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The correct orientation of the spacecraft during a space flight is one of the main tasks of astronautics,
because its orientation affects the correct operation of all subsystems, in particular power supply systems,
where the orientation of solar panels is one of the key tasks. From this point of view, the tasks of developing
backup or replacement of orientation systems are becoming relevant. In this paper, an alternative for the
development of an orientation sensor is proposed, which is sensitive to radiation heating from the Sun or
other celestial bodies that emit strongly. Thus, the tasks of developing a heat flux sensor responsive to
changes in heat fluxes become relevant. This article is devoted to the analysis of technical capabilities
to create such a sensor.
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1. INTRODUCTION

One of the main problems encountered in spacecraft design is the development of control systems
and particularly the orientation system that provides angular directions to the space objects (Sun,
planets, stars). A promising way to develop such systems is based on measuring the radiative flux
from the environment. Such an approach has been suggested for the first time in [4]. Unfortunately,
in the majority of practical situations, the direct measurements of heat flux are problematic. These
difficulties can be overcome with the use of some indirect thermal measurements combined with
an inverse problem technique. The problem of estimating the angular orientation of a spacecraft
requires solving two inverse problems sequentially. The first one is estimating heat fluxes absorbed
by the spacecraft surface. The second one is determining angles of orientation based on the estimated
values of radiative heat fluxes.

In the general case, the orientation of a surface element of spacecraft is determined by the
following nine angles:

1) Three angles determine the relative position of the equatorial XYZ and orbital coordinate sys-
tems: Ω is the longitude of ascending node, i is the inclination of orbit, and u is the argument
of latitude (Fig. 1a). The planetocentric equatorial coordinate system can be considered as an
inertial coordinate system for the most engineering problems. These angles are known from the
spaceflight program.
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2) Direction angles αN , βN , γN for the vector N of the orientation of the plane in the coordinate
system XCYCZC associated with the spacecraft (Fig. 1b). These angles are known from the
spacecraft design.

3) Three angles determine the relative position of the orbital coordinate systems as well as the
spacecraft coordinate systems. These are: the pitch angle ϑ, the yaw angle ψ, and the angle of
heel γ. These angles provide the orientation of the spacecraft during the flight.

a)

b)

Fig. 1. The orientation of the surface element: a) in the equatorial and orbital coordinate systems,
b) in the coordinate system associated with the spacecraft.

One can use the transition matrix from the coordinate system associated with the spacecraft to
the orbital coordinate system (Fig. 1b) to determine the vector N .

Therefore, one can define the orientation of the analysed element in space by using nine specified
angles. We also need to know the spacecraft orbit parameters to determine the position of the



A backup orientation system based on inverse problems technique 81

spacecraft: the apocenter altitude, the pericenter altitude, and the ascending node-pericenter angle
(for the elliptical orbit).

Heat transfer in heat flux sensors installed on the spacecraft surface can be analysed by two
different approaches:

1) The lumped parameters system is

dmρmcm
dTm
dτ

= Asm(qsm(τ) + qRm(τ)) + εmqem(τ) − εmσT 4
m, m = 1,2, ..,M, (1)

Tml(τmin) = Tl0, m = 1,2, ...,M, (2)

where m is number of sensor, M is total number of sensors, dm, ρm, cm, Asm, εm are the thickness,
the density, the heat capacity, the absorptivity and emissivity of an optically gray m-th sensor,
respectively, qsm (Ω, i, u,αNm, βNm, γNm, ψ, ϑ, γ) is the integral (over the spectrum) solar radiative
flux, qRm (Ω, i, u,αNm, βNm, γNm, ψ, ϑ, γ) is the integral solar radiative flux reflected by a planet,
and qem (Ω, i, u,αNm, βNm, γNm, ψ, ϑ, γ) is the integral radiative flux emitted by a planet.

2) The distributed parameters system:

ρmcm (Tm (τ, x)) ∂Tm (τ, x)
∂τ

= ∂

∂x
(λm (Tm (τ, x)) ∂Tm (τ, x)

∂x
),

0 < x < dm, m, τmin ≤ τ ≤ τmax, m = 1,2, ...,M,

(3)

Tm (τmin, x) = Tl0 (x) , 0 ≤ x ≤ dm, m = 1,2, ...,M, (4)

−λm (T (0, τ)) ∂Tm (0, τ)
∂x

= Asm (qsm + qRm) + εmqem − εmσT 4
m(0, τ), (5)

−λm (Tm (dm, τ))
∂Tm (Xm, τ)

∂x
= q2m (τ), (6)

where λm is the thermal conductivity of m-th sensors.
In the first case, one should solve an ill-posed problem [5] of differentiation of experimental

function T :

qexp
m = dmρmcm

dTm
dτ + εmδT 4

m

, m = 1,2, ...,M. (7)

In the second case, the boundary inverse heat transfer problem should be solved [1]:

qexp
m = −λm (T (0, τ)) ∂Tm (0, τ)

∂x
+ εmσT 4

m(0, τ). (8)

Therefore, we can find some estimates for the heat flux absorbed by the heat flux sensor:

qexp
m = Asm (qsm + qRm) + εmqem − εmσT 4

m(0, τ), m = 1,2, ...M, (9)

which can be used then to estimate angles ψ, ϑ, γ using adequate calculated models for

qsm (Ω, i, u,αNm, βNm, γNm, ψ, ϑ, γ) ,

qRm (Ω, i, u,αNm, βNm, γNm, ψ, ϑ, γ) ,

qem (Ω, i, u,αNm, βNm, γNm, ψ, ϑ, γ)

for m = 1,2, ...,M .
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2. THERMOBALISTIC ANALYSIS OF ORBITAL SPACE FLIGHT

2.1. Solar radiative flux

The calculation of the surface heating by direct solar radiation is relatively simple:

qs = S ⋅ cosβ, (10)

where β is the angle between the normal to the surface element N and the direction to the Sun S,
S is the solar radiative flux incident normal to the unit surface at the outer edge of the atmosphere
at an average distance of the planet from the Sun:

S = S0

L2
, (11)

where L is the average distance of the planet from the Sun in AU and S0 = 1398 W/m2 is the
solar constant for the Earth. In the case of γ > 90○, solar radiation cannot reach the surface under
consideration and qs = 0.

2.2. Solar radiation reflected from the planet

The solar radiation flux reflected from the planet and falling on the spacecraft surface element
depends on the geophysical properties of the planet surface and the atmosphere (Aav), and the
position of the element relative to the direction and physical model of solar radiation reflection
(ϕ2) [2, 3] is

qR = AavSϕ2, (12)

where Aav is the planet albedo, and ϕ2 is the angular combined coefficient. The system of the planet
– the Sun surface element, characterized by the parameters θ0, γS , δS , ψn, is shown in Fig. 2,

θ0 = arcsin
R

R +H
. (13)

Fig. 2. The main parameters for angular coefficients calculation.

The diffuse reflection model is valid for values γS ≤ 60○ when the reflection of solar radiation
by a planet satisfies Lambert’s law qR∣γS≤60○ = qDR . On the contrary, the mirror reflection model
qR∣γS>60○ = qMR is valid for values γS > 60○.
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In the case of diffuse reflection, the solar radiative flux reflected by the planet is determined as
follows:

qDR = AavSϕ2, (14)

ϕ2 = f∗2 (θ0, ψn) cosγS + f∗3 (θ0, ψn) sinψn sinγS cos δS , (15)

where

f∗2 (θ0, ψn) ≈
f2(θ0)
sin2 θ0

ϕ1(θ0, ψn),

f2(θ0) =
1

4
(1 + sin2 θ0 + 2 sin3 θ0 +

cos4 θ0

2 sin θ0
ln

1 − sin θ0

1 + sin θ0
),

f∗(θ0, ψn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f3(θ0), if 0 ≤ ψn ≤
π

2
− θ0,

f3(θ0)
θ0 + π

2 − ψn
2θ0

, if
π

2
− θ0 ≤ ψn ≤

π

2
+ θ0,

f3(θ) =
cos2 θ0 (3 + sin2 θ0)

16 sin θ0
ln

1 + sin θ0

1 − sin θ0
−

(1 − sin θ0) (3 + 3 sin θ0 + 2 sin2 θ0)
8

.

Note that the approximate equation for the ϕ2 formula can give small negative values of radiative
flux at large values of γS and δS > π

2
. In these cases, the radiative flux should be taken equal to

zero.
The reflected radiative flux at γS > 60○ is determined as follows:

qMR = Aav ⋅ S ⋅ FR ⋅ k, (16)

where FR = cos(ψn − (2β − γS)) is the unit area of the midsection of spacecraft surface, calculated
from the propagation direction of the mirror reflected radiation, and

k = b20 sin 2β

2 sinγS [2 cos(2β − γS) − b0 cosβ]

is the scattering coefficient of the homogeneous flux of radiative energy in mirror reflection from
the spherical surface:

b0 =
R

R +H
. (17)

β is the angle of reflection of incident radiation from the planet surface. The relation between the
angles β and γS is:

b0 sinβ = sin(2β − γS). (18)

In general, the spacecraft moving along a stationary orbit appears periodically in the shadow of
the planet. When the spacecraft is in the shadow (γS > (π − θ0)), the values of qS and qR become
equal to zero.
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2.3. Self-emission of the planet

The planet is considered as a diffusely emitting spherical body with an effective radius of R =
R0+Ha, where R0 is the average radius of the planet and Ha is the upper boundary of the effective
radiated atmospheric layer. All the planets are divided into three types depending on the character
of distribution of the planet’s surface own radiation emission. For planets of the first type (Earth,
Venus, Jupiter) their own radiation is assumed constant over the surface:

qe =
1 −Aav

4
Sϕ1, (19)

where ϕ1 is the angular coefficient between the element of spacecraft and the planet, which can be
calculated as:

ϕ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosψn sin2 θ0, if 0 ≤ ψn ≤
π

2
− θ0,

cosψn sin2 θ0

π
[π

2
+ arcsin(ctgθ0ctgψn)] +

1

π
arcsin

√
sin2 θ0 − cos2ψn

sinψn

− 1

π
cos θ0

√
sin2 θ0 − cos2ψn, if

π

2
− θ0 ≤ ψn ≤

π

2
+ θ0,

0, if
π

2
+ θ0 ≤ ψn ≤ π.

(20)

3. GEOMETRY INVERSE PROBLEM

To define the orientation of the spacecraft, we need three angles: the pitch angle (ϑ), the yaw angle
(ψ), and the angle of heel (γ). If a few heat flux sensors are installed on the spacecraft surface, the
geometric inverse heat transfer problem can be formulated as follows: to determine three unknown
angles ϑ, ψ, and γ from a set of nine angles, which characterize the orientation of spacecraft, by
indirect measurements of radiative heat fluxes absorbed by the sensors. In the case of small satellite
(standard CubeSat) of simple shape, six sensors can be installed at each surface of the spacecraft
(Fig. 1a). In the case of the same radiative properties of all the sensors, the mathematical statement
for the inverse problem can be formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qΣ1(ϑ,ψ, γ) = AsmqS1(ϑ,ψ, γ) +AsmqR1(ϑ,ψ, γ) + εmqe1(ϑ,ψ, γ);

qΣ2(ϑ,ψ, γ) = AsmqS2(ϑ,ψ, γ) +AsmqR2(ϑ,ψ, γ) + εmqe2(ϑ,ψ, γ);

...

qΣm(ϑ,ψ, γ) = AsmqSm(ϑ,ψ, γ) +AsmqRm(ϑ,ψ, γ) + εmqem(ϑ,ψ, γ),

(21)

where qΣm is the integral heat flux absorbed by m-th sensor.
Then the inverse problem can be formulated as solving the following system of equations:

qexp
m ≅ qΣm(ϑ,ψ, γ), m = 1,2, ...,M. (22)

One cannot obtain the analytical solution for (22) because of its essential non-linearity and
complex transcendence. Therefore, this problem should be solved numerically. The searched vector
can be found using the least square method. The corresponding residual functional is as follows:

Jmin =
M

∑
m=1

(qΣm(ϑ,ψ, γ) − qexp
m )2. (23)
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The sufficient condition of a minimum of functional (23) is its gradient equal to zero. As a result,
(23) is reduced to the following coupled equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂J

∂ϑ
= 0,

∂J

∂ψ
= 0,

∂J

∂γ
= 0.

(24)

Using (23), we can rewrite (24) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
M

∑
m=1

(qΣm(ϑ,ψ, γ) − qexp
m ) ∂qΣm

∂ϑ
= 0,

2
M

∑
m=1

(qΣm(ϑ,ψ, γ) − qexp
m ) ∂qΣm

∂ψ
= 0,

2
M

∑
m=1

(qΣm(ϑ,ψ, γ) − qexp
m ) ∂qΣm

∂γ
= 0,

(25)

where the partial derivatives can be calculated as:

∂qΣm

∂ϑ
= Asm

∂qSm
∂ϑ

+Asm
∂qRm
∂ϑ

+ εm
∂qem
∂ϑ

, (26)

∂qΣm

∂ψ
= Asm

∂qSm
∂ψ

+Asm
∂qRm
∂ψ

+ εm
∂qem
∂ψ

, (27)

∂qΣm

∂γ
= Asm

∂qSm
∂γ

+Asm
∂qRm
∂γ

+ εm
∂qem
∂γ

. (28)

The conjugate gradient method provides the most effective solving of this problem:

ξ(k+1) = ξ(k) − αkp(k), (29)

where ξ = (ϑ,ψ, γ), k is iteration number, and p(k) is descent direction for k-th iteration:

p(k) = gradJ(ξ(k)) + βkp(k−1), (30)

βk =
∣gradJ (ξ(k))∣2

∣gradJ (ξ(k−1))∣2
=

3

∑
i=1

⎡⎢⎢⎢⎢⎣

∂J (ξ(k))
∂ξi

⎤⎥⎥⎥⎥⎦

2

3

∑
i=1

⎡⎢⎢⎢⎢⎣

∂J (ξ(k−1))
∂ξi

⎤⎥⎥⎥⎥⎦

2
. (31)

The initial value of descent direction for k = 0:

p(0) = gradJ(ξ(0)) for β0 = 0, (32)

where αk – step of descent at the k iteration, which is determined by the following procedure. We
give the increment of the function ∆qΣm(ϑ,ψ, γ) in equation (23), i.e., we have

J =
M

∑
m=1

(qΣm(ϑ,ψ, γ) +∆qΣm(ϑ,ψ, γ) − qexp
m )2, (33)
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where

∆qΣm(ϑ,ψ, γ) = αk1
∂qΣm

∂ϑ
(−p(k)ϑ ) + αk2

∂qΣm

∂ψ
(−p(k)ψ ) + αk3

∂qΣm

∂γ
(−p(k)γ ) , (34)

where p(k)ϑ , p(k)ψ , p(k)γ are components of a vector p(k).
Opening brackets (33) as the square of the sum, we obtain:

J =
M

∑
m=1

(qΣm(ϑ,ψ, γ) +∆qΣm(ϑ,ψ, γ))2

− 2
M

∑
m=1

(qΣm(ϑ,ψ, γ) +∆qΣm(ϑ,ψ, γ))qexp
m +

M

∑
m=1

(qexp
m )2. (35)

Taking the derivative of equation (35) with respect to αk and equate the resulting expression to
zero to determine the roots of the equation:

∂J

∂αk
= 2

M

∑
m=1

(qΣm(ϑ,ψ, γ) +∆qΣm(ϑ,ψ, γ))

× ∂∆qΣm(ϑ,ψ, γ)
∂αk

− 2
M

∑
m=1

∂∆qΣm(ϑ,ψ, γ)
∂αk

qexp
m = 0, (36)

where
∂∆qΣm(ϑ,ψ, γ)

∂αk

is the derivative of the increment of the function ∆qΣm(ϑ,ψ, γ) with respect to the components αk:

∂∆qΣm(ϑ,ψ, γ)
∂αk1

= ∂qΣm

∂ϑ
(−p(k)ϑ ), (37)

∂∆qΣm(ϑ,ψ, γ)
∂αk2

= ∂qΣm

∂ψ
(−p(k)ψ ), (38)

∂∆qΣm(ϑ,ψ, γ)
∂αk3

= ∂qΣm

∂γ
(−p(k)γ ). (39)

Simplifying equation (36) and taking (34), (37)–(39), we obtain a system of equations:

αk1 [
M

∑
m=1

∂qΣm

∂ϑ
(−p(k)ϑ )]

2

+ αk2

M

∑
m=1

∂qΣm

∂ψ
(−p(k)ψ ) ∂qΣm

∂ϑ
(−p(k)ϑ )

+ αk3

M

∑
m=1

∂qΣm

∂γ
(−p(k)γ ) ∂qΣm

∂ϑ
(−p(k)ϑ )

=
M

∑
m=1

qexp
m

∂qΣm

∂ϑ
(−p(k)ϑ ) −

M

∑
m=1

qΣm(ϑ,ψ, γ)∂qΣm

∂ϑ
(−p(k)ϑ ), (40)

αk1

M

∑
m=1

∂qΣm

∂ϑ
(−p(k)ϑ ) ∂qΣm

∂ψ
(−p(k)ψ ) + αk2

M

∑
m=1

[∂qΣm

∂ψ
(−p(k)ψ )]

2

+ αk3

M

∑
m=1

∂qΣm

∂γ
(−p(k)γ ) ∂qΣm

∂ψ
(−p(k)ψ )

=
M

∑
m=1

qexp
m

∂qΣm

∂ψ
(−p(k)ψ ) −

M

∑
m=1

qΣm(ϑ,ψ, γ)∂qΣm

∂ψ
(−p(k)ψ ) , (41)
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αk1

M

∑
m=1

∂qΣm

∂ϑ
(−p(k)ϑ ) ∂qΣm

∂γ
(−p(k)γ ) + αk2

M

∑
m=1

∂qΣm

∂ψ
(−p(k)ψ ) ∂qΣm

∂γ
(−p(k)γ )

+ αk3 [
M

∑
m=1

∂qΣm

∂γ
(−p(k)γ )]

=
M

∑
m=1

qexp
m

∂qΣm

∂γ
(−p(k)γ ) −

M

∑
m=1

qΣm(ϑ,ψ, γ)∂qΣm

∂γ
(−p(k)γ ). (42)

The system of equations (40)–(42) is linear. This system can be written in the form:

Ax = b, (43)

where A is the symmetric quadratic matrix, i.e., A = (aij) = AT , and aij are components of the
unknown terms αk1, αk2 and αk3, b = (b1, b2, b3)T is the vector of the right parts of the system, and
x = (αk1, αk2, αk3)T is the vector-column of unknown values.

The method of solving the system (40)–(42) is the square root method.
The optimization process terminates when

∣gradJ (ξ(k))∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3

∑
i=1

⎡⎢⎢⎢⎢⎣

∂J (ξ(k))
∂ξi

⎤⎥⎥⎥⎥⎦

2⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2

≤ ε, (44)

where ε is the measurement error.
In order to run the optimization algorithm using the conjugate gradient method, it is necessary to

specify the initial approximation of the unknown angles ϑ0, ψ0 and γ0, which are chosen arbitrarily.
The search for the global extremum using the conjugate gradient method by setting the initial

approximations does not lead to the required results because the residual functional has several
extremums (Figs 3–5). Figures 3–5 show that the extremums are well separated from each other, and
the method of local optimization converges to local extremums (Figs 6–9). Therefore, to determine
a global extremum we will use the method of random restarts.

Firstly, three random numbers distributed uniformly on the interval [0, 360] are generated.
These three generated numbers are specified respectively as the initial approximation of the un-
known angles ϑ0, ψ0 and γ0. Secondly, the conjugate gradient method is run to determine the local
extremum and the value of the residual functional by using the obtained initial approximation.

Fig. 3. Cross-section of the residual functional by the angle ϑ and ψ = 70○, γ = 20○.
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Repeating the previous steps by the definitions of the local extremum and the value of the residual
functional, we obtain the following parameter vector:

⎛
⎜⎜⎜⎜
⎝

ϑ1 ψ1 γ1 J1

ϑ2 ψ2 γ2 J2

...

ϑj ψj γj Jj

⎞
⎟⎟⎟⎟
⎠
, (45)

where j is the number of restarts.

Fig. 4. Cross-section of the residual functional by the angle ψ and ϑ = 5○, γ = 20○.

Fig. 5. Cross-section of the residual functional by the angle γ and ϑ = 5○, ψ = 70○.

a) b)

Fig. 6. a) Inverse problems solution for the “exact” values ϑ = 5○, ψ = 70○, γ = 20○, b) the initial
approximation for the conjugate gradient method is: ϑ = 0○, ψ = 0○, γ = 0○.
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a) b)

Fig. 7. a) Inverse problems solution for the “exact” values ϑ = 5○, ψ = 70○, γ = 20○, b) the initial
approximation for the conjugate gradient method is: ϑ = 80○, ψ = 100○, γ = 75○.

a) b)

Fig. 8. a) Inverse problems solution results for the “exact” values ϑ = 40○, ψ = 10○, γ = 50○, b) the initial
approximation for the conjugate gradient method is: ϑ = 0○, ψ = 0○, γ = 0○.

a) b)

Fig. 9. a) Inverse problems solution results for the “exact” values ϑ = 40○, ψ = 10○, γ = 50○, b) the initial
approximation for the conjugate gradient method is: ϑ = 0○, ψ = 100○, γ = 30○.

The number of restarts is selected by numerical simulation. In our case, 1000 restarts were
selected.

At the end of the process, a vector of parameters (ϑ,ψ, γ) is chosen from all results of local
optimization (34) at which the residual functional takes the smallest value. In this case, the residual
functional agrees with the measurement error of the conjugate gradient method.

4. RESULTS

The verification of the suggested algorithm was executed by the numerical simulation. At the
beginning of the computational procedure, the thermoballistic direct problem for the parameters
of orbit, the angular position of sensors and some arbitrary angles ϑ, ψ and γ was solved. The
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calculated values of heat flux were used to simulate qexp
m , and then the values of qexp

m were used to
solve the inverse problem (23). Some results for the numerical simulation are presented in Figs 6–9.

In order to evaluate the accuracy of solving the geometric inverse problem, it is necessary to
consider the effects of errors. The calculation was conducted on the effect of heat leaks from the
heat flux sensors using the suggested method of numerical simulation.

Errors in the results of determining the angular orientation of the spacecraft depending on heat
leakage are presented in Fig. 10. Moreover, both leakages from individual sensors and all six sensors
were simulated simultaneously.

Heat leak is determined as

qm = qm δq, (46)

where qm is the heat flux absorbed by the sensor, and δq is the heat flux error.

a) b)

c)

Fig. 10. Errors of recovery of the angular position of the spacecraft in the presence of heat leaks on the:
a) 3rd, b) 6th and c) all six sensors simultaneously.

5. CONCLUSIONS

A generalized radiative transfer model, taking into account ballistic parameters and corresponding
angles of orientation of spacecraft and its orbit to estimate the external heat fluxes, was devel-
oped. The rigorous theory of optimization was employed to solve the geometric inverse problem
of estimating angles of orientation of spacecraft by measuring heat fluxes at the elements of the
structure.

The computational results appear to be in good agreement with the simulated thermal measure-
ments at conditions of spaceflight. This validation enables us to recommend the suggested approach
for engineering estimates of the orientation of small satellites or as a backup system for spacecraft
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orientation. The results of the numerical simulation demonstrate sufficient numerical effectiveness
of the suggested algorithm.
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