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This paper focuses on a comparison of two regularized continuum models for concrete
in the simulations of selected benchmarks of response to impact loading. Their overview
is performed in the context of application in dynamics. The first one is the Hoffman vis-
coplastic consistency model, where the strain rate activates regularization. The second
model is derived from the scalar damage theory enhanced by an averaging equation in-
corporating the Laplacian of an averaged strain measure. Both models are implemented
in the FEAP package. The results of some standard wave propagation tests are discussed,
considering discretization sensitivity and predicted failure modes. Three examples are pre-
sented: the direct tension of a plain and reinforced concrete bar, the split test of a cylinder,
and the four-point bending of a reinforced concrete beam. The ability of both models to
simulate impact loading is assessed.
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1. Introduction

The initial boundary value problem (IBVP), where an impact loading has
been introduced, is solved using numerical analysis to examine wave propagation
effects in concrete structures. For dynamics, the following equations of motion
are considered:

LTσ + b = ρü, (1)

where L is a matrix of differential operators, σ is the stress tensor in a vector
form, b is the body force vector, and ρü represents inertia forces with density ρ
and acceleration vector ü. Small strains and no damping are assumed. The Voigt
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(matrix-vector) notation is applied in the paper. The simplest test is an extension
of a bar in one dimension. After imposing an impulse, for elastic materials,
an incoming wave reflects from a boundary and runs further in the opposite
direction. The distribution of the axial strain against time and length of the bar
is shown in Fig. 1a. Such a phenomenon of wave propagation and reflection is
typical for the elasticity theory.

a) b)

c)

Fig. 1. Bar under one-dimensional tension – lengthwise change of axial strain in time:
a) elasticity, b) local model, c) regularized model.

Concrete is initially modelled as an elastic material, but when the stress is
large enough, it behaves as a quasi-brittle material. Generally, strain localization
and cracking occur in concrete, hence softening of the material is observed for
advanced stress states. The presence of strain localization in concrete is shown
in various experiments, see, e.g., [24, 28, 31, 36, 61]. The analytical solution of
a strain-softening bar in dynamics explains the mechanism of propagating and
stopping waves, see [3, 54]. When the stress exceeds the elastic limit after the
wave front reaches a boundary and reflects, softening is observed, imaginary
wave speeds are obtained and, hence, waves do not propagate, i.e., a standing
wave occurs. In a local continuum, a displacement discontinuity can be a result
of the standing wave and then the strain at the place of localization can be
represented by a Dirac delta function. Hence, in the local approach the zone
of intense deformation is limited to a discrete line (curve) or plane (surface).
Figure 1b depicts the surface plot of the axial strain for a local model, i.e.,
without any regularization.
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A proper description of material softening cannot be included directly into the
stress-strain relation for local continuum models, because the hyperbolic charac-
ter of the IBVP for dynamics changes into elliptic. Such a transition means that
the IBVP becomes ill-posed. Mathematically, the ill-posedness of the IBVP is
the cause of an infinite number of solutions. Hence, the loss of hyperbolicity pro-
vokes spurious mesh sensitivity in the finite element approximation. It coincides
with the onset of strain localization. The formation of a crack zone is limited
to the possibly narrowest band admitted by a discretization, e.g., one row of
finite elements. Remaining within the continuum description, this issue can be
overcome using different regularization techniques with the so-called localization
limiters. In [6], three types of limiters are distinguished: rate, differential and
integral. It can be observed in Fig. 1c that the propagating wave changes into
a standing wave, but the influence of regularization (in this particular case –
gradient damage) is visible as a smoothed function of the axial strain governed
by the limiter and not the discretization. It is also noticed that the elastic part
of the propagating energy results in small running humps.

The model can be regularized by an additional viscous term (the rate-type
limiter) included in the constitutive relation. The viscoplasticity theory has been
known for many years, see, for instance, [43], and it is still effectively exploited as
in, e.g., [23, 40, 52]. It is confirmed in [54] that the viscous regularization is more
powerful in dynamics than statics. The other option is the application of a higher-
order model for the damage theory via a so-called gradient enhancement [41] (the
differential limiter). The gradient damage model can be employed not only in
the analysis of concrete but, e.g., for biomaterials [63] or even more generally, for
other materials that undergo large deformations [33, 66]. Nonlocal integral-type
models are not considered in this paper, but numerous works where they are
applied to concrete can be found, e.g., [4, 5, 8, 25, 34]. It is stressed that the
mezo-scale modelling, see, e.g., [53], can prompt the macromodel enhancements
and provide an internal length scale estimation. Moreover, multiscale analyses
of concrete have also been performed [22, 30].

The finite element method (FEM) has been used to investigate the impact
loading and dynamic failure of concrete in different tests, for example, panel
in compact tension [37], RC beams and deep beams [57], RC slabs [11, 60],
and tunnel cylindrical shells [12]. In this paper, selected FEM simulations of
dynamic tests under impact loading for concrete specimens made by means
of two regularized continuum models are discussed. In Sec. 2, both models
are briefly characterized. The first one is the Hoffman viscoplastic consistency
model [64, 69] (called HVP in the paper), the second is the gradient dam-
age model [13, 14, 41] (called GDA in the paper). Section 3 consists of a de-
scription of the results for the benchmarks: direct tension of a bar, cylinder
splitting and four-point bending of a beam. Two-dimensional configurations are
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considered. Sensitivities to mesh density and loading rate are examined. Finally,
in Sec. 4 conclusions are summarized.

2. Overview of material models for impact analysis

2.1. Hoffman viscoplastic consistency model

The first constitutive model based on the plasticity theory is regularized via
a viscous term. Usually the viscoplastic models take over the approaches in-
vented by Perzyna [43] or Duvaut-Lions [17], in which the viscoplastic strains
are determined using the viscosity parameter (relaxation time) in the explicit
way. The model described below is called consistency viscoplasticity model and
follows the idea proposed in [64] for metals and then developed, e.g., in [10, 27].

It is admitted that the yield function can expand or shrink depending on
the actual viscoplastic strain rate. The stress state is forced to remain on the
yield surface and the consistency condition is invoked. There is no additional
equation defining a viscoplastic multiplier. Instead, in the consistency condition
two separate hardening material moduli appear: a classical plastic one h and
a viscoplastic one s. Abbreviation HVP is introduced to refer to the employed
Hoffman viscoplastic consistency model. The Burzyński-Hoffman yield surface in
its isotropic form is selected since it has been successfully applied in the analysis
of concrete structures [7]:

F vp = q2 + 3p (fc − ft)− fc ft = 0, (2)

where p = tr(σ)/3 is the hydrostatic pressure and q =
√

3 tr(s2)/2 is the Huber-
Mises deviatoric measure of the stress tensor σ (written in a vector form). The
deviatoric stress tensor is calculated as s = σ − pI, where I is the identity
matrix. Two internal variables κc and κt are postulated. They are both func-
tions of the equivalent viscoplastic strain and separately specify the material
hardening/softening in compression and tension, respectively. In addition, two
more internal variables ηc and ηt determine the increase/decrease of compressive
and tensile strengths due to the current equivalent viscoplastic strain rate. The
respective rate-dependent strengths become functions:

fc = fc(κc, ηc) and ft = ft(κt, ηt). (3)

The dependence of fi on κi and ηi is formulated in a general way as fi =
f ′i Hi(κi)Si(ηi) for compression (i = c) and tension (i = t), respectively, where
f ′i is the initial compressive/tensile strength. The functions Hi and Si can be
defined in different manners, e.g., as piecewise linear, see Figs 3, 8c, 23c and 23d
in the next sections. The rates of the internal variables depend on the current
stress and the rates of internal variables κ and η:
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κ̇i = gi(σ)κ̇ and η̇i = gi(σ)η̇, (4)

where subscript i still stands for c or t. In the above, relations gi are scalar
functions accounting for independent processes of damage in compression and
tension. The functions gi are chosen in accordance with experiments, taking
into account the influence of the damage process in compression on the con-
crete strength in tension and, vice versa, the influence of the damage process in
tension on the concrete strength in compression. In [68] two variants are consid-
ered. In the first option, damage is assumed as an isotropic phenomenon, hence
gc = gt = 1 and κc = κt. In the second approach, the response is different in
tension and compression, hence it is assumed that gc + gt = 1. In extreme cases
for dominant compressive stress gc = 1, gt = 0 and for dominant tensile stress
gc = 0, gt = 1.

In turn, κ̇ is determined as an equivalent viscoplastic strain rate assuming
work hardening, while η̇ depends on the time derivative of the viscoplastic strain
rate:

κ̇ = σTε̇vp/q and η̇ = σTε̈vp/q. (5)

In the course of loading the yield surface can change its shape due to the separate
hardening/softening processes of the compressive and tensile strength, but the
surface remains convex at all times. It is not only a function of the internal
parameter κ, but also of the additional one η. Since the total value of η depends
on the first time derivatives of viscoplastic strains, the yield surface is rate-
dependent, i.e., it expands for higher and shrinks for lower viscoplastic strain
rates. As a result, this model can correctly predict basic viscoplastic phenomena
like creep and relaxation.

In the HVP model, the strain rate is decomposed into its elastic and vis-
coplastic parts, and the generalized Hooke law is valid for the elastic part:

ε̇ = ε̇e + ε̇vp, σ̇ = E ε̇e, (6)

where E is the elastic stiffness operator. The viscoplastic flow rule is defined
similarly to the classical associated plasticity:

ε̇vp = λ̇n, n =
∂F vp

∂σ
. (7)

The consistency equation is employed in order to establish the viscoplastic
multiplier λ̇:

nTσ̇ − hλ̇− sλ̈ = 0. (8)

Due to the last term the consistency equation is no longer an algebraic equa-
tion for the viscoplastic multiplier, but a differential equation of the first order,
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to be solved for an appropriate initial condition. The generalized plastic and
viscoplastic moduli are computed as:

h = ac Sc hc + at St ht and s = ac scHc + at stHt, (9)

where

hi =
dHi

dκi
and si =

dSi
dηi

, (10)

and the other coefficients are as follows:

ac = f ′c (ft − trσ) gc g and at = f ′t (fc + trσ) gt g. (11)

One more definition is needed:

g = σTn/q. (12)

When functions Sc and St are constant, their derivatives vanish and Eq. (8)
reduces to the form known from the classical rate independent plasticity. It is
widely discussed in [68] how the material model parameters can be linked with
the fracture energies Gft and Gfc, which are the actual material properties [20,
61, 62], via the width of the localization zone. If St = Sc ≡ 1 then the localization
limiter is missing in the HVP model and the width of the crack zone usually
coincides with one row of finite elements. The viscous term is turned off and the
lack of regularization can be observed. On the other hand, when viscous effects
are active, the width of the localization zone is determined and the HVP model
becomes regularized.

It should finally be mentioned that the implementation of the HVP model in
dynamics is analogous to the classical rate-independent plasticity. The weak form
of the equations of motion (1) is discretized in a standard way. The initial bound-
ary value problem (IBVP) is linearized and an implicit time-integration using the
standard Newmark algorithm is applied. Displacement field u is approximated
via the proper shape functions N and the nodal vector of displacement degrees
of freedom a:

u = Na. (13)

The following matrix equation is solved in each computed time step:

Maa ä
t+∆t +Kaa ∆a = f t+∆t

ext − f tint. (14)

Inertia effects are present, and consequently, the consistent mass matrix is in-
cluded:

Maa =

ˆ

B

NTρN dV. (15)
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Appropriate definitions of tangent stiffness operator Kaa, external forces f ext

and internal forces f int are provided in Appendix. The aforementioned model is
programmed as a usermat subroutine in the FEAP package [58].

2.2. Gradient-enhanced damage model

The second model used in this paper, based on continuum damage mechanics,
describes elastic stiffness degradation in quasi-brittle materials. This model is
additionally equipped with a so-called implicit gradient enhancement to ensure
mesh-objective results. In the simplest version, one damage measure ω [29], which
grows from 0 (no damage) to 1 (complete loss of stiffness), is a function of
damage history parameter κd and depends on the deformation of a body. The
concept of strain equivalence in the real and effective (fictitious) configuration is
assumed, see, e.g., [48]. The effective stress tensor σ̂ (in a vector form) acts on
the undamaged material skeleton while the actual stress σ satisfies the motion
Eq. (1). The stress tensors are related by parameter ω:

σ = (1− ω) σ̂, σ̂ = E εe. (16)

The elastic strain tensor εe is equal to the strain tensor ε when the standard
elasto-damage model is considered (this paper is limited to this case). However
the model can easily be coupled with a plastic behaviour of the undamaged
material “skeleton” and then εe = ε − εp according to the standard additive
decomposition, where εp is the plastic strain tensor. Then for unloading, irre-
versible strains can be observed in concrete. In that case, the motivation for
coupling the damage model with plasticity is substantial, see, e.g., [1, 14]. More-
over, the constitutive relations can incorporate a projection operator as in, e.g.,
[67, 70] to reproduce the crack closing effect. These aspects are skipped in this
paper because attention is focused only on the dynamic analysis.

The strain equivalence is related with a damage loading function F d, deter-
mined in the strain space:

F d(ε, κd) = ε̃ (ε)− κd = 0, (17)

where ε̃ defines an equivalent strain measure. During the damage evolution, the
parameter κd corresponds to the largest value of ε̃ reached in the loading history
and the Kuhn-Tucker conditions are in force. The equivalent strain measure ε̃
can be defined in many ways. The modified von Mises definition [15] is employed
in this paper:

ε̃ =
(k − 1)Iε1
2k(1− 2ν)

+
1

2k

√(
(k − 1)Iε1

1− 2ν

)2

+
12kJε2

(1 + ν)2
, (18)
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where k = f ′c/f
′
t is the ratio of uniaxial compressive and tensile strengths, ν is

Poisson’s ratio, and Iε1 and Jε2 are the strain invariants. The above definition
introduces the sensitivity of the model to the sign of strains and allows for
damage not only under tension but also under (biaxial) compression. However,
the interaction of tensile and compressive effects in concrete is not represented as
accurately as in the HVP model. The damage growth can be determined using
an exponential relation [35]:

ω(κd) = 1− κo

κd

(
1− α+ αe−η(κd−κo)

)
, (19)

where κo is the damage threshold, and the respective parameters η and α are
responsible for material ductility and residual stress. The former parameter is
thus connected with concrete fracture energy Gft. The latter precludes the com-
plete loss of material stiffness and makes the numerical response more stable.
According to the experiment [28], uniaxial softening for tension is an exponen-
tial function, so when κd exceeds the value of damage threshold κo, then damage
ω asymptotically grows to 1.

In this model, the regularization is introduced including the second gradient
of the averaged (nonlocal) strain ε in the implicit form of the additional diffusion-
type equation according to [41]:

ε− c∇2ε = ε̃, (20)

and homogeneous natural boundary conditions (∇ε)Tν = 0, where ν is the
outward normal to the domain boundary. The parameter c > 0, assumed in the
computations to be constant, has a unit of length squared and corresponds to an
internal length scale l by means of the relation c = 1

2 l
2 [2]. The damage evolution

in the gradient-enhanced model is governed by the following damage activation
function:

F d(ε, κd) = ε (ε̃(ε))− κd = 0. (21)

Although some reservations have been raised with respect to this model, cf.
[21, 42, 51, 65], it is applied here for dynamics in its original form. Further,
abbreviation GDA will be used for the implicit gradient damage model. Some
developments of the model with reference to dynamics are explored, e.g., in [26,
32, 65].

The equations of motion (1) have to be investigated to analyze the wave
propagation in the IBVP. Collateral presence of Eq. (20) leads to preservation
of the well-posedness of the IBVP. Hence, not the element size governs the so-
lution but the employed internal length scale. After introducing space and time
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a) b)

Fig. 2. Dynamic direct tension test – configuration and loading history:
a) configuration and applied mesh, b) loading history.

discretization into the two-field gradient damage formulation, the model can be
described by the system of equations analogous to gradient plasticity in [54]:[

Maa 0

0 0

][
ät+∆t

ët+∆t

]
+

[
Kaa Kae

Kea Kee

][
∆a

∆e

]
=

[
f t+∆t

ext − f tint

f tε − f te

]
. (22)

Displacement and averaged strain measure fields are interpolated independently
using nodal vectors a and e, respectively. The mass matrix influences only the
discrete motion equations, while the non-symmetric tangent operator in the sec-
ond component couples both approximated fields. The definitions of other sub-
matrices and subvectors are given in Appendix. The nonlinear IBVP for the GDA
model is solved in each computed time step by means of implicit time-integration
based on the standard Newmark algorithm. Moreover, as for the HVP model,
within the time steps, the Newton-Raphson method is applied to retrieve inter-
nal equilibrium. The in-house code for the user-element is implemented in the
FEAP program [58].

3. Numerical examples of impact analysis

3.1. Direct tension test

The first test is an analysis of tensile wave propagation of a 2D bar under
a dynamic load for two cases: plain and reinforced concrete (RC). The results
are confronted for the two regularized models discussed in the previous section:
Hoffman viscoplasticity (HVP) and gradient damage (GDA). It should be men-
tioned that the results of this test for the GDA model were also presented in [71]
and here they are only briefly recapitulated for the completeness of the paper.
This should help in a better understanding of the presence of the regularizing
contribution in both models in the context of impact loading. A similar com-
parison for gradient-enhanced plasticity and damage models for plain concrete
is presented in [38].
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The configuration of the test is depicted in Fig. 2a, where the bar supported
along both symmetry axes is considered. A time-dependent normal traction on
both (left and right) sides according to the function presented in Fig. 2b is
adopted, where the traction intensity pi = 2.4 MPa becomes constant for time
instant ti = 3 × 10−5 s = 30 µs. The time step in the computations is 2 µs.
The length of the bar is L = 250 mm, and the height is H = 60 mm. Plane stress
conditions are analyzed and the thickness T = 50 mm is assumed. The FE mesh
is also illustrated in Fig. 2a. Eight-noded elements are employed for concrete.
The suitable combination of quadratic interpolation of the displacements a and
linear of the averaged strain e is introduced for the GDA model, cf. discussion
in [49]. It is visible that the zone in the centre is refined because localization
is expected there. When the RC bar is computed, the reinforcement is located
along the horizontal axis and elastic truss elements are applied to dicretize it.

The material data of concrete are as follows: Young’s modulus E = 18000 MPa,
Poisson’s ratio ν = 0.0 and density ρ = 2320 kg/m3. Initial tensile strength
f ′t = 3.40 MPa and initial compressive strength f ′c = 34 MPa are assumed. If the
HVP model is used then material functions have to be defined. Function Hc for
compression shown in Fig. 3a depends on the equivalent viscoplastic strain κc.

a) b)

c)

Fig. 3. Dynamic direct tension test – material functions for Hoffman viscoplasticity (HVP):
a) function Hc, b) function Ht, c) functions Sc = St.
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Analogically, function Ht in Fig. 3b dependent on the equivalent viscoplastic
strain κt is determined for tension. In this benchmark for viscoplastic strain
rates ηc and ηt functions Sc and St are identical, see Fig. 3c. It means that
gc = gt = 1 and the so-called isotropic version of the model is assumed. How-
ever, three different paths (1.0, max 1.2 and max 1.4) are employed in order to
show the influence of the viscous term on the results. All functions are piecewise
linear. For the GDA model, the exponential damage growth function accord-
ing to Eq. (19) is introduced with threshold κo = 0.00188 (tensile strength
f ′t = 3.4 MPa), residual stress parameter α = 0.99 and ductility parameter
η = 500. The modified von Mises definition of the equivalent strain in Eq. (18) is
applied with the ratio k = 10. For the GDA model, three different values of in-
ternal length scale parameter are considered, i.e., l = 2/4/8 mm, to demonstrate
the effect of the gradient enhancement of the model on the results. The elastic
constants for the steel reinforcement are: E = 200000 MPa, ν = 0.0. The rein-
forcement ratio is 1%, so the cross-section Ar is 30 mm2. The density parameter
for steel is ρ = 7800 kg/m3. The full bond between the concrete matrix and the
reinforcement is assumed.

The diagrams depicted in Fig. 4 present the behaviour of the HVP model in
two versions of the test: without and with the reinforcement, where three cases
with different functions Sc = St are studied. When plain concrete and the clas-
sical rate-independent plasticity are analyzed, i.e., function Sc = St = 1.0 and
hence the viscous term is deactivated, then the elongation in point A tends to
infinity, see the dashed line in Fig. 4a. In the case of max Sc = max St = 1.2
viscosity activates, but still the elongation boundlessly grows even though its
increase is significantly slower. The activation of the viscous term for the last
case with max Sc = max St = 1.4 is the strongest and leads to oscillations in
the elongation-time diagram. Moreover, it seems that almost elastic response
for plain concrete is obtained in this case. The problem becomes regularized. In
contour plots of equivalent plastic strain κt two standing waves are observed

a) b)

Fig. 4. Dynamic direct tension test – elongation history for Hoffman viscoplasticity (HVP),
influence of viscoplastic strain rate function St for plain (a) and reinforced (b) concrete.
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near the centre of the bar, cf. Figs 5a and 5b. The two separated zones of
localization are probably an artificial numerical effect. The simulation result
with one central zone is consistent with the analytical solution for the strain-
softening bar presented in [3], where the standing decohesion wave is located
exactly in the centre. Figure 5c depicts one wider cracked zone for the case with
max Sc = max St = 1.4.

a) Sc = St = 1.0 d) Sc = St = 1.0, RC

b) max Sc = max St = 1.2 e) max Sc = max St = 1.2, RC

c) max Sc = max St = 1.4 f) max Sc = max St = 1.4, RC

Fig. 5. Dynamic direct tension test – distribution of equivalent plastic strain for tension κt

for the HVP model in t = 0.0003 s, influence of function Sc = St for plain (a–c) and reinforced
(d–f) concrete.

In general, the presence of the reinforcement partly stops the process of lo-
calization, and the horizontal displacement at point A oscillates around a certain
state, cf. diagrams in Fig. 4b. The contour plot for RC and Sc = St = 1.0 shown
in Fig. 5d looks similar to the distribution for plain concrete in Fig. 5a, so in
that case, the detached zones are also visible for the configuration with the re-
inforcement. However, more diffuse crack patterns are noticed when the viscous
term is activated, see Figs 5e and 5f. It is seen that the viscous term in the
HVP model plays an important role and the increase of function Sc = St can
favorably affect the global response of dynamic direct tension. All contour plots
are prepared for the time instant t = 0.0006 s (after 300 time steps).

Figure 6 presents the internal length influence for the GDA model in the case
of plain and reinforced concrete. Analogous to the regularization via the viscous
term in the HVP model, the elongation-time diagrams in Fig. 6a for plain con-
crete show that the smaller the value of the internal length parameter l is, the
faster the elongation at point A goes to infinity. It is shown in Fig. 6b that for
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a) b)

Fig. 6. Dynamic direct tension test – elongation history for gradient damage (GDA), influence
of internal length parameter for plain (a) and reinforced (b) concrete.

the RC bar and the case with small l = 2 mm, the amplitude of elongation dur-
ing vibrations is significantly smaller than for larger l. If the gradient-enhanced
activity is stronger (l = 4 or 8 mm), then the regularization is more effective. In
fact, similar behaviour is observed for the HVP model with the viscous active
viscus term. Figure 7 demonstrates contour plots of the averaged strain obtained
using the GDA model for plain and reinforced concrete.

a) l = 2 mm b) l = 4 mm c) l = 8 mm

d) l = 2 mm, RC e) l = 4 mm, RC f) l = 8 mm, RC

Fig. 7. Dynamic direct tension test – distribution of averaged strain ε for the GDA model
in t = 0.0003 s, influence of internal length parameter for plain (a–c) and reinforced (d–f)

concrete.

The general tendency for both models is that the width of the localization
zone increases with larger influence of the regularizing term, but the reinforce-
ment additionally delays the progress of cracking along the whole bar height. The
assumption of the full bond between steel and concrete leads to an underestima-
tion of localization in the closest neighbourhood of the reinforcement. A proper
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representation of bond-slip, together with the implementation of interface ele-
ments, can reproduce the width of the localization zone in a more realistic way
(see, e.g., [45, 47, 56]), but it is out of the scope of the paper. The presence of the
reinforcement in this benchmark is mainly supposed to suppress the evolution
of the localized zone. In fact, its presence also regularizes the problem. It should
also be mentioned that for a non-zero Poisson’s ratio the crack patterns look
similarly to the ones presented above.

3.2. Cylinder split test

The next example presents the simulation of a cylinder specimen under com-
pressive impact loading through bearing strips. This experiment is called in the
literature a split or Brazilian test, see, e.g., [19, 44, 46], and is commonly used
to establish the tensile strength for concrete, rock and other quasi-brittle mate-
rials [9]. The compression between the loading platens induces a perpendicular
tensile force in the middle of the cylinder, which can induce primary and sec-
ondary cracks. Finally, splitting inside the specimen is observed. The idea of
the laboratory test is shown in Fig. 8a. Plane strain conditions are adopted
for the computations, but the split test can also be modelled as a fully three-
dimensional specimen [46] or as a disc for plane stress conditions [69]. The results
obtained by the authors for the split test under static loading are discussed in
[72]. Here the radius of the cylinder is 25.4 mm. The input data are similar to [46],
where the specimen is made of plain concrete with the maximum aggregate size
equal to 8.5 mm, cf. also the experiment in [59]. Due to double symmetry only
a quarter of the domain is considered. Three mesh refinements are compared. In
Fig. 8b the medium mesh with the load scheme is depicted. Eight-noded FEs
are applied as in the computations for direct tension test. For the GDA model,
quadratic/linear interpolation is applied. The influence of the platens, presence
on the numerical solution is shown in [72] and here this aspect is omitted.

a) b) c)

Fig. 8. Split test – problem definition: a) idea of test, b) medium mesh,
c) functions Sc and St for the HVP model.
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The fundamental material data for concrete are: Young’s modulus E =
37900 MPa, Poisson’s ratio ν = 0.15, density ρ = 2405 kg/m3. The linear-
constant type of pulse loading is introduced according to Fig. 2b, but now the
traction intensity pi = 175 MPa is reached for time instant ti = 48 µs. The im-
pact of different loading rates (various instants ti) on the numerical response is
also studied. The time step is 1 µs. For the HVP model initial tensile strength f ′t
equals 4.53 MPa and initial compressive strength f ′c is equal to 67 MPa. Func-
tions Hc and Ht are the same as in the previous section, see Figs 3a and 3b,
respectively. Functions Sc(ηc) and St(ηt) are defined here according to Fig. 8c,
so nonisotropic behaviour of the consistency model and κc 6= κt are taken into
account (see details in [68]). When the GDA model is considered, then exponen-
tial softening defined in Eq. (19) is employed with threshold κo = 0.00011953
(i.e., tensile strength f ′t is 4.53 MPa) and parameters α = 0.98 and η = 600.
Again, the modified von Mises definition of damage loading function via Eq. (18)
with the ratio k = 14.79 (compressive strength f ′c = 67 MPa) is selected. The
internal length scale l is 4 mm.

Firstly, the results for the HVP model are discussed. The vertical displace-
ment v(t), velocity V (t) and acceleration a(t) for a point at the top of the
quarter of the considered domain are shown in the history diagrams in Fig. 9.

a) b)

c)

Fig. 9. Split test – response histories for the HVP model, three different mesh densities:
a) displacement history, b) velocity history, c) acceleration history.
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The functions of displacement v and velocity V are almost independent of the
discretization, while acceleration a differs especially for the coarse mesh, but
that effect is known in numerical analyses of dynamics. Figures 10–12 illustrate
in a sequence the distributions of strain component ε11, equivalent plastic strain
for compression κc and for tension κt for three employed meshes in two selected
time instants, namely t = 50 µs and 150 µs. The first time instant is just after
loading changes from linear to constant, and the second one is the final time on
the diagrams. It is observed for all the plots that almost the same distributions
for respective variables are obtained independently of the mesh. For strain ε11

at t = 50 µs in Fig. 10, the split zone arises from the center of the area along
the vertical symmetry axis, but at t = 150 µs the maximum strain moves up.
The distribution of internal variable κc in Fig. 11 is concentrated at the top, i.e.,
at under the place where the load presses the specimen and where the largest
compression occurs. On the other hand, contour plots in Fig. 12 show that ten-
sile cracking is present near the centre adequately for the beginning of the split
process. For instant t = 150 µs maximum tensile equivalent plastic strains κt are
still there, but only the zone of maximum values becomes wider.

The next aspect of the study is the influence of different loading rates. The
computations are performed for the medium mesh. Three options are consid-
ered for different instants ti after which the loading becomes constant. Each

a) coarse mesh, t = 50 µs b) medium mesh, t = 50 µs c) fine mesh, t = 50 µs

d) coarse mesh, t = 150 µs e) medium mesh, t = 150 µs f) fine mesh, t = 150 µs

Fig. 10. Split test – the HVP model, distribution of strain ε11 for three different meshes
in two selected time instants.
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a) coarse mesh, t = 50 µs b) medium mesh, t = 50 µs c) fine mesh, t = 50 µs

d) coarse mesh, t = 150 µs e) medium mesh, t = 150 µs f) fine mesh, t = 150 µs

Fig. 11. Split test – the HVP model, distribution of equivalent plastic strain for compression
κc for three different meshes in two selected time instants.

a) coarse mesh, t = 50 µs b) medium mesh, t = 50 µs c) fine mesh, t = 50 µs

d) coarse mesh, t = 150 µs e) medium mesh, t = 150 µs f) fine mesh, t = 150 µs

Fig. 12. Split test – the HVP model, distribution of equivalent plastic strain for tension κt

for three different meshes in two selected time instants.
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displacement-time diagram plotted in Fig. 13a is similar to the linear-constant
function and is associated with the given load p(t), see also Fig. 2b. Only the
slope of the first part of the diagrams differs. Slight variations are noticed in
Fig. 13b for velocity, where values of each graph go back to near-zero oscillations
for about ti = 40 µs, ti = 48 µs and ti = 56 µs, respectively to the instant of
the change of the loading. Figure 13c demonstrates the acceleration history.
a) b)

c)

Fig. 13. Split test – response histories for the HVP model, medium mesh, three different
loading rates: a) displacement history, b) velocity history, c) acceleration history.

Figure 14 represents distributions of ε11, κc and κt at time instant t = 150 µs
for the case ti = 40 µs. Corresponding contour plots for the case ti = 56 µs are

a) ε11 b) κc c) κt

Fig. 14. Split test – contour plots for the HVP model, medium mesh, case ti = 40 µs,
time instant t = 150 µs.
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shown in Fig. 15. More intense patterns are visible for ti = 40 µs. The adopted
values of the process speed make the viscous term sufficiently active and quite
spread distributions are observed. On the other hand, the rapidness of the loading
is not strong enough to cause too early failure of the specimen or even numerical
divergence in the analysis. The influence of this speed is discussed in [68] and
evident diversities in the response of viscoplastic models are detected if values
of the loading rate differ by a few orders. The splitting analysis in this respect,
but for statics, is also presented in [72].

a) ε11 b) κc c) κt

Fig. 15. Split test – contour plots for the HVP model, medium mesh, case ti = 56 µs,
time instant t = 150 µs.

The last part of this subsection is devoted to the description of the results
for the GDA model. The layout of this presentation is identical as for the HVP
model. The diagrams in Fig. 16 are depicted for three different meshes, again for
the histories of vertical displacement v, velocity V and acceleration a. The point
at the top of the specimen quarter is taken into consideration. It is noticeable
that the responses for the coarse mesh slightly deviate from the other paths. It is
also clear that the total failure of the specimen is more or less at time instant
t = 90 µs. Hence, Figs 17–19 are prepared for two characteristic time instants.
Time t = 50 µs is selected due to change of the loading and t = 90 µs is when
the progressive failure is significantly advanced. Distributions of strain ε11 are
analogous to the ones presented for the HVP model, but the zone of maximum
strains slightly broadens. Surprisingly, along the circumference away from the
applied load, a small area of significant strains is observed. At this place, tensile
cracking is likely and can be interpreted as the beginning of a wedging effect. In
Fig. 18, the contour plots of the averaged strain measure ε (ASM) are illustrated
for t = 50 µs and almost the same distributions are observed. Therefore, mesh
independence and the presence of the regularization effect seem obvious. Howe-
ver, different distributions are obtained for t = 90 µs. A concentration directly
below the loading where the specimen is compressed is particularly reflected for
the coarse mesh, see Fig. 18d. This effect vanishes for the fine mesh, cf. Fig. 18f.
Such difference can be explained by the fact that time t = 90 µs is just before the
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a) b)

c)

Fig. 16. Split test – response histories for the GDA model, three different mesh densities:
a) displacement history, b) velocity history, c) acceleration history.

a) coarse mesh, t = 50 µs b) medium mesh, t = 50 µs c) fine mesh, t = 50 µs

d) coarse mesh, t = 90 µs e) medium mesh, t = 90 µs f) fine mesh, t = 90 µs

Fig. 17. Split test – the GDA model, distribution of strain ε11 for three different meshes
in two selected time instants.



Simulations of concrete response to impact loading. . . 47

a) coarse mesh, t = 50 µs b) medium mesh, t = 50 µs c) fine mesh, t = 50 µs

d) coarse mesh, t = 90 µs e) medium mesh, t = 90 µs f) fine mesh, t = 90 µs

Fig. 18. Split test – the GDA model, distribution of averaged strain measure ε
for three different meshes in two selected time instants.

a) coarse mesh, t = 50 µs b) medium mesh, t = 50 µs c) fine mesh, t = 50 µs

d) coarse mesh, t = 90 µs e) medium mesh, t = 90 µs f) fine mesh, t = 90 µs

Fig. 19. Split test – the GDA model, distribution of damage ω for three different meshes in
two selected time instants.
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failure. Damage patterns in Fig. 19 are corresponding to the ASM distributions.
The damage zones for time instant t = 50 µs seem to be very narrow. It should
be noted that for t = 50 µs the maximum damage ω equals 0.30, while for
t = 90 µs the maximum damage ω reaches about 0.95. Again, the zone below
the loading is visible for the coarse mesh at time t = 90 µs. Damage patterns
can be treated as a continuum representation of cracking, so it can be concluded
that the splitting in the central vertical zone is simulated correctly by the GDA
model.

Similarly to the results of the HVP model, the importance of loading rates
is next analyzed for the GDA model. In this study, the medium mesh is only
considered. Three different time instants when the load changes from linear to
constant are investigated: ti = 40 µs, ti = 48 µs and ti = 56 µs. The displacement
history is represented in Fig. 20a. The absolute values of vertical displacement v
suddenly tend to infinity for the case ti = 40 µs, i.e., for the largest loading
rate. It means that the most rapid failure emerges. On the other hand, for the
case ti = 56 µs oscillations continue till instant t = 130 µs. This phenomenon is
also observed in the diagrams in Figs 20b and 20c for velocity and acceleration.
The slower the loading rate is, the longer time to total failure is simulated. For
the GDA model, the characteristic variables are also plotted in Figs 21 and 22,

a) b)

c)

Fig. 20. Split test – response histories for the GDA model, medium mesh, three different
loading rates: a) displacement history, b) velocity history, c) acceleration history.
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a) ε11 b) ε c) ω

Fig. 21. Split test – contour plots for the GDA model, medium mesh, case ti = 40 µs,
time instant t = 55 µs.

a) ε11 b) ε c) ω

Fig. 22. Split test – contour plots for the GDA model, medium mesh, case ti = 56 µs,
time instant t = 130 µs.

namely: strain component ε11, averaged strain ε̄ and damage ω. For the case
ti = 40 µs, the final time before failure is t = 55 µs and in Fig. 21 this moment
is captured. Generally, the crack patterns are similar to the previous results of
the GDA model (case ti = 48 µs), but the distribution of ASM is much more
intense, see Fig. 21b. The contour plots in Fig. 22 for ti = 56 µs are taken when
t = 130 µs (final moment). The type of the corresponding distributions remains
generally unchanged, but the crack zones are a little narrower. Here the GDA
model is very sensitive to the loading rate, opposite to the HVP model where
just high loading rates can modify the response, cf. [68, 72].

3.3. Four-point bending

This benchmark is referred to a reinforced concrete (RC) beam, which was
tested experimentally under dynamic loading and then described in [18]. The
other computations for this configuration using various cracking descriptions are
presented in [16, 55].

The data are set on the basis of [55]. The geometry is illustrated in Fig. 23a.
Two supports are placed at the bottom of the beam, while two dynamic forces
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a)

b) c)

d)

Fig. 23. Four-point bending – problem definition: a) geometry (dimensions in mm),
b) load history, c) function Hc for HVP, d) function Ht for HVP.

are imposed at two points at the top. The beam is loaded by impact as in the
experiment [18], with slightly different load histories, as shown in Fig. 23b. De-
spite the above fact, the experimental history for the beam centre deflection
was presented in [18] up to time t = 0.006 s. The load control, plane stress
conditions as well as full bond between steel and concrete are assumed. These
computations are performed for three different FE meshes for the concrete ma-
trix, namely: coarse – 56× 8, medium – 112× 16 and fine – 168× 24 elements.
Quadrilateral FEs are applied, linear interpolation is adopted for both fields in
the GDA model, see also [41]. It is known that although quadratic/linear inter-
polation is optimal for gradient models, the other possibilities can give stable
results as well, see, e.g., [72], since this model is coupled rather than mixed. It is
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mentioned in [49] that the so-called inf-sup condition does not have to be obeyed.
Oscillations that may occur for some secondary fields, e.g., stress components,
have local character and are visible only in the neighbourhood of strong dam-
age variation. In the experiment, concrete was extra reinforced by steel fibers
(1.2% volume), so it motivates additionally the presence of regularization in the
material model. Moreover, ductility should also be increased. The basic data for
concrete are the following: Young’s modulus Ec = 32940 MPa, Poisson’s ratio
νc = 0.2, density ρ = 2320 kg/m3, tensile strength f ′t = 3.15 MPa and com-
pressive strength f ′c = 10f ′t . Steel is modelled as elastic-ideal-plastic material in
uniaxial stress state using truss finite elements. Lower reinforcement is located
at 31.25 mm from the bottom, and two bars with the diameter φ = 14 mm
give the cross-section area Asb = 308 mm2. Upper reinforcement is located at
31.25 mm from the top, and now two bars with the diameter φ = 8 mm cor-
respond to the area Ast = 100.5 mm2. The other data for steel are: Young’s
modulus Es = 245390 MPa, Poisson’s ratio νs = 0.3, density ρ = 7800 kg/m3

and yield strength fy = 638 MPa.
Piecewise linear functionsHc andHt depicted in Figs 23c and 23d are adopted

for the HVP model. It should be noticed that now ductility of the concrete model
is increased in comparison to both previous examples, especially in the compres-
sion regime. As shown in [72], the HVP model can be sensitive to the definition
of Hc. The presence of fibers in the concrete matrix can partly explain the in-
creased ductility for tension, but the numerical divergence is prevented as well.
Functions Sc and St are identical as in the split test, see Fig. 8c. The viscoplastic
strain rate grows differently for compression and tension, hence the nonisotropic
variant of the HVP model is considered (see details in [68]). The parameters
of the GDA model are: threshold κo = 95.6 × 10−6, the exponential softening
function given in Eq. (19) with α = 0.96 and η = 350, the modified von Mises
definition in Eq. (18) with k = 10 and the internal length scale l = 16 mm.
It is emphasized that here only the results for the medium mesh, coming from
this model, are recalled to make the background for the computations using the
HVP model. The full analysis of four-point bending for the GDA was originally
performed and widely described in [71], including also the results for statics with
different aspects of the model. Moreover, in [39] the benchmark is computed by
means of so-called stabilized finite elements to show the application of hourglass
control in two-field finite elements for the GDA model.

The experimental path for deflection w in the center of the beam is taken from
[18]. All the computed deflection histories, shown in Fig. 24a, demonstrate a quite
good agreement with the experimental response. Furthermore, the independence
of the discretization is observed for the diagrams obtained for the HVP model.
Figures 24b and 24c are prepared based on the computations only and illustrate
the velocity and acceleration histories. Again, the velocity plots for the HVP
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a) b)

c)

Fig. 24. Four-point bending – response histories, three different meshes:
a) displacement history, b) velocity history, c) acceleration history.

model are almost the same for all meshes and the difference with reference to
the GDA model is really small. The absolute values of velocity rise permanently,
and this can be interpreted as a tendency of the RC beam to failure. Although
the character of acceleration histories shown in Fig. 24c looks similar to previous
tests, the response is more sensitive to the employed discretization. However, the
most extreme amplitudes are distinguished for the GDA model.

In Fig. 25, the next results for the HVP model are shown, i.e., the distribu-
tion of equivalent plastic strain for tension κt and deformation for three different
meshes in final t = 0.00625 s. At this time instant, the computations are in-
tentionally interrupted. Unfortunately, some mesh dependence occurs. For the
coarse mesh, the distribution of κt presented in Fig. 25a shows too diffused
cracking, while for the medium and fine meshes in Figs 25c and 25e two clear
localization zones are visible with the same intensity and in the same range of
damage (black colour). Deformations presented in Figs 25b, 25d and 25f are in
accordance with the plastic hinges theory. Nevertheless, a so-called “elephant
foot” (excessive dilatation) phenomenon can be visible, particularly for the de-
formation of the fine mesh, see Fig. 25f. This is an undesirable numerical effect
that is observed when the model with the associated plastic flow is computed.
This issue could be removed by the implementation of nonassociated flow rule in
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a) coarse mesh, κt b) coarse mesh, deformation

c) medium mesh, κt d) medium mesh, deformation

e) fine mesh, κt f) fine mesh, deformation

Fig. 25. Four-point bending – the HVP model, distribution of equivalent plastic strain
for tension κt and deformation for three different meshes in t = 0.00625 s.

the HVP model. Figure 26 presents the distribution of averaged strain measure ε
and deformation selected only for the medium mesh obtained for the GDA model
(they are just plotted for comparison, the other results can be found in [71]). It
is seen that in the case of the medium mesh the corresponding distributions for
both models are quite similar, but deformation in Fig. 26b for the GDA model
at the location of the most intensive cracking displays rather a concavity of the
deformed mesh (local volume decrease), and not a convexity – as in the HVP
model.

a) ASM ε b) deformation

Fig. 26. Four-point bending – the GDA model, distribution of averaged strain ε
and deformation for medium mesh in t = 0.00625 s.

4. Summary and conclusions

In this paper, the theory of two regularized models for concrete has been
reviewed. The Burzyński-Hoffman viscoplastic consistency model (HVP) incor-
porates separate rate-dependent functions for compression and tension to de-
scribe the nonlinear behaviour of the material. In this concept, the viscous term
provides the rate localization limiter dependent on a time scale. The model has
been implemented in the FEAP code as a usermat subroutine. For dynamics,
the standard Newmark algorithm is applied. The gradient damage model (GDA)
incorporates the simplified representation of sensitivity to strain sign via a corre-
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sponding equivalent strain measure. The model can be coupled to plasticity [14].
Spatial gradients of strain ensure the differential limiter dependent on an internal
length scale. For this model, a user-element subroutine has been implemented
because of the two-field formulation. The independent averaged strain field was
also interpolated, together with the displacement field, but the problem is cou-
pled and not mixed. Hence, the uniform interpolation of the two fields can be
used. For dynamics, the mass matrix has to be defined in order to correctly
approximate the initial boundary value problem (IBVP). Again, the standard
Newmark algorithm was employed.

Three concrete dynamic benchmarks have been analyzed. The influence of
the regularizing term was demonstrated for both models in the direct tension
test.

The width of the localization zone increased in accordance with stronger reg-
ularization resulting from the corresponding model data: functions dependent
on the viscoplastic strain rate for the HVP model and the internal length scale
parameter for the GDA model. The localization limiters slowed down the elon-
gation of the specimen. As expected, the progress of the cracking phenomenon
was delayed or obstructed by the presence of the reinforcement.

It was further shown that the splitting effect under impact loading is quite
well reproduced using both models. The results are independent of discretization
density. It turns out that in the case of the coarse mesh for the GDA model
the distributions of averaged strain ε and damage ω differed from the others
at the final time. It is possible that the discretization was too coarse or simply
the crack patterns immediately before failure could be different. The influence
of loading rates was also studied, and obviously, the faster the pulse is, the more
violent cracking occurs.

Finally, simulations of the dynamic four-point bending according to the ex-
periment [18] were performed. A quite good agreement between the results for
both models was noticed. The patters obtained in the computations look realistic
and have a physical interpretation in accordance with the plastic hinges theory.
Moreover, the experimental path for the deflection at the center of the beam is
also compatible with the numerical response. When the HVP model is employed
the so-called “elephant foot” phenomenon can occur. This unwanted effect could
be reduced if the nonassociated plastic flow was applied. This is a future task
for the authors to solve this problem by the implementation of a separate plastic
potential function.

Summarizing, the influence of regularization is visible in both models. The
width of the standing (localization) wave is controlled by the viscosity (the rate
limiter) or the internal length scale (the differential limiter). The well-posedness
of the IBVP, together with its hyperbolic character, can be preserved. Owing
to the regularization in the HVP and GDA models, the FE analyses of concrete



Simulations of concrete response to impact loading. . . 55

specimens under impact loading presented in this paper exhibit negligible mesh-
sensitivity for sufficiently dense discretizations.

Appendix.
Finite element implementation for gradient damage

Certain domain B occupied by a material body with boundary ∂B is analyzed.
The weak form of equations of motion (1) using standard boundary conditions
is as follows:ˆ

B

δεTσ dV +

ˆ

B

δuTρüdV =

ˆ

B

δuTb dV +

ˆ

∂B

δuTtdS, (23)

where the superscript T is the transpose symbol and t is the traction vector.
The averaging equation (20) using non-standard natural boundary condition is
rewritten as:ˆ

B

δε ε dV +

ˆ
B

(∇δε)T c∇ε̄ dV =

ˆ

B

δε ε̃ dV. (24)

The primary fields are interpolated in this manner:

u = N a and ε = hTe. (25)

After the linearization for the implicit time integration, the equations of motion
become:

ˆ

B

BT
(
σt + ∆σ

)
dV +

ˆ

B

NTρNät+∆t dV =

ˆ

B

NTbt+∆t dV

+

ˆ

∂B

NTtt+∆t dS, (26)

and the averaging equation is derived as:
ˆ

B

(
hhT + c g gT

) (
et + ∆e

)
dV =

ˆ

B

h
(
ε̃t + ∆ε̃

)
dV, (27)

where B = LN and gT = ∇hT. Finally, the matrix system of Eq. (22) is
derived. The following submatrices and subvectors are defined:

Kaa =

ˆ

B

BT Et
tanB dV and Kae = −

ˆ

B

GtBTσ̂thT dV, (28)
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Kea = −
ˆ

B

h
[
ξT
]t
B dV and Kee =

ˆ

B

(hhT + c g gT) dV, (29)

f t+∆t
ext =

ˆ

B

NTbt+∆t dV +

ˆ

∂B

NTtt+∆t dS and f tint =

ˆ

B

BTσt dV, (30)

f tε =

ˆ

B

h ε̃t dV and f te = Kee e
t. (31)

Et
tan is the tangent material stiffness at time t. Additional definitions are intro-

duced:

Gt =

[
dω

dκd

]t
and ξt =

[
∂ε̃

∂ε

]t
. (32)

In the absence of damage growth Kae = 0. Hence, the equations of motion in
Eq. (22) are uncoupled from the averaging equation.
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