represented as:

Ti = T
l
lim − T (Xl, τj) , l = 1,2, ..., L, j = 1,2, ...,Nτ .

The local minimum of penalty function P (p, r) for a fixed value of the penalty parameter r is
found by the Davidon-Fletcher-Powell method. Initial approximation p0 must satisfy all constraints.
A feasible initial point is found by minimizing the function F (p) = −∑

j∈I
Tj(p) subject to constraints

Tj(p), j ∉ I, where I – a set of indexes of constraints violated at point p.
An algorithm to find an unconstrained minimum of penalty function (21) is executed until two

values of iterative sequence Pk and Pk+1 will not become such that ∣(Pk − Pk+1) /Pk∣ < ε and rkPk < ε,
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where Pk – penalty function, and ε – accuracy with which the problem is solved. The estimation
of the solution found with the penalty function method is then improved using the projected La-
grangian method with the quadratic subproblem. The method is effective for minimizing a smooth
function and is characterized by excellent local convergence properties.

An algorithm contains a sequence of linearly constrained subproblem whose objective function
is related to the Lagrangian function:

L(p,ψ) = J(p) −ψTT. (22)

The constraint vector is:

T(p)T = {T 1
lim − T (X1, τ1) , ..., T

l
lim − T (Xl, τNτ)} . (23)

The minimum of the Lagrangian function (22) is reached at the desired optimal point p∗ on the
set of vectors orthogonal to the active constraints’ gradients at p∗. The desired solution satisfies
the following conditions [7]:

1) T llim − T (Xl, τNj) ≥ 0, l = 1,2, ..., L, j = 1,2, ...,Nj ; where T (p∗) = 0, (24)

2) grad J(p∗) =A(p∗)Tψ∗, (25)

where A(p∗) is the Jacobian matrix of constraints evaluated at p∗,

3) ψ∗

i ≥ 0, i = 1,2, ..., t, (26)

4) matrix Z(p∗)TH(p∗,ψ∗)Z(p∗) is a positive definite, (27)

where H(p∗,ψ∗) – Hessian matrix of Lagrangian function, and Z(p∗) – matrix whose columns
compose a basis of the subspace of vectors orthogonal to the rows of the matrix A(p∗).

Each next approximation to the optimal parameters vector pi+1 is defined by:

pi+1 = pi + γisi.

A search direction si is found as the solution of the quadratic subproblem whose objective
function is a quadratic approximation to the Lagrangian function, and the constraints define the
set of points at which the linear approximation to the nonlinear constraints (23) is equal to zero [7].

The quadratic subproblem is written in the form:

Minimize ΦL = gT s + 1
2s
THs

subject to A(p)s ≤ −T,

where ΦL – quadratic approximation to the Lagrangian function, and g = gradJ(p∗) −A(p)Tψ –
gradient of the Lagrangian.

The linear constraints of the subproblem are obtained by expanding the functions (23) about
p in a Taylor series and neglecting the nonlinear term [7]:

T (p∗) = T (p,Xl, τj) +A (p) (s) + o (∥s∥2) = 0, s = p∗ − p.

Thus the linear constraints are chosen so that the space of minimization would be restricted
within the subspace of vectors orthogonal to the active constraints’ gradients.

The Jacobian matrix of the first derivatives of constraints A(p) is estimated using the sensitivity
functions.

The vector optimal for the quadratic subproblem is expressed through the matrices Y and Z.
Columns of Y are the elements of matrix A(p) rows’ subspace, and columns of Z compose a basis
for a vector subspace which is orthogonal to the subspace of A(p) rows:

s =Ysy +Zsz.
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The feasible vector s satisfies the equations:

AYsy = −T. (28)

The vector sy, determined by the constraints (28), will be the same for all feasible vectors, and
they will differ only in components whose values are not constrained. The vector sz is determined
by unconstrained minimization of the quadratic approximation of the Lagrange function ΦL and
solves the linear system:

ZTHZsz = −Z
T
(g +HYsy). (29)

The next approximation of the vector of Lagrange multipliers is determined from the equation

Hs + g =ATψ. (30)

Once the search direction is found, a step length γi is determined by minimizing the augmented
Lagrangian merit function [7] written in the form:

LA(p,ψ, r) = J(p) − ψ
TT(p) +

r

2
T(p)TT(p), (31)

where r is a penalty parameter that ensures the realization of an unconstraint minimum at a sta-
tionary point, found from a sufficient condition for optimality (24)–(27).

A positive-definite approximation to the Hessian of the Lagrangian function is defined by:

H (p̃) =H (p) −
1

sTH(p)s
H(p)ssTH(p)+

1

yT s
yyT , (32)

where y = g (p̃) −A (p̃)T ψ∗ − g (p)T +A (p)T ψ∗, s = p̃ − p.
The estimated design parameter vector is considered optimal if the following conditions are

satisfied:

γ ∥s∥

(1 + ∥p∥)
≤ ε, (33)

∥ZTg∥

(1 +max (1 + ∣J (p)∣ , ∥gF (p)∥))
≤ ε, (34)

∣Tj ∣ ≤ εc, (35)

where ε is a given positive constant which defines the accuracy of optimization problem solution,
εc is the maximum acceptable absolute violation in nonlinear constraints, and gF (p) is a vector
composed of the components of Lagrangian function gradient corresponding to the free variables.

3. DESIGN OF MULTILAYER THERMAL PROTECTION OF SPACECRAFT

To test the efficiency of the developed algorithm and illustrate its capabilities, a problem of design
of the thermal protection coating for a re-entry space vehicle descending in the Earth’s atmosphere
is considered. Coating includes four layers of different materials (see Fig. 3) and is located on
the load-bearing structure layer of the spacecraft, made of aluminum alloy (λ = 92.6 W/(m ⋅K),
c = 1.006 kJ/(kg ⋅K), ρ = 2640 kg/m3) with a thickness d1 = 2.5 mm. A layer 2 made of vitreous
carbon foam is covered with a layer 3 of the carbon/carbon material with a thickness of d3 = 1 mm.
Layer 4 is made of silicon carbide foam, and layer 5 is silicon carbide (d5 = 2 mm).

It is assumed that the thicknesses of layers 1, 3 and 5 are assigned proceeding from strength or
technological requirements. The external heat flux to the re-entry vehicle surface varies according
to the dependency shown in Fig. 4.
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Fig. 3. The scheme of the multilayer thermal protection coating: 1 – aluminum alloy, 2 – vitreous carbon
foam, 3 – carbon/carbon, 4 – silicon carbide foam, 5 – silicon carbide.

Fig. 4. The external heat flux to the re-entry vehicle surface: 1 – convective heat flux,
2 – heat flux radiated by a surface of the vehicle.

The emissivity of the coating surface is equal to 0.92. The back surface of the multilayer thermal
protection coating was assumed thermally insulated. Thermal properties of carbon/carbon, silicon
carbide and vitreous carbon forming the highly porous structure of foam used in the simulation are
presented in Table 1 [8]. Solid surface reflectivity for silicon carbide and carbon used in calculations
is given in Table 2 [8, 18].

Table 1. Thermal properties of materials.

Material Density [kg/m3]

Thermal conductivity
[W/(m ⋅K)]

at temperature [K]

Volumetric heat capacity (103)
[J/(m3 ⋅K)]

at temperature [K]
300 500 700 300 500 700

Carbon/carbon 1440 4.91 6.96 7.22 981 1771 2184

Silicon carbide 3200 31 26 21 2144 2898 3379

Vitreous carbon 1800 3.5 5 7 1224 2091 2567

Table 2. The reflectivity of materials as a function of wavelength.

Material
Reflectivity at wavelength [µm]

0.5 1 3.5 10 12 35

Carbon 0.325 0.425 0.55 0.75 0.77 0.85

Silicon carbide 0.16 0.16 0.12 0.03 0.99 0.26
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The design parameters vector includes thicknesses of layers 2 (d2) and 4 (d4), porosity (δ2 and δ4),
and cell diameters (a2 and a4) of the high-porous cellular materials, forming layers 2 and 4.

The maximum work temperature in air for vitreous carbon is 623 K, and for silicon carbide it
is 1943 K. Thus, as constraints on maximum allowable temperature, it reasonable to set maximum
allowable temperatures at the boundaries of layer 2 made of vitreous carbon foam to 300 K at the
inner and 623 K at the outer boundaries with coordinates X1 and X2 respectively.

The upper and lower bounds for the variables characterizing the structure of the highly porous
materials were set taking into account information about vitreous carbon foams and silicon carbide
foams provided by the industry. The porosity of vitreous carbon foams can reach the values of
0.85–0.98. The maximum porosity of silicon carbide foam can be equal to 0.95. The average cell
diameter can be in the range of 0.36–5.08 mm, which corresponds to materials with a number of
pores per linear inch of 100–10.

A uniform initial temperature distribution in the system is assumed, the temperature is 290 K.
The duration of the heat transfer process for solving the boundary value problem (6)–(20) is

1600 s. The number of steps by time of the finite-difference grid is 2500, and the number of steps
by a spatial coordinate in layers 1–5 is 20, 100, 20, 100, 50 respectively.

The accuracy of solving the boundary value problem (6)–(20), the fulfillment of constraints,
and the solution of the optimization problem (1)–(5) have been set equal to 10−5. The initial
approximations of the desired parameters have been taken as follows: the thickness of the layers 2
and 4: d2 = 0.1 m and d4 = 0.1 m, the porosity of the silicon carbide foam δ4 = 0.9, and porosity of
vitreous carbon foam δ2 = 0.95. The initial value of the minimized function is 47.89 kg.

The estimated parameters are d2 = 0.061 m, d4 = 0.0765 m, δ2 = 0.98, δ4 = 0.95, a2 = a4 = 0.36 mm.
The obtained local mass of the coating is 22.046 kg. Figure 5 shows the time dependences of
temperature at the boundaries of the layers.

Fig. 5. Time dependence of temperature at the boundaries of the layers: 1 – T (X5), 2 – T (X4), 3 – T (X3),
4 – T (X2), 5 – T (X1), T1 – maximum allowable temperature at the boundary of layers with the coordinate
X1, T2 – maximum allowable temperature at the boundary of layers with the coordinate X2.

The number of iterations for minimizing the augmented Lagrangian merit function is equal to
61. The number of iterations required for the solution of the quadratic subproblem is 104 at the
beginning of the iteration process and decreases to 1 in the later iterations since the correct active
constraints have been identified near the solution. The cumulative number of evaluation of the
objective function needed for the line search is 272.

The optimal porosity of vitreous carbon foam and silicon carbide foam is equal to the upper
bound, and the optimal cell diameters of these materials are equal to the lower bound set for
these variables. These results agree with the theoretical model of heat transfer in the porous layers
underlying the developed algorithm. According to the relations used to calculate the radiative
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component of thermal conductivity, materials with the minimum cell diameter have the best thermal
insulation properties. The obtained results confirm the correctness and effectiveness of the developed
algorithm for the optimal design of multilayer thermal protection, taking into account the foam
morphology.

4. CONCLUSION

A new method has been developed for choosing optimal parameters for multilayer thermal protec-
tion based on highly porous cellular materials. The porosity and cell diameter of foam are included
in the parameters’ vector and may be chosen along with the thicknesses of layers. The traditional
techniques for the design of multilayer thermal protection suggest the availability of thermal prop-
erties of all materials composing the layers as initial data for the design problem. The required
information, in this case, could be obtained through the thermal tests of the materials’ samples or
simulations. The proposed algorithm allows choosing the porosity and cell diameter of a layer made
of open-cell foam without fabrication and experimental research of samples or simulation of their
thermal properties, and, therefore reducing the amount of preliminary research in designing of ther-
mal protection. The constructed algorithm is applicable without modification for solving a wide
range of thermal design problems, including the design of advanced thermal protection systems for
spacecraft operating under conditions of extreme thermal loads.
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