
Computer Assisted Methods in Engineering and Science, 26: 191–209, 2019, doi: 10.24423/cames.272
Copyright © 2019 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Description of large deformations of continuum and shells
and their visualisation with Mathematica

Ryszard Walentyński
Silesian University of Technology
Faculty of Civil Engineering
Department of Mechanics and Bridges
Akademicka 5, 44-100 Gliwice, Poland
e-mail: Ryszard.Walentynski@polsl.pl

A proper description of large deformation of continuum or shell requires dealing with curved spaces
and application of tensor analysis and distinguishing of covariant and contravariant bases. Thanks to
symbolic computations and visualization capabilities of the Mathematica system, this task can be carried
out in a straightforward manner. This has been already discussed in [9] and [10]. This paper is a further
extension of these researches. First, it will be shown that the deformation is indeed changing a curvature
of the considered space. Next, there will be shown how the Cartesian basis of the undeformed flat space
splits into the covariant and contravariant ones and this basis changes in the space. This makes it possible
to explain why we have to introduce covariant derivatives and Christoffel symbols, for example. This is
important in the case of the optical analysis of large deformations of thin-wall structures. Moreover, it
is possible to easily explain that strain tensor is defined with a change of metric tensor. It also helps to show
the idea of material (Lagrangian) and spatial (Eulerian) description of the deformation and the motion,
and avoid misunderstandings in this matter. Everything is visualised with 3D graphical capabilities and
interactive manipulation of the plots provided within the Mathematica system. This paper can also be
a useful inspiration both in teaching and learning of continuum mechanics, the theory of shells and thin-
wall structures. This work has been presented at the conference “4th Polish Congress of Mechanics, 23rd
International Conference on Computer Methods in Mechanics” PCM-CMM-2019 in Kraków.

Keywords: continuum mechanics, theory of shells, Mathematica, tensor analysis, thin-wall structures.

1. INTRODUCTION

Most of the books on continuum mechanics and the theory of shells contain static drawings
describing the problem of the body deformation, which are difficult to understand. An example is
presented in Fig. 1 taken from Kiselev et al. [2], which nevertheless contains a very clear math-
ematical description of the problem. Unfortunately, their theoretical introduction to continuum
mechanics does not contain an implementation of the Mathematica symbolic capabilities.

Another example of static illustrations for the case of the theory of shells is Bielak’ work [1].
His approach to the theory of shells was implemented several years ago in my monograph [8]. This
was done using external Mathematica package MathTensor from Parker and Christensen [6]. Un-
fortunately, MathTensor written 25 years ago has some incompatibilities with the current version
of Mathematica.

Therefore, in this research there are presented some problems in continuum mechanics and the
theory of shells using tensor analysis in curved spaces, which can be solved and illustrated with
Mathematica without use of extra packages. The motivation for that was relatively easy access
to Mathematica for educational purposes. Students of many universities have campus access to this



192 R. Walentyński

Fig. 1. A traditional illustration of Continuum deformation [2].

software. If not the cheapest, but somehow challenging option is to use Raspberry Pi minicomputer,
which is surprisingly inexpensive and its Linux operating system is Raspbian that contains the
complementary educational current version of Mathematica. Details can be found in [5, 7], for
example.
Mathematica contains detailed documentation and access to [11] to learn Wolfram language.

Therefore, it is assumed that the reader has at least basic knowledge of this language.
One of the most difficult problems in the education of engineering students is that their un-

derstanding of the description of large displacements. The second is the theory of shells, where
we must deal with curved spaces. These two fields of mechanics are helpful in understanding of
thin-wall structures, especially those with curved geometry. Thus, this paper is divided into two
main parts. The next section presents some problems of continuum deformation, and the following
section presents some elements of description of bending helicoid to catenoid.
Mathematica, with its symbolic computation and visualization capabilities, can help to explain

the difficult problems of large displacements of continuum mechanics and the theory of shells. The
presentation is limited to symbolic computations. There is no code for the presented drawings.
Unfortunately, it is impossible to present in the printed paper all graphical capabilities of the
system shown during the PCM-CMM 2019 conference in Kraków.

2. DESCRIPTION OF CONTINUUM DEFORMATION

The Mathematica inputs are denoted with In[*]:= and outputs with Out[*], where * is a re-
spective number.

First, we format the appearance of the variable ξ[i] in Mathematica outputs. This makes it
possible to input indices of the spacial (Lagrangian) variables ξi with square parantheses and the
output is close to the traditional way of notation.

In[1]:= ξξξ[i_] := ξξξi

2.1. Reference configuration

To focus our attention [2], we will assume that the analysed undeformed particle is a cube
presented in Fig. 2.



Description of large deformations of continuum and shells and their visualisation... 193

Fig. 2. Reference configuration.

We will assume that in the moment of time to = 0, the ortho-Cartesian spatial coordinates xi

coincide with material ξi. It should be mentioned that unfortunately this is a common cause of
misunderstanding of the essence of the problem.

xi (ξi,0) = ξi. (1)

The vector pointing to the certain point in space within the particle is equal to:

⃗̊r = xi ⃗̊ei. (2)

According to our assumption that the space is ortho-Cartesian, we define reference configuration
with:

In[2]:= reference = {ξξξ[1], ξξξ[2], ξξξ[3]}

2.1.1. Base vectors

Vectors of the covariant base in the undeformed configuration are computed from:

⃗̊ei ∶=
∂ ⃗̊r

∂ξi
, (3)

In[3]:= e0[i_] := ∂∂∂ξξξ[i] reference

where ∂ξ[i] stands for
∂

∂ξi
.

These vectors are ⃗̊e1 = (1,0,0), ⃗̊e2 = (0,1,0) and ⃗̊e3 = (0,0,1).

2.1.2. Metric tensor

The space is flat, so the metric tensor is equal to the Kronecker delta:

g̊ij = ⃗̊ei ⋅ ⃗̊ej = δij . (4)



194 R. Walentyński

First we compute the matrix:

In[4]:= gLowerMatrix0 = FullSimplify[Table[e0[i].e0[j],{i,3},{j,3}]]

Out[4]= {{1,0,0},
{0,1,0},
{0,0,1}}

Components of that matrix are components of the metric tensor in the reference configuration.

In[5]:= gl0[i_,j_] := gl0[i,j] = gLowerMatrix0[[i,j]]

2.2. Vector field of displacement

Now, let us introduce the following vector field u displacement:

In[6]:= u = ((ξξξ[2]2-ξξξ[3]) e0[1] + (ξξξ[2]+ξξξ[3]2) e0[2] - ξξξ[1]2 e0[3]) t

It is a function of parameter t, which models time. All our further plots will be considered for
t ∈ ⟨0,1⟩.

Out[6]= {t ((ξ2)2 - ξ3), t (ξ2 + (ξ3)2), -t (ξ1)2}

Its plot is obtained with VectorPlot3D for the parameter t = 1. The slider in the top is an
element of the control provided with Manipulate function (Fig. 3).

Fig. 3. Displacement vector field.

2.3. Deformed continuum

2.3.1. Spatial coordinates of the curved body

The deformed configuration is defined with:

xi = xi(ξj , t) = xi(ξj ,0) + ui(ξj , t), (5)

which we denote with a vector called actual.



Description of large deformations of continuum and shells and their visualisation... 195

In[7]:= actual = reference + u

Out[7]= {ξ1 + t((ξ2)2 - ξ3),

ξ2 + t (ξ2 + (ξ3)
2
),

-t(ξ1)
2
+ ξ3}

The following three Manipulate frames (Fig. 4) are obtained with the use of ParametricPlot3D
to obtain the “walls” of the particle. The first slide is used to control parameter t, the second to con-
trol the density of mesh on the “walls”, and the third their opacity (the opposite of transparency).

a) b) c)

Fig. 4. Deformation progress in time: a) undeformed (t = 0), b) deformed (t = 0.5), c) deformed (t = 0.1).

The deformed material space with frozen in Lagrangian coordinates is curved now, whereas
spatial (Eulerian coordinates) represented with the outer box remains flat. Now we can see the
difference between both coordinates.

2.3.2. Covariant base vectors of the deformed continuum

The vector r⃗ in the deformed configuration and covariant base vectors are obtained with:

r⃗ = ξi e⃗i, (6)

e⃗i ∶=
∂r⃗

∂ξi
. (7)

In[8]:= e[i_] := ∂∂∂ξξξ[i]actual

These vectors are e⃗1 = {1,0,−2 t ξ1}, e⃗2 = {2 t ξ2, t + 1,0} and e⃗3 = {−t,2 t ξ3,1}.
In the next frames of animation (Fig. 5), we observe that covariant base changes with the

deformation of the particle. Base vectors in the material configuration change direction, change
value and lose orthogonality, but frozen in coordinates do not change. Spatial coordinates of the
deforming body change, but base vectors remain the same.



196 R. Walentyński

a) b) c)

Fig. 5. Change of covariant base along with deformation: a) undeformed (t = 0), b) deformed (t = 0.5),
c) deformed (t = 0.1).

2.3.3. Metric tensor after deformation

The components of the metric tensor in the material configuration are not equal to the Kronecker
delta any more:

gij = e⃗i ⋅ e⃗j . (8)

Scalar product of the covariant base builds a matrix gLowerMatrix whose elements produce
components of the metric tensor.

In[9]:= gLowerMatrix = FullSimplify[Table[e[i].e[j],{i,3},{j,3}]]

Out[9]= {{1 + 4 t2 (ξ1)2, 2 t ξ2, -t (1+2 ξ1)},
{ 2 t ξ2, 1+t (2+t+4 t (ξ2)

2
), 2 t (ξ3 + t (-ξ2+ξ3))},

{-t (1 + 2 ξ1), 2 t(ξ3+t (-ξ2 + ξ3)), 1 + t2 (1 + 4 (ξ3)
2
)}}

In[10]:= gl[i_,j_] := gl[i,j] = gLowerMatrix[[i,j]]

The determinant of the gLowerMatrix g has to be bigger than 0 in any point of the deformed
body to make it possible for the assumed deformation to have physical sense.

In[11]:= g = FullSimplify[Det[gLowerMatrix]]

Out[11]= (1 + t - 2 t2 ξ1 (1 + t + 4 t ξ2 ξ3))
2

2.3.4. Contravariant base

Vectors of the contravariant base can be computed from the following definition:

e⃗i ∶=
e⃗j × e⃗k

e⃗i ⋅ (e⃗j × e⃗k)
. (9)



Description of large deformations of continuum and shells and their visualisation... 197

The code for them is:

In[12]:= eu[1] = FullSimplify[
e[2]×××e[3]

e[1].e[2]×××e[3]
]

Out[12]= { 1 + t

1 + t - 2 t2 ξ1 (1 + t + 4 t ξ2 ξ3)
,

-
2 t ξ2

1 + t - 2 t2 ξ1 (1 + t + 4 t ξ2 ξ3)
,

t (1 + t + 4 t ξ2 ξ3)

1 + t - 2 t2 ξ1 (1 + t + 4 t ξ2 ξ3)
}

In[13]:= eu[2] = FullSimplify[
e[3]×××e[1]

e[2].e[3]×××e[1]
]

Out[13]= { 4 t2 ξ1 ξ3

-1 + t (-1 + 2 t ξ1 (1 + t + 4 t ξ2 ξ3))
,

-1 + 2 t2 ξ1

-1 + t (-1 + 2 t ξ1 (1 + t + 4 t ξ2 ξ3))
,

2 t ξ3

-1 + t (-1 + 2 t ξ1 (1 + t + 4 t ξ2 ξ3))
}

In[14]:= eu[3] = FullSimplify[
e[1]×××e[2]

e[3].e[1]×××e[2]
]

Out[14]= {- 2 t (1 + t) ξ1

-1 + t (-1 + 2 t ξ1 (1 + t + 4 t ξ2 ξ3))
,

4 t2 ξ1 ξ2

-1 + t (-1 + 2 t ξ1 (1 + t + 4 t ξ2 ξ3))
,

1 + t

-1 + t (-1 + 2 t ξ1 (1 + t + 4 t ξ2 ξ3))
}

When analysing the above expressions, we can easily notice that, for example:

e⃗1 ⋅ (e⃗2 × e⃗3) =
√
g. (10)

It is connected with a property of the absolute antisymmetric Levi-Civita tensor:

εijk ∶= e⃗i ⋅ (e⃗j × e⃗k).

2.4. Contravariant components of metric tensor

The contravariant components of the metric tensor can be obtained from the scalar product of
contravariant base vectors:

gij = e⃗i ⋅ e⃗j , (11)

however there is an alternative way.
The metric tensor is a special one, and for inversion of gLowerMatrix it computes contravariant

components of it.



198 R. Walentyński

In[15]:= gUpperMatrix = FullSimplify[Inverse[gLowerMatrix]];

In[16]:= gu[i_,j_] := gu[i,j] = gUpperMatrix[[i,j]]

A sample component of that tensor is:

In[17]:= gu[1,1]

Out[17]=
1 + t (2 + t (2 + 4 (ξ2)

2
+ t (1 + 4 ξ2 ξ3) (2 + t + 4 t ξ2 ξ3)))

(-1 + t (-1 + 2 t ξ1 (1 + t + 4 t ξ2 ξ3)))
2

2.5. Rising indices

The metric tensor can be used for the tensor operation called “rising” or “lowering” indices. It
makes it possible to find a contravariant component.

Making a tensor sum according to Einstein’s rule, we have the following formula:

e⃗j = e⃗i g
ij . (12)

Practically its computation is carried out with the following function:

In[18]:= eu[j_] := eu[j]=FullSimplify[
3

∑∑∑
i
e[i] gu[i,j]]

It can be easily checked that it produces the same formulas as the ones obtained above with
Eq. (9).

2.6. Covariant base versus contravariant one

Now we can observe the difference between the two bases. In undeformed state t = 0 (Fig. 6)
both sets of base vectors coincide despite the position within the particle controlled with slides 3,
4 and 5.

Fig. 6. Base vectors in the undeformed configuration.



Description of large deformations of continuum and shells and their visualisation... 199

When we set parameter t = 1 (Fig. 7) for two different positions within the particle, we can see
that both bases split.

a) b)

Fig. 7. Splitting of base vectors to covariant (blue) and contravariant (red)
ones in the deformed configuration.

Next, Fig. 8 shows that vectors of the covariant base are tangent to the lines of curvilinear
coordinates, and contravariant ones are normal to the respective surfaces. Moreover, it can be seen
that if a vector e⃗i becomes longer, the respective vector e⃗i becomes shorter and opposite. This is

a) b)

Fig. 8. Covariant base vectors versus contravariant ones.



200 R. Walentyński

connected with relation (9) and the fact that the scalar product of them is equal to the Kronecker
delta:

e⃗j ⋅ e⃗i = δ
j
i . (13)

2.7. Transformation between coordinate systems

Relation of components of the tensors in Eulerian (spatial) and Lagrangian (material) systems
can be done with the aid of the Jacobian matrix.

2.7.1. Jacobian matrix

The Jacobian matrix is defined with:

J ji =
∂xj

∂ξi
. (14)

It is implemented with the function:

In[19]:= JacobianMatrix = Table[∂∂∂ξξξ[i]actual[[j]],{i,3},{j,3}];

It is easy to check that the Jacobian matrix has a connection:

=

⎛
⎜
⎜
⎝

e⃗1
e⃗2
e⃗3

⎞
⎟
⎟
⎠

. (15)

In[20]:= JacobianMatrix == {e[1],e[2],e[3]}

Out[20]= True

The determinant of that matrix is called Jacobian:

J ∶= det . (16)

In[21]:= jacobian = FullSimplify[Det[JacobianMatrix]]

Out[21]= 1 + t - 2 t2 ξ1 (1 + t + 4 t ξ2 ξ3)

Jacobian has the following connection with the determinant of metric tensor:

J2
= g. (17)

In[22]:= FullSimplify[jacobian2 == g]

Out[22]= True

The inversion of the Jacobian matrix has the following definition:

Iji =
∂ξi

∂xj
. (18)

It is computed by the inversion of the Jacobian matrix.

In[23]:= InvertedJacobianMatrix = FullSimplify[Inverse[JacobianMatrix]];



Description of large deformations of continuum and shells and their visualisation... 201

This matrix has the following relation with contravariant base vectors:

=

⎛
⎜
⎜
⎝

e⃗1

e⃗2

e⃗3

⎞
⎟
⎟
⎠

T

. (19)

In[24]:= FullSimplify[
InvertedJacobianMatrix == Transpose[{eu[1],eu[2],eu[3]]]

Out[24]= True

2.8. Strain tensor

Strain tensor is defined as the change of the metric tensor due to deformation:

γij ∶=
1

2
(gij − g̊ij) . (20)

Its evaluation is implemented with:

In[25]:= gamma[i_,j_] := gamma[i,j] =
1

2
(gl[i,j] - gl0[i,j])

Out[25]= {{ 2 t2 (ξ1)2, t ξ2, -
1

2
t (1 + 2 ξ1)},

{ t ξ2,
1

2
t (2 + t + 4 t (ξ2)

2
), t (ξ3 + t (-ξ2 + ξ3))},

{ -1
2
t (1 + 2 ξ1), t (ξ3 + t (-ξ2 + ξ3)),

1

2
t2 (1 + 4 (ξ3)

2
)}}

Now we can show how the transformation to another system of coordinates looks like. This tensor
can be transformed into the Eulerian coordinate system with the following formula:

εij ∶= I
k
i I

l
j γkl. (21)

Implementation of this formula:

In[26]:= Table[FullSimplify[

3

∑∑∑
l

3

∑∑∑
k
InvertedJacobianMatrix[[i,k]]

InvertedJacobianMatrix[[j,l]] gamma[k,l]],{j,3},{i,3}]

The output matrix has a very long form. For example, the component ε33 is equal to:

t2 ((t + 1)2 (4 ξ1 (t2 ξ1 − 1) − 1) + a∗ + b∗)

2 (−2 t2 ξ1 (4 t ξ2 ξ3 + t + 1) + t + 1)2
, (22)

where

a∗ = 8 t (t + 1)ξ2 ξ3 (−2 ξ1 + 4 t2 (ξ1)2 − 1) ,

b∗ = 4(ξ3)2 (4 t2(ξ2)2 (4 t2(ξ1)2 − 1) − 1) .



202 R. Walentyński

Due to the length of the formula, the font size is being reduced. The plot of this function in 3D
space can be done with ContourPlot3D function (Fig. 9).

Fig. 9. 3D contour plot of ε33 strain tensor component for t = .25.

3. BENDING HELICOID TO CATENOID

3.1. Definitions

First, like in the previous section, we format the appearance of the variable u[i] to appear ξi in
outputs.

In[27]:= u[i_] := ui

The main difficulty of understanding the theory of shells by students of engineering is differential
geometry.

We will observe the application of Mathematica tools to the analysis of the well-known phe-
nomenon of bending helicoid to catenoid.

Definition of helicoid:

hel ∶= {sin (u2) sinh (u1) ,− cos (u2) sinh (u1) , u2} . (23)

In[28]:= hel = {Sin[u[2]] Sinh[u[1]], -Cos[u[2]] Sinh[u[1]], u[2]};

Out[28]= Sin[u2] Sinh[u1],-Cos[u2] Sinh[u1],u2}

Definition of catenoid:

kat ∶= {cos (u2) cosh (u1) , sin (u2) cosh (u1) , u1} . (24)

In[29]:= kat = {Cos[u[2]] Cosh[u[1]], Sin[u[2]] Cosh[u[1]], u[1]}

Out[29]= {Cos[u2] Cosh[u1],Cosh[u1] Sin[u2],u1}

Bending of helicoid to catenoid can be described with the following equation:

het2kat ∶= hel cos(t) + kat sin(t). (25)

In[30]:= r = hel Cos[t] + kat Sin[t];



Description of large deformations of continuum and shells and their visualisation... 203

Using the Manipulate function with control parameter t ∈ ∠0,2π⟩, we can see how drawing of
the surface produced with ParametricPlot3D changes (Fig. 10). In our analysis, u1 ∈ ⟨−1,1⟩ and
u2 ∈ ⟨0,2π⟩.

Fig. 10. Bending helicoid to catenoid.

3.2. The covariant base of the surface

Covariant base vectors, which are tangent to the surface, are computed with:

r⃗i ∶=
∂r⃗

∂ui
. (26)

In[31]:= rrri_ := rrri = FullSimplify[∂∂∂u ir]

The result of the symbolic computation is:

In[32]:= rrr1

Out[32]= {Cos[t] Cosh[u1] Sin[u2]+Cos[u2] Sin[t] Sinh[u1],
-Cos[t] Cos[u2] Cosh[u1]+Sin[t] Sin[u2] Sinh[u1],
Sin[t]}

In[33]:= rrr2

Out[33]= {-Cosh[u1] Sin[t] Sin[u2]+Cos[t] Cos[u2] Sinh[u1],
Cos[u2] Cosh[u1] Sin[t]+Cos[t] Sin[u2] Sinh[u1],
Cos[t]}



204 R. Walentyński

3.3. First differential form, metric tensor

The components of the first differential form are computed as a scalar product of base vectors

aij ∶= r⃗i ⋅ r⃗j . (27)

In[34]:= aaai_,j_ := aaai,j = FullSimplify[rrri.rrrj]

We can define a matrix gLowerMatrix from the elements of this tensor.

In[35]:= aLowerMatrix = Table[aaai,j,{i,2},{j,2}]

This tensor is a metric tensor, so we can evaluate its contravariant components from the inverted
matrix gLowerMatrix.

Out[35]= {{Cosh[u1]2,0 },
{0, Cosh[u1]

2}}

In[36]:= aUpperMatrix = Inverse[aLowerMatrix]

Out[36]= {{Sech[u1]2,0 },
{0, Sech[u1]

2}}

In[37]:= aaaui_,j_ := aaaui,j = aUpperMatrix[[i,j]]

It is worth to note that the metric tensor does not depend on parameter t.
Next, we compute the determinant of the gLowerMatrix:

a ∶= ∣
a11 a12
a21 a22

∣ . (28)

In[38]:= a = FullSimplify[Det[aLowerMatrix]]

Having this determinant, we can compute the area of the surface.

Out[38]= Cosh[u1]
4

In[39]:= ∫

1

-1
∫

2πππ

0

√
a du[1] du[2]

Out[39]=
1

2
(4 π + Sinh[4 π])

Since the metric tensor does not change with the deformation, the surface area is constant.

3.4. Normal vector

Normal vector to the surface is defined with:

r⃗3 ∶=
r⃗2 × r⃗2
√

a
. (29)



Description of large deformations of continuum and shells and their visualisation... 205

In[40]:= rrr3 = FullSimplify[PowerExpand[
rrr1×××rrr2
√
a
]]

Out[40]= {-Cos[u2] Sech[u1],-Sech[u1] Sin[u2],Tanh[u1]}

This vector is unit.

In[41]:= FullSimplify[rrr3.rrr3]

Out[41]= 1

Having a definition of tangent and normal vectors, we can build a function where we can observe
how the covariant base and shape of the surface changes with parameters t and ui within the surface
particle deformation (Fig. 11).

Fig. 11. Deformation of the mid-surface particle in time.

3.5. Second and third differential forms

To compute components of the second of the first and the second differential forms, we should
define vectors m⃗i, which are tangent to the surface

m⃗i ∶=
∂r⃗3
∂ui

. (30)

In[42]:= mi_ := mi = FullSimplify[∂∂∂u[i]rrr3]

In[43]:= m1

Out[43]= {Cos[u2] Sech[u1] Tanh[u1],Sech[u1] Sin[u2] Tanh[u1],Sech[u1]2}

In[44]:= m2

Out[44]= {Sech[u1] Sin[u2],-Cos[u2] Sech[u1],0}



206 R. Walentyński

Components of the second differential form are:

bij ∶= −r⃗i ⋅ m⃗j . (31)

In[45]:= bbbi_,j_ := bbbi,j = FullSimplify[-mi.rrrj]

These coefficients can be grouped in bLowerMatrix

In[46]:= bLowerMatrix = Table[bbbi,j,{i, 2},{j,2}]

Out[46]= {{-Sin[t],-Cos[t]},
{-Cos[t], Sin[t]}}

The determinant of this matrix:

b ∶= ∣
b11 b12
b21 b22

∣ (32)

is equal to:

In[47]:= b = FullSimplify[Det[bLowerMatrix]]

Out[47]= -1

Components of the third differential form are:

cij ∶= m⃗i ⋅ m⃗j . (33)

In[48]:= ccci_,j_ := ccci,j = FullSimplify[mi.mj]

4. CURVATURES

The Gaussian curvature does not depend on parameter t

K ∶=
b
a
. (34)

In[49]:= K = FullSimplify[
b

a
]

Out[49]= -Sech[u1]
4

The deforming surface is minimal since its curvature H = 0,

H ∶=
1

2
bij a

ij . (35)

In[50]:= H = FullSimplify[
2

∑∑∑
i

2

∑∑∑
j
aaaui,j bbbi,j]

Out[50]= 0



Description of large deformations of continuum and shells and their visualisation... 207

4.1. Strain tensor

The first strain tensor is defined with the change of the first differential form:

γij ∶=
1

2
(aij − åij). (36)

In[51]:= γγγi_,j_ := γγγi,j =
1

2
FullSimplify[(aaai,j - (aaai,j/. t →→→ 0)]

In the considered case, it does not change.

In[52]:= Table[γγγi,j,{i,2},{j,2}]

Out[52]= {{0,0},
{0,0}}

The second strain tensor is defined with the change of the second differential form:

ρij ∶=
1

2
(bij − b̊ij). (37)

In[53]:= ρρρi_,j_ := ρρρi,j =
1

2
FullSimplify[bbbi,j - (bbbi,j/. t →→→ 0)]

In[54]:= 2 Table[ρρρi,j,{i,2},{j,2}]

Out[54]= {{-Sin[t], 1-Cos[t]},
{ 1-Cos[t],Sin[t]}}

Components of this tensor are not equal to zero. Therefore we call the considered deformation
as a pure bending.

The third strain tensor is defined with the change of the third differential form:

ϑij ∶=
1

2
(cij − c̊ij). (38)

In[55]:= ϑϑϑi_,j_ := ϑϑϑi,j =
1

2
FullSimplify[ccci,j - (ccci,j/. t →→→ 0)]

In[56]:= Table[ϑϑϑi,j,{i,2},{j,2}]

Out[56]= {{0,0},
{0,0}}

4.2. “Parallel” surface

A shell is defined with reference to a certain surface, usually in the equal distance from the
bounding surfaces. Any point of the shell is defined with:

R⃗ ∶= r⃗ + z r⃗3. (39)

In[57]:= R = r + z rrr3;



208 R. Walentyński

The result of this definition is illustrated in Fig. 12.

Fig. 12. Construction of the “parallel” surface with regard to mid-surface.

5. CONCLUSIONS

Mathematica is an effective tool to compute and visualize large displacements of continuum,
shells and thin-wall structures.

It is an effective aid in teaching and learning the continuum mechanics and the theory of shells,
and makes it possible to explain crucial differences between Lagrangian and Eulerian systems of
coordinates.
Mathematica graphical tools, especially:

● Manipulate,

● ContourPlot3D,

● ParamentricPlot3D

help to effectively illustrate the results of theoretical analysis and thus to explain to students
difficult issues.

ACKNOWLEDGMENTS

The author would like to acknowledge J. Kuczmarski for his packages [3, 4], which made it
possible to introduce Mathematica inputs and outputs in this paper.

REFERENCES

[1] S. Bielak. Theory of Shells. Part II, Theory and Applications [in Polish]. Civil Engineering. Silesian
University of Technology, 2nd ed., 1993.

[2] S.P. Kiselev, E.V. Vorozhtsov, V.M. Fomin. Foundations of Fluid Mechanics with Applications. Problem
Solving Using Mathematica. Modelling and Simulation in Science, Engineering and Technology.
Birkhäuser Basel, 1st ed., 1999, doi: 10.1007/978-1-4612-1572-1.



Description of large deformations of continuum and shells and their visualisation... 209

[3] J. Kuczmarski. Cells to TeX, Jan 2019. https://github.com/jkuczm/MathematicaCellsToTeX.
[4] J. Kuczmarski. Mathematica cells in TeX, January 2017. https://github.com/jkuczm/mmacells.
[5] S. McManus, M. Cook. Raspberry Pi for Dummies. John Wiley & Sons, 3rd ed., 2017.
[6] L. Parker, S.M. Christensen. MathTensor: A System for Doing Tensor analysis by Computer. Addison-

Wesley, 1994.
[7] UpSkill Learning. Raspberry Pi 3: Get Started with Raspberry Pi 3 a Simple Guide to Understanding
and Programming Raspberry Pi 3 (Raspberry Pi 3 User Guide, Python Programming, Mathematica
Programming). CreateSpace Independent Publishing Platform, 2016.

[8] R. Walentyński. Application of computer algebra in symbolic computation and boundary-value problems
of the theory of shells. Zeszyty Naukowe. Budownictwo, 100: 13–198, Silesian University of Technology,
2003.

[9] R. Walentyński. Description and visualization of large deformations of continuum with Mathematica.
In: Proceedings of 12th International Mathematica Symposium (IMS 2015), Prague, January 12–14,
2015.

[10] R. Walentyński. Lecturing continuum mechanics with Mathematica. In: Computer Algebra Systems in
Teaching and Research, Mathematical Modelling in Physics, Civil Engineering, Economics and Finance,
L. Gadomski et al. [Eds], pp. 184–193. Collegium Mazovia, Siedlce, 2011.

[11] S. Wolfram. An Elementary Introduction to the Wolfram Language. Wolfram Media, Inc., 2015. Available
online.


	 R. WalentynskiDescription of large deformations of continuum and shells and their visualisation with Mathematica*2mm

