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In this work, a two-dimensional model was developed to analyze the transient temperature distribution
in the head of a newborn human, during local cooling promoted by the flow of cold water through a cap.
The inverse problem dealt with the sequential estimation of the internal temperature of the head, by
performing non-invasive transient temperature measurements. A state estimation problem was solved
with the sampling importance resampling (SIR) algorithm of the particle filter method. Uncertainties in
the evolution and observation models were assumed as additive, Gaussian, uncorrelated and with zero
means. The uncertainties for the evolution model were obtained from the Monte Carlo simulations, based
on the uncertainties of the model parameters. The head temperature was accurately predicted with the
particle filter method. Such a technique might be applied in the future to monitor the brain temperature
of newborns and control the local cooling treatment of neonatal hypoxic-ischemic encephalopathy.
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NOMENCLATURE

c – specific heat,
h – global heat transfer coefficient,
H – thickness of the channel,
k – thermal conductivity,
ṁ – cooling water mass flow rate,
N – number of particles,
q – metabolic volumetric heat generation rate,
r – radial spatial variable,
T – temperature,
Ta – arterial blood temperature,
T0 – initial temperature distribution in the head,
T∞ – initial water temperature and surrounding temperature,
w – particle weight,
y – vector of state variables,
z – vector with the prediction of the measurements.
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Greek symbols:
θ – vector of non-dynamic model parameters,
θ – angular spatial variable,
ρ – density,
τ – time,
ω – perfusion coefficient.

Subscripts:
b – blood,
gm – gray matter,
k – time instant,
l – cooling water,
sc – scalp,
sk – skull,
t – tissue,
wm – white matter.

Superscripts:
i – particle index,
meas – measurements.

1. INTRODUCTION

This study is focused on the neonatal hypoxic-ischemic encephalopathy (HIE), which is a neurolog-
ical disorder observed in newborn babies, commonly caused by birth asphyxia [1]. An inadequate
oxygen supply to the brain, due to low blood flow, immediately causes necrotic cell death, which is
then followed by the second phase of HIE that is characterized by cerebral edema and cell apoptosis.
This second phase takes place between 6 and 72 hours after the blood supply to the brain is de-
creased [1]. An efficient treatment to reduce brain damage and death of the newborn is to decrease
the body core temperature to around 34○C for a period of at least 72 hours. Cooling should be
started within the first phase of HIE, in order to increase the chances of successful treatment [1–8].

Both systemic and local cooling techniques have been used for the treatment of the neona-
tal hypoxic-ischemic encephalopathy, and commercial products are currently available for medical
practice [1–10]. Systemic cooling can be achieved by surrounding the body of the newborn, except
the head, with a cooling blanket containing channels through which cold water is circulated around
a body. The rate of temperature reduction is slower with the systemic cooling than with the local
cooling. Additionally, the systemic technique also produces the cooling of other vital regions, and
undesirable physiological side-effects are more likely to occur, such as cardiac arrhythmia, venous
thrombosis and hypotension [1, 6]. On the other hand, the systemic cooling technique offers the
advantage such that the head of the newborn can be easily accessed for examinations or other
medical interventions. Local cooling can be achieved with the flow of cold water through a cap
surrounding the newborn’s head, while the remaining body can be warmed by a radiator in the
incubator. Therefore, the local technique provides neuroprotection with minimum side-effects due
to hypothermia, by cooling the brain while maintaining the patient’s core temperature at safe lev-
els. The local technique is expected to be less aggressive to the body, however the access to the
head is only allowed if the cooling cap is removed, which can significantly affect the treatment. Be-
sides that, it has been shown that local cooling might not effectively reduce the brain temperature
because of the blood perfusion that heats the head [11].



Estimation of the ischemic brain temperature with the particle filter method 7

The temperature controlled during the cooling treatment is usually that of the core body,
measured through the rectum [1–10]. Different techniques have been under development for the
non-intrusive temperature measurement of internal tissues, for example, magnetic resonance [12] or
photoacoustic technique [13, 14]. However, these techniques are currently in an experimental phase.
Hence, the real-time measurement of the internal temperature of the brain is still not feasible. Com-
putational simulation of bioheat transfer during the cooling process can provide estimates of the
brain temperature. However, the numerical simulations involve uncertainties related to the condi-
tions of the environment surrounding the newborn, as well as uncertainties related to the physical
properties and shapes of organs, which vary from individual to individual, and even vary for the
same individual, depending on the physiological conditions.

In state estimation problems, the information provided by measurements and numerical simula-
tions, with their inherent uncertainties, is jointly used to produce sequential estimates of the desired
dynamic variables. Particle filter methods provide a powerful and robust technique for the solution
of state estimation problems, with results more accurate than those obtained with the available
extensions of the Kalman filter, for nonlinear and non-Gaussian models [15–25].

In this work, the sampling importance resampling (SIR) algorithm of the particle filter is ap-
plied for the estimation of the transient internal temperature of the head during the local cooling
treatment of the neonatal hypoxic-ischemic encephalopathy. Such an inverse problem is solved with
numerically simulated temperature measurements of the water at the outlet of the cooling cap, as
well as measurements taken at specific points on the head surface.

The considered physical problem and its mathematical formulation are presented in the next
section, which is followed by the definition of the state estimation problem and the presentation
of the sampling importance resampling (SIR) algorithm of the particle filter. Numerical results
are then presented and discussed, including the selection of the number of particles for the SIR
algorithm and the number of measurement locations, which are required for an accurate solution
of the state estimation problem. The cases examined in this paper include a healthy brain, a brain
with a partial ischemic region and a brain where ischemia takes place in the whole gray and white
matters.

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The physical problem considered here involves bioheat transfer in a multilayer hemisphere
[9, 26]. The problem is considered to be axisymmetric, with perfect contact between the layers
that correspond to white matter, gray matter, skull and scalp, as illustrated in Fig. 1. This figure
also presents the water channel in the cooling cap. Physical properties of each layer are assumed
to be constant. Heat transfer from the head to the cold water flowing through the cap is accounted
for by a global heat transfer coefficient, which is assumed uniform over the surface. Heat transfer is
neglected at the bottom surface of the hemisphere. Bioheat transfer is considered to follow Pennes’
model [27] so that we can write for each tissue layer and for time τ > 0:

ρtct
∂ Tt(r, θ, τ)

∂ τ
=
kt
r2

[
∂

∂ r
(r2

∂ Tt
∂ r

) +
1

sin θ

∂

∂ θ
(sin θ

∂ Tt
∂ θ

)]

+ ρbcbωt(Tt) [Ta − Tt(r, θ, τ)] + qt(Tt), (1)1

where the subscript t designates the tissue layers, that is, t =wm for white matter, t = gm for gray
matter, t = sk for the skull and t = sc for the scalp. The subscript b denotes blood, while ρ is
the density, c is the specific heat, k is the thermal conductivity, ω is the perfusion coefficient, and
Ta is the arterial blood temperature. The metabolic volumetric heat generation rate is denoted
by q.
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Fig. 1. The axisymmetric hemispherical region with multiple layers representing
the head and the cooling cap.

The initial and boundary conditions for the problem are given respectively by:

Tt = T0(r, θ) at τ = 0, in 0 < θ <
π

2
, 0 ≤ r < r4, (1)2

∂ Tt
∂ θ

= 0 at θ = 0 and θ =
π

2
, 0 ≤ r < r4, τ > 0, (1)3

ksc
∂ Tsc
∂ r

+ hTsc = hTl(θ, τ) at r = r4, 0 < θ <
π

2
, τ > 0, (1)4

where T0(r, θ) is the temperature distribution in the head at time τ = 0, Tl(θ, τ) is the temperature
of the cooling water, and h is the global heat transfer coefficient between the head surface and the
cooling water, which also accounts for all thermal resistances in the heat flow path.

With the perfect contact assumed between the layers, we can write:

kgm
∂ Tgm

∂ r
= kwm

∂ Twm
∂ r

and Tgm = Twm at r = r1, 0 < θ <
π

2
, τ > 0, (1)5

ksk
∂ Tsk
∂ r

= kgm
∂ Tgm

∂ r
and Tsk = Tgm at r = r2, 0 < θ <

π

2
, τ > 0, (1)6

ksc
∂ Tsc
∂ r

= ksk
∂ Tsk
∂ r

and Tsc = Tsk at r = r3, 0 < θ <
π

2
, τ > 0. (1)7

The initial temperature distribution in the head T0(r, θ), is given by the steady- state solution
of the bioheat transfer (Eqs (1)), by assuming convection and linearized radiation heat transfer
between the surface of the head and the surrounding environment before the water cooling takes
place.

During the local cooling treatment of the neonatal hypoxic-ischemic encephalopathy that is
considered here, water is assumed to flow through the channel inside the cooling cap from θ = 0

to θ =
π

2
, with a constant mass flow rate ṁ. The thickness of the channel H is small so that

the temperature gradient in the radial direction is neglected. By neglecting heat transfer from the
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surface of the cap to the surrounding environment the energy balance for the water in the cap is
given by:

∂ Tl(θ, τ)

∂ τ
+

ṁ

2πr24Hρl sin θ

∂ Tl
∂ θ

=
h

Hρlcl
[Tsc(r4, θ, τ) − Tl(θ, τ)]

in 0 < θ <
π

2
, for τ > 0, (2)1

where the subscript l denotes cooling water. The water enters the channel at the constant tempe-
rature Tl,I , and a local parabolic outflow boundary condition is assumed. The initial water tempera-
ture is T∞. Thus,

Tl = Tl,I at θ = 0, τ > 0, (2)2

∂ Tl
∂ θ

= 0 at θ =
π

2
, τ > 0, (2)3

Tl = T∞ at τ = 0, in 0 < θ <
π

2
. (2)4

The perfusion coefficient and the metabolic heat generation rate are assumed to vary with
temperature respectively in the form [1, 28]:

ωt(Tt) = ω0t3
[Tt(r,θ,τ)−Ta]

10 and qt(Tt) = q0t3
[Tt(r,θ,τ)−Ta]

10 . (3)

By following [9], the tissue baseline perfusion coefficient ω0t is reduced to 20% of its original
value during ischemia. The solution of the direct problem, where all model parameters, initial and
boundary conditions are known, was obtained in this work with a dedicated finite volume code,
which was verified with the COMSOL commercial finite element code.

3. STATE ESTIMATION PROBLEM AND PARTICLE FILTER METHOD

The objective of this work is to estimate the transient temperature at each finite volume used for
the discretization of Eqs (1) to (3), by using non-invasive measurements of temperature at the
surface of the head and the outlet of the cooling channel. Such an inverse problem is considered
here in the form of a state estimation problem. The available measured data is then used together
with the mathematical models for the physical phenomena and the measuring devices, in order to
sequentially estimate the state variables [15–25].

The formulation of state estimation problems requires two stochastic mathematical models:
the evolution model, which represents the discrete time evolution of the state variables, and the
observation model, which provides a relationship between the measurements and the state variables
[15–25]. The evolution and observation models can be respectively written in the following general
forms [15–25]:

yk = fk (yk−1,θ,vk) , k = 1, ...,M,

zk = gk (yk,θ,nk) , k = 1, ...,M,
(4)

where yk is the vector of state variables that describe the system at a given time instant tk, zk is the
prediction of the measurements (zmeas

k ) and θ is a vector containing all the non-dynamic parameters
of the model. The vectors vk and nk represent the noises in the evolution and observation models,
respectively. The probability density π (y0,θ∣z0) = π (y0,θ) at the initial time t = 0 is assumed as
known for the solution of the state estimation problem [15–25].
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In this work, the evolution model is given by the discrete forms of Eqs (1) to (3), and the state
variables are the temperatures at all finite volumes used in the discretization. Since the measure-
ments give the temperatures at specific locations, the observation model is simply a mapping of
the evolution model, which selects the state variables at the measurement points.

The state estimation problem of this work is solved with the particle filter method [15–25].
In such a sequential Monte Carlo technique, the posterior probability density function of the state
variables is represented by a set of random samples (particles) with associated weights. The particle
filter method can be applied to nonlinear and non-Gaussian models since it is not restricted by the
hypotheses required for the optimality conditions of the Kalman filter [15–25].

Each of the N particles representing the posterior distribution of the state variables at time tk
is denoted by yik, with corresponding weight wik, where i = 1, ...,N . From the probability density
at the initial time, π (y0,θ), a prior information for the state variables at the subsequent time t1,
is estimated by using the state evolution model, given by Eq. (4)1. The observation model, given
by Eq. (4)2 and the actual measurements zmeas

k , are then used in the likelihood function (the
statistical model for the measurement errors) to compute the weights of the particles. This process
is then sequentially repeated for future times to estimate the state variables. Although simple,
this algorithm may degenerate the particles, that is, the majority of particles may have negligible
weights. The degeneracy phenomenon can be overcome with a resampling step in the particle filter,
which eliminates particles with small weights and generates new particles from those with large
weights [15–25]. In the SIR algorithm [17, 18] used in this work, the resampling step is applied
every time step. Table 1 summarizes the SIR algorithm.

Table 1. Sampling Importance Resampling (SIR) algorithm [17, 18].

Step 1

For i = 1, ...,N draw new particles yi
k from the prior density π (yk ∣ yi

k−1,θ) and then
use the likelihood density to calculate the corresponding weights wi

k = π (zk ∣ yi
k,θ).

Step 2

Calculate the total weight Tw =
N

∑
i=1
wi

k and then normalize the particle weights, that

is, for i = 1, ...,N let wi
k = T

−1
w wi

k.

Step 3

Resample the particles as follows:

Construct the cumulative sum of weights (CSW) by computing ci = ci−1 + w
i
k for

i = 1, ...,N , with c0 = 0.

Let i = 1 and draw a starting point u1 from the uniform distribution U [0, N−1]

For j = 1, ...,N

Move along the CSW by making uj = u1 +N−1(j − 1)

While uj > ci make i = i + 1 and

Assign sample yj
k = yi

k

Assign sample weight wj
k = N

−1.

The measurements are assumed here as uncorrelated and containing additive Gaussian noises,
with zero means and a constant covariance matrix R. Therefore, the observation model can be
written as

zk = gk (yk, θ) + nk, (5)

where nk = N(0,R). With such hypotheses about the measurement errors, the likelihood function,
which is used for the computation of the weights in the particle filter method, is thus given by:

π (zk ∣ yk,θ) = (2π)−I/2 ∣R∣
−1/2 exp{−

1

2
[zmeas
k − gk (yk,θ)]

T R−1
[zmeas
k − gk (yk,θ)]} , (6)
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where I is the number of measurements at each time instant tk, and π = 4 tan−1(1). The vector of
model parameters θ is assumed as known in this work, but the related uncertainties are accounted
for in the noise vectors vk and nk.

4. RESULTS AND DISCUSSIONS

For the results presented below, the radiuses that limit each tissue layer in the head were considered
as r1 = 42 mm, r2 = 53 mm, r3 = 55 mm and r4 = 57 mm [9, 26], while the thickness of the cooling
channel was taken as H = 5 mm. By following the experimental results presented in [10], the
global heat transfer coefficient from the surface of the head to the cooling water was considered as
225 Wm−2K−1 and the water mass flow rate as 0.012 kg ⋅ s−1. The water in the cap was assumed
initially in thermal equilibrium with the surroundings at the temperature T∞ = 18○C. During the
treatment, the water temperature at the inlet of the cap was maintained at Tl,I = 15○C. Since
this work is focused on the start of the cooling treatment, the arterial blood temperature was also
assumed constant and given by Ta = 37○C. The thermophysical properties used for the different
tissues, as well as for blood and water, are summarized in Table 2 [1, 26].

Table 2. Thermophysical properties of the different tissues [1, 26].

Properties

k
[W m−1 K−1]

ρ
[kg m−3]

c
[W kg−1K−1]

ω0

[s−1]
q0

[W m−3]
Scalp 0.34 1000 4000 3.33× 10−4 363.4

Skull 1.16 1500 2300 3× 10−4 368.3

Gray matter 0.5 1050 3700 1.33× 10−2 16700

White matter 0.5 1050 3700 3.33× 10−3 4175

Blood 0.5 1050 3800 – –

Water 0.6 1000 4180 – –

The conditions examined in this work included healthy and ischemic brains. Ischemia was sup-
posed to take place either in the total white and gray matter regions or in part of the gray matter,
as depicted in Fig. 2.

Based on a grid convergence analysis, the number of finite volumes selected for the discretization
of the region of the head (Eqs (1)) was 57 ×57 (r and θ directions, respectively). The region of the
cap (Eqs (2)) was then discretized with 57 volumes in the θ direction for compatibility with the
mesh for the head region. A time step of 10−3 s was used for the stability of the solution, which
involved an explicit time integration scheme. With such number of finite volumes and time step,
discrepancies were about 1% among the steady-state heat rates that were: (i) generated inside the
head, (ii) transferred to the water and (iii) transferred by conduction at the head surface.

The initial temperature in the region of the head was obtained from the steady state solution of
the bioheat transfer problem (Eqs (1)) before the cooling treatment was initiated, by considering
heat transfer from the head to the surroundings at T∞ = 18○C, with a heat transfer coefficient of
10 Wm−2K−1. Figures 3a and 3b present the initial conditions for the cases of healthy and partially
ischemic brains, respectively.

To solve the state estimation problem, the uncertainties in the evolution model were assumed
as additive and Gaussian. The means and standard deviations for such uncertainties were obtained
from the Monte Carlo simulations of the direct problem for a healthy brain, by sampling the
model parameters from Gaussian distributions centered on the values presented in Table 2, with
standard deviations given by 1% of these mean values. The transient variation of the temperature
standard deviations, obtained from 500 simulations of the direct problem, is presented in Fig. 4b
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Fig. 2. Healthy and ischemic brain conditions considered in this work.

a) b)

Fig. 3. The initial condition for: a) healthy brain; b) partially ischemic brain.

a) b)

Fig. 4. a) Points used for the analyses; b) temperature standard deviations obtained with the Monte Carlo
simulations of the direct problem at the selected points.
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for the selected points shown in Fig. 4a. The temperature standard deviations are smaller for the
internal regions, far from the head surface where the cooling takes place. Based on the values
presented in Fig. 4b, the standard deviations in each tissue layer and water were then considered
uniform for the simulations presented below.

The effects of the number of sensors and the number of particles on the inverse problem solution,
obtained with the SIR algorithm of the particle filter method, will now be examined. For this
analysis, we considered the first 60 seconds of the cooling of a healthy brain, with a measurement
frequency of 1000 Hz and a standard deviation of 0.3○C for the simulated measurements. Table 3
presents the RMS errors of the solutions obtained with different numbers of sensors and particles,
while Figs 5a and 5b illustrate the configurations with 4 and 10 sensors, respectively. Table 3 shows
that the RMS errors are not affected by increasing the number of particles and the number of
sensors for the present inverse problem. The RMS error is defined as

eRMS =
1

MP

¿
Á
Á
ÁÀ

M

∑
m=1

P

∑
p=1

[Tmp,exa − T
m
p,est]

2
, (7)

where the subscripts exa and est refer to the exact and estimated temperatures, respectively, at
the finite volume p and at the time step m. P and M are the numbers of finite volumes and time
steps, respectively.

Table 3. RMS errors.

500 particles 1000 particles

4 sensors 9× 10−7 9× 10−7

8 sensors 10× 10−7 9× 10−7

10 sensors 10× 10−7 9× 10−7

58 sensors 7× 10−7 7× 10−7

a) b)

Fig. 5. Configuration with: a) 4 sensors; b) 10 sensors.

We now consider the solution of the state estimation problem for the conditions of healthy and
ischemic brains, during the first 5 minutes of the local cooling treatment. Since the RMS errors
were not affected by the numbers of particles and sensors, to avoid large computational times
we considered the results obtained for 500 particles, and to avoid patient discomfort we used 4
sensors. The simulated measurements were assumed to have a frequency of 2 Hz and contained
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Gaussian errors with a standard deviation of 0.3○C [10]. Computational times of each run were
around 9 hours, with a MATLAB code running in a computer with processor Intel R○ CoreTM
i7-7700U and 16 GB RAM.

Figure 6a presents a comparison of the estimated and exact temperatures at the sensor location
S2 (see Fig. 5a) for the healthy brain, and it also presents the simulated measurements and the
99% confidence intervals of the estimated temperatures. Figure 6a also shows that the estimated
temperatures were in better agreement with the exact temperatures than the measurements. This
result is more apparent in Fig. 6b – a close-up of Fig. 6a in the first minute of the treatment.
Similar results are presented in Figs 7a and 7b, for the sensor location S4 (see Fig. 5a) which
corresponds to the water temperature at the channel outlet. Furthermore, accurate estimations
for the internal brain temperature could be obtained at points where the measurements were not
available, as shown in Figs 8a and 8b, for points P2 and P3 (see Fig. 4a), respectively. We note that
the temperature at point P2 in the white matter was slightly reduced during the cooling period of
5 minutes. This is also evident from the analysis of Figs 9a and 9b, which present the exact and
the estimated means obtained with the particle filter method, respectively, for the healthy brain at
time t = 5 min. The same figures show accurate estimated whole head temperatures, including the
regions far from the measurement points, such as the white matter. The estimated temperatures
were smooth, but some blurring and oscillations can be observed in Fig. 9b and this is a result of

a) b)

Fig. 6. The solution of the state estimation problem for a healthy brain at the position of sensor S2:
a) time period of 5 minutes; b) close-up Fig. 6a in the first minute.

a) b)

Fig. 7. The solution of the state estimation problem for a healthy brain at the position of sensor S4:
a) time period of 5 minutes; b) close-up of Fig. 7a in the first minute.
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the ill-posed character of the inverse problem. The temperature distribution in the cooling water
was also quite accurately estimated for the healthy brain, as shown in Figs 10a and 10b.

a) b)

Fig. 8. The solution of the state estimation problem for a healthy brain at: a) P2; b) P3.

a) b)

Fig. 9. Temperatures in the healthy brain at t = 5 min: a) exact; b) estimated means obtained
with the particle filter.

a) b)

Fig. 10. Temperatures in the cooling water at t = 5 min: a) exact; b) estimated means obtained
with the particle filter.
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It is interesting to note that the particle filter not only provides the estimation of accurate means
for the state variables, as observed in Figs 6–10, but also reduces the uncertainties associated
with the estimated quantities. Figure 11 is an illustration of this as it presents the results of
the a Monte Carlo simulation of the evolution model at the measurement location S2, without
taking into account the information provided by the measurements. Although Fig. 11 shows an
excellent agreement between the estimated means of the Monte Carlo simulation and the exact
temperatures, the uncertainties associated with such estimation are more significant than those
obtained with the solution of the state estimation problem with the particle filter (see Fig. 6a). As
expected, the reduction of uncertainties is more significant in the regions near the measurement
locations. Regions far from the measurements are less affected by the likelihood function in the
particle filter method and rely mostly on the evolution model. This is clear from the comparison
of Figs 12a and 12b, which present the estimated standard deviations for the temperatures in the
head at t = 5 min for a healthy brain, obtained with the particle filter and with the pure Monte
Carlo simulations, respectively. Except for a few small regions, the standard deviations estimated
by the particle filter are much smaller than those of the Monte Carlo simulations in the scalp, skull
and parts of the gray matter. On the other hand, the standard deviations in the white matter result
from the application of the evolution model, and similar values were found with the particle filter
method and the Monte Carlo simulations.

Fig. 11. Monte Carlo simulation for a healthy brain at the position of sensor S2.

a) b)

Fig. 12. Standard deviations for temperature in a healthy brain at t = 5 min: a) the solution of the state
estimation problem; b) the Monte Carlo simulations.
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a) b)

c) d)

Fig. 13. Temperatures in a partial ischemic brain: a) exact at t = 1 min; b) estimated at t = 1 min;
c) exact at t = 5 min; d) estimated at t = 5 min.

a) b)

c) d)

Fig. 14. Temperatures in a full ischemic brain: a) exact at t = 1 min; b) estimated at t = 1 min;
c) exact at t = 5 min; d) estimated at t = 5 min.
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The temperatures estimated with the particle filter method for brains with partial and total
ischemia are compared to the corresponding exact values in Figs 13a–13d and 14a–14d, respectively,
at times t = 1 min and t = 5 min. As for the healthy brain, the analysis shown in Figs 13 and 14 also
reveals the accurate estimation of the transient temperature distributions for these two ischemic
conditions, which were obtained with the solution of a state estimation problem with the SIR
algorithm of the particle filter method.

5. CONCLUSIONS

In this paper, we solved a state estimation problem with the SIR algorithm of the particle filter
method, for the bioheat transfer problem in the head of a newborn, during the local cooling treat-
ment of neonatal hypoxic-ischemic encephalopathy. This work aimed at the sequential estimation
of the internal temperature of the head, by using non-invasive temperature measurements taken
at the head surface and the outlet of the water channel. Simulated measurements were used in the
inverse analysis for a healthy brain, as well as for conditions of total ischemia (in the white and
gray matters) and partial ischemia (in a region of the gray matter). The numbers of particles and
sensor positions were selected by examining the RMS error of the inverse problem solution.

The state estimation problem was solved with 500 particles, in order to avoid large computational
times, and 4 sensors, in order to avoid patient discomfort. The means estimated for the transient
temperatures were in excellent agreement with the exact temperatures for the three conditions
(healthy brain, partial ischemia and full ischemia) examined here. Moreover, it was also shown that
uncertainties in the head temperatures could be drastically reduced with the solution of the state
estimation problem. The reduction of uncertainties was more significant in the regions near the
measurement locations. On the other hand, regions far from the measurements, such as the white
matter, were less affected by the likelihood function in the particle filter method and relied mostly
on the evolution model.

The present work can be applied in the future for active control of the local cooling treatment of
neonatal hypoxic-ischemic encephalopathy, by acting as a method of monitoring the internal head
temperatures. Nevertheless, computational times need to be reduced for practical applications.
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