
CAMES, 27(1): 3–26, 2020, doi: 10.24423/cames.264
Copyright c© 2020 by Institute of Fundamental Technological Research
Polish Academy of Sciences

Implementation of Numerical Integration
to High-Order Elements on the GPUs

Filip KRUŻEL1)∗, Krzysztof BANAŚ2), Mateusz NYTKO1)

1) Cracow University of Technology, Department of Computer Science
Warszawska 24, 31-155 Kraków, Poland
∗Corresponding Author e-mail: fkruzel@pk.edu.pl

2) AGH Science and Technology University
Department of Applied Computer Science and Modelling
Adama Mickiewicza 30, 30-059 Kraków, Poland

This article presents ways to implement a resource-consuming algorithm on hardware with
a limited amount of memory, which is the GPU. Numerical integration for higher-order
finite element approximation was chosen as an example algorithm. To perform compu-
tational tests, we use a non-linear geometric element and solve the convection-diffusion-
reaction problem. For calculations, a Tesla K20m graphics card based on Kepler archi-
tecture and Radeon r9 280X based on Tahiti XT architecture were used. The results
of computational experiments were compared with the theoretical performance of both
GPUs, which allowed an assessment of actual performance. Our research gives sugges-
tions for choosing the optimal design of algorithms as well as the right hardware for such
a resource-demanding task.

Keywords: GPU, numerical integration, finite element method, OpenCL, CUDA.

1. Introduction

In the development of computing accelerators, one can notice that most of
them are derived directly from graphics cards. The key fact which enabled the ob-
servation of the computing capabilities of the graphics cards was the combination
of many functional units responsible for different stages of graphics processing
in a single GPU (Graphics Processing Unit). The evolution of graphics cards be-
gan with the concept of a stream (information processing on the data stream),
on which early graphics processing was based. The three-dimensional data pro-
cessing required a whole sequence of operations – from mesh generation to its
transformation into a two-dimensional image composed of pixels. Over the years,
the next steps of this processing have been gradually transferred from the CPU



4 F. Krużel et al.

to the supporting graphics card. The first GPU that allowed for the processing
of the entire “stream” of operations needed to display graphics was the Nvidia
GeForce 256. The downside of this design was the fact that it prevented any
changes to the previously prepared instruction stream. For this reason, in 2001,
Nvidia created the GeForce 3 architecture, where it was possible to create special
programs (shaders) that could manipulate data in the pipe.

Units performing individual operations such as triangulation, lighting, mesh
transformation, or final rendering were implemented as physically separate pieces
of the graphics card – called shading units. The next step in the evolution of GPU
architectures was the unification of all shading units and the creation of fully
programmable streaming multiprocessor. Thanks to this, graphics card program-
ming got closer to CPU programming, and in many applications, it became more
efficient. The G80 architecture became the basis of the first accelerator of the en-
gineering calculations named Nvidia Tesla, on which the architectures all modern
GPU accelerators are based [8].

2. Numerical integration

One of the most demanding engineering tasks to br carried out on a GPU
turns out to be the procedures of the Finite Element Method (FEM). One of
the most important parts of FEM is numerical integration used for the prepa-
ration of an elementary stiffness matrix for a system solver. Usually, the past
studies about using the computing power of the GPU focused on the most time-
consuming part of FEM, which is solving the final system of linear equations
[6, 9, 10]. However, it should be noted that after the optimization of the pro-
cedure mentioned above, the earlier steps of calculations such as, e.g., numer-
ical integration and assembling, also begin to affect the execution time signifi-
cantly [17]. Numerical integration in FEM is strictly correlated with the given
elemental shape functions that are connected with the used geometry of an el-
ement and an approximation type. Therefore, there is a need to apply suitable
geometric transformation in mesh geometry used for computing. Each element
of the mesh is treated as a transformed reference element. By denoting phys-
ical coordinates in the mesh as x, the transformation from the reference ele-
ment with coordinates ξ is denoted as x(ξ). It is usually obtained through the
general form of linear, multi-linear, square, cubic, or other transformation of
basic geometry functions and a set of degrees of freedom. Those degrees are
usually related to specific points in the reference element (depending on the
approximation used) – for example, a vertex for linear or multi-linear transfor-
mation.

The integration transformation from the reference element requires using the
Jacobian matrix J = ∂x

∂ξ
. Computing the Jacobian matrix, its determinant and



Implementation of numerical integration. . . 5

inverse, are the typical components of the numerical integration in FEM. The
presence of such an operation significantly differentiates this algorithm from the
other integration and matrix-multiplication algorithms, where there is no need
for such an additional operation within the main loop of calculations.

The method of calculating the elements of the Jacobian matrices differs de-
pending on the type of the element and approximation used. For multi-linear
elements and higher-order approximation, the calculations of these elements
can become an essential factor affecting the overall performance of the algo-
rithm.

The integrals calculated for the shape function of individual elements form
local stiffness matrices for each element. Words from these matrices may appear
in several places in the global stiffness matrix. As a result of integration, we get
a small elementary stiffness matrix, whose single expression can be calculated in
the form (1):

(Ae)isjs =

ˆ

Ωe

∑
iD

∑
jD

CiDjD
∂φis

∂xiD

∂φjs

∂xjD
dΩ, (1)

where is and js are the local indexes that change in the range from 1 to NS (the
number of shape functions for a given element) and iD and jD are the indexes
that change in the range from 1 to ND (dimension of the Ω).

Similarly, the right-hand side vector is calculated (2):

(be)is =

ˆ

Ωe

∑
iD

DiD
∂φis

∂xiD
dΩ. (2)

Applying the variable change to the reference element Ω̂ for the selected
integral example leads to the formula (3):

(Ae)isjs =

ˆ

Ω̂

∑
iD

∑
jD

CiDjD
∑
k

∂φ̂
is

∂ξkD

∂ξkD
∂xiD

∑
z

∂φ̂
js

∂ξlD

∂ξlD
∂xjD

detJdΩ̂, (3)

where φ̂is denotes the shape functions for the reference element and kD and
lD = 1, ..., ND. In this formula, the determinant of the Jacobi matrix detJ =

det
(
∂x
∂ξ

)
and the components of the Jacobian inverse transformation matrix

ξ(x), from real to reference elements, are used.
The next step is to replace the analytical integral with the numerical quadra-

ture. In this work, a Gaussian quadrature was used with coordinates in the re-
ference element marked as ξiQ and weights wiQ where iQ = 1, .., NQ (NQ – the



6 F. Krużel et al.

number of Gauss points, which depends on the type of the element and the degree
of approximation used). For integral (3) this leads to the formula (4):

ˆ

Ωe

∑
iD

∑
jD

CiDjD
∂φis

∂xiD

∂φjs

∂xjD
dΩ

≈
NQ∑
iQ=1

∑
iD

∑
jD

CiDjD
∂φis

∂xiD

∂φjs

∂xjD
detJ

∣∣∣∣∣∣
ξiQ

wiQ . (4)

In order to create the general numerical integration algorithm, some modifi-
cations of the above formulas are made. They are made to make the algorithm
more easy to be implemented into the programming language code. They are as
follows:
• ξ[iQ], w[iQ] – tables with local coordinates of integration points (Gauss

points) and weights assigned to them, iQ = 1, 2, ..., NQ,
• Ge – table with element geometry data (related to the transformation from

the reference element to real element),

• vol[iQ] – table with volumetric elements vol[iQ] = det
(
∂x
∂ξ

)
×w[iQ],

• φ[iQ][iS ][iD], φ[iQ][jS ][jD] – tables with values of subsequent local shape
functions, and their derivatives relative to a global

(
∂φiS
∂xiD

)
and local coor-

dinates
(
∂φ̂iS
∂ξiD

)
at subsequent integration points iQ,

– iS , jS = 1, 2, ..., NS , where NS – the number of shape functions that
depend on the geometry and the degree of approximation chosen,

– iD, jD = 0, 1, ..., ND, for iD, jD different from zero, the tables refer to
the derivatives relative to the coordinate at index iD, and for iD, jD =
0 to the shape function, so iD, jD = 0, 1, 2, 3,

• C[iQ][iD][jD] – table with values of problem coefficients (material data,
values of degrees of freedom in previous nonlinear iterations and time steps,
etc.) at subsequent Gauss points,
• D[iQ][iD] – table with DiD coefficient values (Eq. (2)) in subsequent Gauss

points,
• Ae[iS ][jS ] – an array storing the local, elementary stiffness matrix,
• be[iS ] – an array storing the local, elementary right-hand side vector.
By introducing the presented notation we can present a general formula for

the elemental stiffness matrix:

Ae[iS ][jS ] =

NQ∑
iQ

ND∑
iD,jD

C[iQ][iD][jD]×φ[iQ][iS ][iD]×φ[iQ][jS ][jD]×vol[iQ], (5)



Implementation of numerical integration. . . 7

and right-hand side vector:

be[iS ] =

NQ∑
iQ

ND∑
iD

D[iQ][iD]× φ[iQ][iS ][iD]× vol[iQ]. (6)

Through the introduced notation, it becomes possible to create a general
numerical integration algorithm for finite elements of the same type and degree
of approximation (Algorithm 1).

Algorithm 1:Generalized numerical integration algorithm for elements
of the same type and degree of approximation.
1 - determine the algorithm parameters – NEL, NQ, NS ;
2 - load tables ξQ and wQ with numerical integration data;
3 - load the values of all shape functions and their derivatives relative to local

coordinates at all integration points in the reference element;
4 for e = 1 to NEL do
5 - load problem coefficients common for all integration points (Array Ce);
6 - load the necessary data about the element geometry (Array Ge);
7 - initialize element stiffness matrix Ae and element right-hand side vector be;
8 for iQ = 1 to NQ do
9 - calculate the data needed for the Jacobian transformations

(
∂x
∂ξ
,

∂ξ
∂x , vol

)
;

10 - calculate the derivatives of the shape function relative to global coordinates
using the Jacobian matrix;

11 - calculate the coefficients C[iQ] and D[iQ] at the integration point;
12 for iS = 1 to NS do
13 for jS = 1 to NS do
14 for iD = 0 to ND do
15 for jD = 0 to ND do
16 Ae[iS ][jS ]+ = vol

×C[iQ[[iD][jD]× φ[iQ][iS ][iD]× φ[iQ][jS ][jD];
17 end
18 end
19 if iS = jS and iD = jD then
20 be[iS ]+ = vol ×D[iQ][iD]× φ[iQ][iS ][iD];
21 end
22 end
23 end
24 end
25 - write the entire matrix Ae and vector be;
26 end

The optimal structure of the algorithm must include the capabilities of the
hardware for which this algorithm should be developed. In the case of external
accelerators like GPU, the cost of sending data to the accelerator and back can
be very high and should be hidden by sufficiently saturated calculations. The



8 F. Krużel et al.

arrangement of Algorithm 1, in which the outer loop is a loop after all elements,
favors this. The general form of Algorithm 1, in which we do not consider data
locations in different memory levels, allows us to treat each of the internal loops
as independent and to change their order to achieve optimal performance. Such
a performance can also be achieved by calculating all the necessary data in
advance and use them further. This allows for the creation of different variants
of the algorithm depending on the hardware resources.

2.1. The model problem

Our previous work focused on the implementation of the numerical integra-
tion algorithm on various types of accelerators, including PowerXCell [12, 13],
AMD Accelerated Processing Unit [15], Intel Xeon Phi numeric coprocessors [14],
and GPU-based architectures [2, 4]. Most of them focused on the implementa-
tion of the standard linear approximation for several problems and geometry
types. This work leads us to develop a very efficient auto-tuning mechanism
that can adapt the code to the architecture. This is possible because standard
linear approximation is not a very resource-consuming way of solving numer-
ical integration. There is a different situation when we are using higher-order
elements associated with the discontinuous Galerkin method used to approxi-
mate the solution of FEM. The main problem connected with such elements is
that the amount of data needed for numerical integration grows rapidly with
an increasing degree of approximation. This leads to the problem of managing,
often limited resources of various types of GPU accelerators to obtain an efficient
implementation of the algorithm.

The main aim of this study is to check the possibility of using the GPU –
based accelerators to maintain the larger and more complicated tasks than those
in our previous studies with the use of standard linear approximation. To achieve
it, we are using non-linear prismatic element type geometry, and we are solv-
ing an artificial convection-diffusion-reaction problem with the coefficient matrix
C[iQ][iD][jD] fully filled with values. Matrices of this type appear, for example,
in convective heat transfer problem, after applying the SUPG stabilization. The
general form of weak formulation for these types of problems can be found in [11]
and [5]. In this paper, the authors focused on calculating the integral over the
Ω area since the boundary integrals are usually less computationally demand-
ing, and, from an algorithmic point of view, they repeat a similar integration
scheme. The part of calculations responsible for the boundary conditions in the
code used by the authors is always performed by the CPU cores, using stan-
dard FEMs. In the discontinuous Galerkin method, the degrees of freedom of
an element are related to its interior, and their number depends on the degree
of approximation. For the reference element of the prismatic type tested, the



Implementation of numerical integration. . . 9

number of shape functions is given by the formula 1
2 (p+ 1)2 (p+ 2) [21]. In this

type of element, shape functions are obtained as the products of polynomials
from a set of complete polynomials of a given order for triangular bases and 1D
polynomials associated with the vertical direction. The number of integration
points is determined by the requirement to accurately compute the products of
shape functions, neglecting non-linearity of coefficients, and element geometry.
It increases as the degree of approximation increases to maintain solution con-
vergence [7], and for three-dimensional prisms, it is of the order O(p3) just like
the number of shape functions. Basic Algorithm 1 parameters, depending on the
degree of approximation, are presented in Table 1.

Table 1. The number of Gauss points and shape function depending
on the degree of approximation.

Parameter
Degree of approximation

1 2 3 4 5 6 7
NQ 6 18 48 80 150 231 336
NS 6 18 40 75 126 196 288

2.2. Complexity

When estimating the number of operations in the numerical integration al-
gorithm with the higher-order prismatic elements, we can specify the following
calculation stages:

1) Jacobian calculations (line 9 of the Algorithm 1) – in the case of the
convection-diffusion problem this stage is repeated NQ times
• Calculation of the derivatives of basic shape functions – due to its

repetitive nature, we can assume that each compiler will reduce the
number of operations to 14.
• Matrix J and its inverse, determinant, and volume element (vol) –

18 operations for each of the geometric degrees of freedom to create
a Jacobian matrix + 43 operations related to its inverse and determi-
nant.

2) Calculation of the derivatives of shape functions relative to global coor-
dinates (line 10 of the Algorithm 1) – usually performed before double
loop over shape functions to avoid redundancy of calculations (although
the algorithm version with derivatives calculated inside the loop over the
iS index can be considered) – 15 operations for each shape function (NS

times).
3) Calculation of the product of matrix coefficients C[iQ] with shape functions

dependent on the first loop over the shape functions (iS) – optimization



10 F. Krużel et al.

reducing repetition of calculations by pulling out before jS loop expres-
sions that are independent of its index – 22 operations. This stage will be
repeated NQ ×NS times.

4) Calculation of the right-hand side vector (line 24 of the Algorithm 1) –
9 operations. We are omitting this stage because these calculations are
similar to the calculation of the stiffness matrix and take less than 2% of
the total calculation time.

5) Final calculation of the elements of the stiffness matrix (line 18 of the
Algorithm 1) – 9 operations for convection – diffusion repeated for NQ ×
NS ×NS times.

The final number of operations performed for the algorithm will depend on
the applied optimization, both manual and automatic. Since some coefficients
can be constant (e.g., convection-diffusion-reaction problem coefficients) and the
obtained matrices are symmetrical, some compilers can further reduce the esti-
mated number of operations. For prismatic elements, some calculations are per-
formed separately for each integration point, due to which similar optimizations
may be complicated, which should result in a much larger number of operations.
By using parameters NQ and NS presented in Table 1 and the calculated num-
ber of repetitions for each part of the algorithm, calculations of the number of
operations depending on the degree of approximation were made. The results for
each of the steps presented above are shown in Table 2.

Table 2. The number of operations for the convection-diffusion problem
with discontinuous Galerkin approximation.

Calculation
stage

Degree of approximation
1 2 3 4 5 6 7

1 990 2970 7920 13200 24750 38115 55440
2 540 4860 28800 90000 283500 679140 1451520
3 792 7128 42240 132000 415800 996072 2128896
5 1944 52488 691200 4050000 21432600 79866864 250822656∑

4266 67446 770160 4285200 22156650 81580191 254458512

Another aspect requiring analysis is the size of data needed to store current
calculations. For a numerical integration algorithm with higher-order elements,
the size of the data needed increases as the degree of approximation increases as
it can be seen in Table 3.

An important element of performance analysis is the study of the number
of accesses to various levels of the memory hierarchy during the execution of
the algorithm. This study is only possible by taking into account the details



Implementation of numerical integration. . . 11

Table 3. Memory requirements for numerical integration in the convection-diffusion problem
and different degree of approximation.

Degree of approximation
1 2 3 4 5 6 7

Integration data 24 72 192 320 600 924 1344
Coefficients C 16 16 16 16 16 16 16
Geometric data 18 18 18 18 18 18 18

Shape functions φ 144 1296 7680 24000 75600 181104 387072
Stiffness matrix Ae 36 324 1600 5625 15876 38416 82944∑

238 1726 9506 29979 92110 220478 471394

of the calculation on specific architectures. As an example architecture, which
theoretically allows for explicit memory management, a GPU was chosen.

3. Graphics Processing Unit (GPU)

During these studies, the authors examined two competing solutions – one
from Nvidia and the other from AMD/ATI. The first card is the Nvidia Tesla
K20m accelerator. It is based on Kepler GK110 core architecture (Fig. 1). As

Fig. 1. Tesla K20m [18].



12 F. Krużel et al.

can be seen in the figure, this accelerator has 13 SMX multiprocessors sharing
a common second-level cache (L2). The scheduler named GigaThread Engine is
responsible for the distribution of work between individual multiprocessors. This
accelerator is equipped with six separate memory controllers for RAM support.
It connects to the host using a PCI Express 3.0 interface.

Each of the SMX units is equipped with 192 single-precision (SP) processing
cores and 64 double-precision (DP) cores, which in total gives 2496 SP cores
and 832 DP cores (Fig. 2). Due to the huge number of cores, we refer to such
constructions as the multi-core architectures. Each multiprocessor is equipped
with 32 load and store units (LD/ST), which allows storing the data in 65536 32-
bit registers (256 kB). In addition, SMX has 32 special units (Special Function
Units) used to perform the so-called transcendental instructions (sin, cos, inverse,
and similar).

Fig. 2. Next Generation Streaming Multiprocessor (SMX) [18].



Implementation of numerical integration. . . 13

Threads are grouped in the so-called warps (32 threads), and four warp sched-
ulers manage their work. Each SMX is equipped with 64 KB of memory, which is
divided between the L1 cache and shared memory for threads. Their size can be
managed by the programmer, depending on the needs. Also, each multiprocessor
has 48 KB of read-only and texture memory, which can be treated as a high-
speed read-only cache. The performance parameters of the tested hardware are
presented in Table 4.

Table 4. Parameters of the tested Tesla K20m card [18].

Theoretical performance of double-precision calculations [TFlops] 1.17
Theoretical performance of single-precision calculations [TFlops] 3.52

Theoretical memory bandwidth [GB/s] 208

Theoretical performance for the tested Tesla K20m card is calculated from
the formula 2 (operations in FMA instructions in each core) * number of cores *
clock frequency (706 GHz). Memory bandwidth was calculated from the formula 2
(data transfers in tact – 2 for Double Data Rate memory) * bus width (320 bit)
*2 (number of memory channels) * clock frequency (1300 MHz).

Another tested GPU was the Gigabyte Radeon R9 280X, which is based on
the Tahiti XT architecture (Fig. 3). It is equipped with 32 cores in the Graphics
Core Next (GCN) microarchitecture and 3GB of RAM. It has two asynchronous
calculation engines (ACE), two units for geometry and rasterization calculations,
and a single command processing unit (Command Processor).

The accelerator has eight rendering units (ROPs) equipped with memory
buffers. Also, data can be stored in L2 memory and special 64 KB GDS (Global
Data Share) memory. Groups of four GCN units are sharing 16 KB read-only
cache and 32 KB instruction cache. Six separate two-channel memory controllers
are used to communicate with the card’s RAM. Also, at the host’s memory
communication level, the PCI Express 3.0 interface and special video decoding
units (Video Codec Engine and Unified Video Decoder) were used.

GCN units consist of four 16 core vector units equivalent to cores in the
Nvidia Kepler architecture (Fig. 4). In total, this gives 2048 cores whose perfor-
mance depends on whether they support single- or double-precision and architec-
ture-specific settings. Each GCN unit contains a scheduler responsible for a task
distribution between threads grouped into waves (64 threads). Each vector unit
contains a 64 KB register file, and a single scalar unit has an 8 KB register file.
Individual GCN units are equipped with 16 KB L1 cache. Also, each GCN has
64 KB of LDS (Local Data Share) memory for thread synchronization and stor-
age of shared data. The performance parameters of the tested card are presented
in Table 5.



14 F. Krużel et al.

Fig. 3. Radeon R9 280X [1].

Fig. 4. Graphics Core Next Multiprocessor [1].

Table 5. Parameters of the tested Radeon R9 280X card [20].

Theoretical performance of double-precision calculations [TFlops] 0.87
Theoretical performance of single-precision calculations [TFlops] 3.48

Theoretical memory bandwidth [GB/s] 288



Implementation of numerical integration. . . 15

The theoretical performance for the tested Radeon R9 280X card is calculated
from the same formula as in the case of the Tesla card, i.e., 2 (operations in FMA
instructions in each core) * number of cores * clock frequency (850 GHz). For
the tested equipment, the DP calculation efficiency is a 1

4 of the SP calculation
efficiency. Memory bandwidth was calculated from the formula 2 (data transfers
in time) * bus width (384 bit) * 2 (number of memory channels) * clock frequency
(1500 MHz).

As it can be seen in the Tables 4 and 5, both cards are characterized by
similar performance, even though that the Nvidia solution is dedicated to high-
performance calculations, and the AMD card is a GPU designed for graphically
advanced games.

3.1. Performance analysis

To analyze machine code (or pseudo-machine code in the case of an Nvidia’s
closed solution), a system that counts the number of occurrences of specific
instructions was developed. It allows for analysis of what optimizations were
used during a compilation and generates basic reports on memory access and
arithmetic operations.

Nvidia Visual Profiler was used for profiling the code (Fig. 5). It works in the
CUDA environment and performs dynamic analysis of the program during its

Fig. 5. Nvidia Visual Profiler.



16 F. Krużel et al.

execution. This application visualizes the instructions flow and allows for finding
areas that need optimization. It also generates reports to suggest changes that
may affect program performance. Thanks to the direct hardware-based, Nvidia
Visual Profiler allows for measuring the effectiveness of applications directly
from hardware counters, which for Nvidia’s closed solutions is the only method
for a more in-depth analysis of performance [19].

A complementary tool for AMD’s accelerators is CodeXL, which allows de-
bugging and code analysis in the OpenCL environment. It is an open solution
that allows the analysis of performance on GPU-based accelerators, ordinary
CPUs as well as hybrid APUs.

4. Results

Our previous study focused on the implementation of numerical integration
for standard linear approximation. On GPUs, this approach allows for storing
the whole computational domain within one kernel. The computations were di-
vided within the whole workgroup (block) of threads, usually allowing for the
calculation of the whole stiffness matrix of one element by one thread. We called
this approach One Element – One Thread model, and its details can be found
in [3]. For a convection-diffusion task using high-order prismatic elements, a dif-
ferent approach was needed due to the limited number of registers and memory
on the graphics card.

During our studies, we have decided to develop a new, more resources sav-
ing, method which can be referred to as One Element – Several Kernels model.
In the case of higher-order elements, the most suitable scenario is the one in
which one element is processed by the entire (relatively large) working group.
In this way, we are avoiding redundancy in the calculation of the Jacobian trans-
formations, which are constant throughout the entire element. Conducted tests
showed that the calculations of the Jacobian transformations take less than 1%
of the time of the entire algorithm. This fact prompted us to separate them and
calculate with the kernel with the One Element – One Thread division type.
The calculated values are stored in the card’s memory and then used by the
next kernel calculating the stiffness matrix in the One Element – One Working
Group model. Other aspects that attempted to affect the final performance were
skipping the calculation of the right-hand side vector (less than 2% of the total
computation time) and the use of a float type as more native to the GPU and
not significantly affecting the accuracy of the results obtained. A modified nu-
merical integration algorithm for high-order prismatic elements is presented by
Algorithm 2.



Implementation of numerical integration. . . 17

Algorithm 2: Modified numerical integration algorithm for high order
prismatic elements.
1 - determination of algorithm parameters – NEL, NQ, NS , Nentries_per_thread ;
2 - calculation of the number of stiffness matrix parts: NP = d NS∗NS

Nentries_per_thread∗WG_SIZE
e ;

3 KERNEL 1:
4 for e = 1 to NEL do
5 - load the element geometry data (Table Ge) ;
6 for iQ = 1 to NQ do
7 - read the coordinates of the integration point and its weight from table with

numerical integration data;

8 - calculate the needed data for the Jacobian transformations
(

∂x
∂ξ
,

∂ξ
∂x , vol

)
;

9 - save the calculated matrix of the Jacobian transformations and the volumetric
element for a given Gauss point in the card’s RAM ;

10 end
11 end
12 KERNEL2:
13 for e = 1 to NEL do
14 - load problem coefficients common for all integration points (Table Ce);
15 if JACOBIAN_DATA_IN_SHARED_MEMORY then
16 - load previously calculated data of the Jacobian transformations for all Gauss

points in the element;
17 end
18 for iP = 1 to NP do
19 - calculate index jS based on the thread number, part number iP , and the number

of the calculated stiffness matrix elements (Nentries_per_thread) ;
20 - initialize a fragment of the element stiffness matrix of the size Nentries_per_thread

- Ae
w;

21 for iQ = 1 to NQ do
22 if JACOBIAN_DATA_IN_SHARED_MEMORY then
23 - load the Jacobian transformation data for a single Gauss point;
24 else
25 - load the Jacobian transformation data for a single Gauss point (form

RAM with the use of cache);
26 end
27 - calculate derivatives of shape functions relative to global coordinates using

the Jacobian matrix (each thread counts some derivatives and saves them in
shared memory);

28 - calculate problem coefficients C[iQ] at the integration point;
29 for iw = 0 to Nentries_per_thread do
30 - calculate the appropriate index iS ;
31 - load previously calculated derivatives of the shape function;
32 for iD = 0 to ND do
33 for jD = 0 to ND do
34 Ae

w[iS ][jS ]+ = vol ×C[iQ[[iD][jD]×
35 ×φ[iQ][iS ][iD]× φ[iQ][jS ][jD];
36 end
37 end
38 end
39 end
40 - write a fragment of the matrix Ae

w to the output buffer in the accelerator global
memory;

41 end
42 end



18 F. Krużel et al.

As one can see, this approach is characterized by an additional level of par-
allelism at the level of the double loop over shape functions. Additionally, three
modifiable tuning options for the selected algorithm has been added:

1) NENTPT (Number of ENTries Per Thread) – means how the thread com-
putes many entries to the stiffness matrix – it divides the stiffness matrix
into smaller parts and significantly reduces the time needed for calcula-
tions.

2) NR_PARTS – directly dependent on the previous one according to the
formula:
NP = d NS∗NS

Nentries_per_thread∗WG_SIZE e, where WG_SIZE means the size of
the workgroup – an additional division of the stiffness matrix into smaller
parts to reduce the number of registers needed per thread.

3) USE_WORKSPACE_FOR_JACOBIAN_DATA – allows to pre-rewrite
the Jacobian transformation data into the shared memory for a single
element calculated in kernel 1.

4.1. Performance model

In the newer GPU architectures, in addition to the standard division into
shared/local, constant and global memory, the presence of cache (usually two-
level) memory should also be taken into account. Cache memory makes a large
part of the execution non-deterministic, and its presence in such architectures
makes the overall design similar to the standard model known from the CPU.

Table 6 shows the basic hardware parameters of the tested accelerators. As
can be seen from the table, a relatively large number of registers for architectures
based on GPUs is paid for by the small size of a fast memory level (especially
L2 cache). Inadequate resource allocation can result in fewer threads running
simultaneously or, in the worst case, even prevent a startup. To develop a per-

Table 6. Characteristics of the tested accelerators [18, 20].

Tesla K20m Radeon R9 280X
Cores (multiprocessors) 13 32

L2 cache 1536 kB 768 kB
Global memory (DRAM) 5GB 3GB

Core characteristics
SIMD (SP/DP) units 192/64 64/16

L1 cache 16 kB 16 kB
Registers 256 kB 256 kB

Constant memory 48 kB 64 kB
Shared memory 48 kB 32 kB



Implementation of numerical integration. . . 19

formance model, comparing the capabilities of the tested accelerators with the
memory demand for the algorithm is necessary. The performance parameters
of the tested accelerators, theoretical and obtained in the Stream and Linpack
tests, are presented in Table 7.

Table 7. Performance of the tested accelerators [18, 20].

Tested accelerators Radeon Tesla
Theoretical performance of double-precision calculations [TFlops] 1.13 1.17

Performance achieved in the DGEMM benchmark 0.65 1.10
Theoretical performance of single-precision calculations [TFlops] 4.51 3.52

Performance achieved in the SGEMM benchmark 1.70 2.61
Theoretical memory bandwidth [GB/s] 288 208

Memory bandwidth from the STREAM benchmark 219 144

The use of shared memory may be necessary due to the insufficient number of
registers for the kernel. If the number of registers used is exceeded, thread-local
variables are stored in cache and DRAM (register spilling). Since shared memory
is several times faster than DRAM, its proper use has a tremendous impact
on performance. Since the minimum number of threads in GPU accelerators is
usually large and in our case is set to 64, it should be noticed that storing n
local variables for each thread will require n× 64 places in shared memory.

In order to develop a performance model and verify it with data from the
profiler, the number of operations was calculated for each of the higher approxi-
mation degrees and the modified numerical integration algorithm. The calculated
and obtained from the profiler results are presented in Table 8.

Table 8. The number of operations for the high-order prismatic elements in the convection-
diffusion problem.

Degree of approximation
3 4 5

Estimated 762240 4272000 22131900
Profiler 816000 4665600 22828800

As it can be noticed, the estimated values are very close to the real values
obtained by the profiler. This can indicate that the chosen model is accurate.

The number of accesses to global memory can be estimated from Table 3. To-
tal amount of access to the RAM can be computed according to the formula (7):



20 F. Krużel et al.

NG (geometrical data – 3 ·Ngeo (6 for prisms)) +

NP (problem coefficients – 16 for convection-diffusion problem) +

NQ ·NS · 4 (shape functions and derivatives for a reference element)+

NS ·NS (size of the stiffness matrix).

(7)

Access to shared memory was estimated by taking into account proprieties
that can affect optimization (e.g. constant problem coefficients for the convection-
diffusion task, relative to integration points) according to the following formulas:
• geometrical data – 3 ·NS ·NQ,
• problem coefficients – 16 ·NS ,
• shape function derivatives – NQ ·NS · 3 (write) +NQ ·NS · 3 (read),
• local Stiffness matrix Ae – (NS ·NS) (zeroing) +NQ ·NS ·NS · 2 (Ae).
The estimated number of accesses to the accelerator RAM was calculated

and compared with the values obtained from the profiler. The theoretical values
from Table 3 were compared in the same way with the access to shared memory.
Since the numbers used in the calculations were of single precision, the number
of transactions in shared memory obtained from the profiler had to be multiplied
by the size of a single transaction (128 bytes) and divided by the size of a single
variable (4 bytes). Similarly, in the case of DRAM, the obtained transactions
had to be multiplied by 32

4 . The obtained results are presented in Table 9.

Table 9. The number of accesses to individual memory levels
in the convection-diffusion task with the high-order elements.

Degree of approximation
3 4 5

Estimated RAM 9314 29659 91510
Estimated Shared 173120 960825 4950792

Shared 166400 1659648 7489024
RAM 3999 11095 6293449

As can be seen, in the case of approximation degrees 3–4, the number of RAM
accesses is reduced through the cache memory. In the case of approximation
degree equal to 5, the numerical integration task turned out to be too large,
and register spilling took place. In the profiler, this was marked by using “local”
memory, which is a separate fragment of RAM. This resulted in a significant
increase in memory usage compared to theoretical estimates. To illustrate the
ratio of the number of accesses to the number of operations for the examined
algorithm, its arithmetic intensity was calculated (Table 10). It is defined as the
ratio of the number of operations to the number of accesses to memory.



Implementation of numerical integration. . . 21

Table 10. Arithmetic intensity for individual approximation levels.

Degree of approximation
3 4 5

IA 204 421 4

To facilitate data reading, Roofline charts were created for each of the accel-
erators tested (Figs 6 and 7) [22]. The roofline graph defines the limiting factor

Fig. 6. Roofline chart for double-precision calculations for the Radeon R9 280X accelerator.

Fig. 7. Roofline chart for double-precision calculations for the Tesla accelerator.



22 F. Krużel et al.

of the algorithm’s performance based on both theoretical as well as achieved
in benchmarks, performance. The enclosed charts with red lines mark the per-
formance limit obtained in the STREAM and LINPACK benchmarks, and the
theoretical performance of the tested cards is marked in green. At the same
time, according to this model, thanks to the calculated arithmetic intensity of
the tested algorithms, it is easy to determine whether the factor limiting per-
formance is memory bandwidth or the speed of performing floating-point oper-
ations. On this basis, for both examined architectures, it was found that in the
case of approximation degrees 3 and 4, the algorithm performance limiting factor
is the floating-point processing speed. In the case of approximation degree 5, the
speed of downloading data from the accelerator memory is the same factor. Us-
ing the data from Table 7 and previously indicated performance limiting factors,
estimated algorithm execution times were calculated (Table 11).

Table 11. Estimated algorithm execution times in µs.

Degree of approximation
3 4 5

Tesla 0.313 1.788 43.705
Radeon 0.480 2.744 28.737

4.2. Results

The best results obtained for the examined algorithm are presented in Ta-
ble 12.

Table 12. Obtained results for the numerical integration algorithm
with discontinuous Galerkin approximation in µs.

Degree of approximation
3 4 5

Tesla 3.130 26.790 99.805
Radeon 2.196 9.594 31.793

As can be seen from the results, the AMD card turned out to be better than
the Nvidia card despite its theoretically lower performance in benchmarks. The
ratio of the obtained results to the theoretical estimates is presented in Table 13.

Table 13. Percentage of achieved performance of tested cards.

Degree of approximation
3 4 5

Tesla 9.99% 6.67% 43.79%
Radeon 21.86% 28.61% 90.39%



Implementation of numerical integration. . . 23

As one can see in the case of the Radeon card and the highest degree of
approximation limited by memory performance, up to 90% of theoretical perfor-
mance was obtained. In the case of the Tesla card, the performance obtained for
both compute-bound and memory-bound problems is much worse. To analyze
the obtained results, Table 14, with the algorithm parameters and the results
of usage registers and card occupancy obtained from the Nvprof and CodeXL
profilers, was created.

Table 14. Parameters of the numerical integration algorithm for the obtained execution times.

Degree of approximation
3 4 5

Workgroup Size 64 96 128

Tesla

NENTPT 20 25 128
NR_PARTS 2 3 1
registers 64 70 48

Occupancy 19% 33.2% 49.9%

Radeon

NENTPT 8 5 8
NR_PARTS 4 12 16
registers 253 181 101

Occupancy 10% 10% 20%

As can be seen from the table, in the case of the Tesla card, the best re-
sults were obtained by increasing the number of entries of the stiffness matrix
calculated by the threads while minimizing the size of the processed parts of
the stiffness matrix. It should be noted that for the degrees of approximation 3
and 4, the workgroup size used was much higher than the number of shape
functions relative to the division of work between threads. This caused uneven
load-balance and a large amount of redundant work. Stiffness matrix division
strategy related to the NENTPT and NR_PARTS resulted in a decrease in the
number of registers used by the thread on the Tesla card, as was expected. In
the case of the tested Radeon, the compiler increased the use of registers to
the highest value causing a significant decrease in the occupancy factor. Despite
this, the results for the Radeon card can be considered much more satisfactory
than the results for the Nvidia Tesla K20m accelerator. In the case of the high-
est degree of approximation and the Tesla card, the best time was obtained for
a non-optimal way of work division, where each thread calculates 128 elements
of the stiffness matrix. Detailed analysis of the results showed that for arrays
larger than 128 bytes (32 float numbers), the compiler put them in slow local
memory instead of registers, which caused a decrease in performance. However,
in this case, all lost profit was recovered because the table, with a fragment of the



24 F. Krużel et al.

stiffness matrix equal in size to the size of the workgroup, was saved to the card’s
RAM most optimally. In the case of the Radeon card, the most significant gains
were brought by a different tactic indicating the minimization of the number of
entries to the stiffness matrix calculated by individual threads, while increasing
the number of parts into which this matrix was divided. Low card occupancy re-
sult – reaching 20% does not significantly affect the high performance obtained,
both with floating-point processing as well as memory bandwidth.

5. Conclusions

In contrast to the tasks based on the linear elements approximation, the nu-
merical integration with higher-order elements, turns out to be too large for the
tested accelerators based on GPU architecture. Our previous study showed the
opposite situation for CPUs, where a higher degree of approximation allowed
us to achieve better results [16]. A very positive outcome here are the results of
efficient AMD Radeon R9 280X graphics card, which turned out to be matching,
and in some cases, even better than the costing ten times more, Nvidia Tesla
K20m accelerator. The results of this research can, therefore, be an important
guide for people designing similar algorithms and facing the choice of what ac-
celerator would be best for their applications. In the case of accelerators based
on GPUs, a key factor turns out to be the minimized amount of accesses to the
shared memory along with the maximization of the use of registers. This should
be taken into account when choosing this type of architecture for transferring
specific algorithms because the use of shared memory is also the only way to
synchronize threads, which in some types of algorithms can be very problematic.
Our future work will focus on improving the results for GPU-based architectures
by testing their newer versions with an increased amount of resources available.

References

1. AMD. White paper: AMD Graphics Cores Next (GCN) Architecture, Advanced Micro
Devices Inc., Sunnyvale, CA, 2012.

2. K. Banaś, F. Krużel, OpenCL performance portability for Xeon Phi coprocessor and
NVIDIA GPUs: A case study of finite element numerical integration, [in:] Euro-Par 2014:
Parallel Processing Work-shops, vol. 8806 of Lecture Notes in Computer Science, Springer
International Publishing, pp. 158–169, 2014.

3. K. Banaś, F. Krużel, J. Bielański, Optimal kernel design for finite element numerical
integration on GPUs, Computing in Science and Engineering, 2019 [in print].

4. K. Banaś, F. Krużel, J. Bielański, K. Chłoń, A comparison of performance tuning process
for different generations of NVIDIA GPUs and an example scientific computing algo-
rithm, [in:] Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra,
E. Deelman, K. Karczewski [Eds], Springer International Publishing, pp. 232–242, 2018.



Implementation of numerical integration. . . 25

5. E. Becker, G. Carey, J. Oden, Finite Elements. An Introduction, Prentice Hall, 1981.

6. L. Buatois, G. Caumon, B. Levy, Concurrent number cruncher: A GPU implementation of
a general sparse linear solver, International Journal of Parallel, Emergent and Distributed
Systems, 24(3): 205–223, 2009.

7. P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam,
1978.

8. P.K. Das, G.C. Deka, History and evolution of GPU architecture, Emerging Research
Surrounding Power Consumption and Performance Issues in Utility Computing, pp. 109–
135, 2016.

9. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, S. Turek, Towards a complete FEM-
based simulation toolkit on GPUs: Unstructured grid finite element geometric multigrid
solvers with strong smoothers based on sparse approximate inverses, Computers & Fluids,
80: 327–332, 2013 (Part of Special Issue: Selected contributions of the 23rd International
Conference on Parallel Fluid Dynamics ParCFD2011).

10. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Turek, Co-
processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU,
International Journal of Computational Science and Engineering, 4(4): 254–269, 2009.

11. C. Johnson, Numerical solution of partial differential equations by the finite element
method, Cambridge University Press, 1987.

12. F. Krużel, K. Banaś, Finite element numerical integration on PowerXCell processors, [in:]
PPAM’09: Proceedings of the 8th International Conference on Parallel Processing and
Applied Mathematics, Springer-Verlag, pp. 517–524, 2010.

13. F. Krużel, K. Banaś, Vectorized OpenCL implementation of numerical integration for
higher order finite elements, Computers and Mathematics with Applications, 66(10): 2030–
2044, 2013.

14. F. Krużel, K. Banaś, Finite element numerical integration on Xeon Phi coprocessor, [in:]
Proceedings of the 2014 Federated Conference on Computer Science and Information Sys-
tems, Warsaw, Poland, M.P.M. Ganzha, L. Maciaszek [Eds], vol. 2 of Annals of Computer
Science and Information Systems, IEEE, pp. 603–612, 2014.

15. F. Krużel K. Banaś, AMD APU systems as a platform for scientific computing, Computer
Methods in Materials Science, 15(2): 362–369, 2015.

16. F. Krużel, Vectorized implementation of the FEM numerical integration algorithm on
a modern CPU, [in:] Proceedings of the 33rd International ECMS Conference on Modelling
and Simulation: ECMS 2019, 11–14 June 2019, Caserta, Italy, 33(1): 414–420, 2019.

17. J. Mamza, P. Makyla, A. Dziekoński, A. Lamecki, M. Mrozowski, Multi-core and multi-
processor implementation of numerical integration in Finite Element Method, [in:] 2012
19th International Conference on Microwave Radar and Wireless Communications, vol. 2,
pp. 457–461, 2012.

18. NVIDIA Corporation, NVIDIAs Next Generation CUDA Compute Architecture: Kepler
GK110, Whitepaper, 2012.

19. NVIDIA Corporation, Profiler User’s Guide, 2015.



26 F. Krużel et al.

20. R. Smith, AMD Radeon HD 7970 Review: 28nm and Graphics Core Next, Together
As One, AnandTech, 2011, retrieved from https://www.anandtech.com/show/5261/amd-
radeon-hd-7970-review on 12.09.2019

21. P. Šolín, K. Segeth, I. Doležel, Higher-order finite element methods, Chapman &
Hall/CRC, 2004.

22. S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual performance model
for multicore architectures, Communications in the ACM, 52(4): 65–76, 2009.

Received September 27, 2019; revised version January 25, 2020.


