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Various methods are available to compute kinematics and dynamics in the case of spa-
tial mechanisms. These methods are cumbersome and laborious for large and multibody
spatial mechanisms. The bond graph technique is a powerful alternative tool for mode-
ling. A four-link closed-chain 3R2S (3Revolute 2Spherical) spatial mechanism stands out
among the other four-link closed-chain spatial mechanisms due to its ability to be used in
a number of applications. The main aim of this paper is to compute the inverse kinematics
of the mechanism using the bond graph structure of the system. In this paper, modeling of
a four-link closed-chain 3R2S spatial mechanism has been conducted using a multibond
graph approach. Inverse kinematics of the spatial mechanism, under various applications,
has been directly obtained from the bond graph modeling. MATLAB coding for simula-
tion has been done directly from the multibond graph without explicitly deriving system
equations. The simulation results have been analyzed and discussed using various plots.
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Nomenclature

k
j ri – position of point i with respect to point j and expressed in frame k ; ∈ R3,
k
j ṙi – velocity of point i observed in frame j and expressed in frame k ; ∈ R3,
0pC – translational momentum of a rigid body about its center of mass C, expressed

in inertial frame 0; ∈ R3,
0
CIB – inertia tensor of a rigid body B about its center of mass C, expressed in the

inertial frame 0; ∈ R3×3,
0
0ωB – angular velocity of a rigid body B, observed and expressed in inertial frame 0;

∈ R3×3,
0
CpB – angular momentum of a rigid body B about its center of mass C, expressed in

inertial frame 0; ∈ R3×3,
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0τ j – torque applied on link j expressed in inertial frame 0; ∈ R3,
0
kR – rotation matrix describing the orientation of frame k with respect to inertial

frame 0; ∈ R3×3,
0F i – force acting on point i expressed in inertial frame 0; ∈ R3.

1. Introduction

A mechanism consists of a number of rigid links that are interconnected by
various types of joints such as revolute, prismatic, cylindrical or spherical. The
various solutions to achieve kinematics of such mechanisms have been explained
in the literature [1–5].

For the dynamics of mechanisms, various formulations such as the Newton-
Euler, Lagrange-Euler, and Hamilton method are found in several references
[3, 4, 6]. Energy-based formulations such as the Euler-Lagrange method and
Hamilton method, commonly used for modeling dynamics of physical systems,
usually tend to be too mathematically inclined and cumbersome for large multi-
body systems.

Bond graph, introduced by Henry Paynter in 1959, may also be used for
modeling kinematics as well as dynamics of a system [7–12]. The bond graph
methodology: a graphical representation of the dynamics of the system has been
elaborately explained in several references, e.g. [11, 12]. The multibond graph
has been applied for the modeling of rigid body systems since 1985 [8]. The bond
graph technique has been used by many researchers [13–20] for modeling various
mechanisms. The bond graph represents the transaction of power and causality
between various elements of a system. The derivation of system equations from
the bond graph is algorithmic and often derived by computer software, especially
in the case of large systems.

One of the approaches to model the dynamics of mechanisms using bond
graph is to start with the construction of the kinematic framework in graph-
ical form based on linear and angular velocity relations. This is also referred
to as the flow mapping approach in bond graphing. The translational and ro-
tational inertias are suitably appended to this structure. The rigid links are
graphically connected at joints using appropriate couplings, either translational
or rotational. The graphical representation of causality using a bond graph can
be employed to obtain the dynamics of the mechanism in various formulations,
like the energy-based formulations of the Lagrange-Euler technique, Hamilton’s
method, etc. [21]. However, none of the available works in the literature suggest
how the inverse kinematics may be obtained directly from the bond graph struc-
ture. The present work addresses this very issue and systematically demonstrates
the methodology using the example of the 3R2S spatial mechanism. The utility
of this commonly used mechanism is discussed in Sec. 3.
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Since the different energy-based formulations can be derived from the bond
graph model [21–25], it would be pointless to make a comparison of these me-
thods.

One can also write a code for simulation algorithmically directly from the
bond graph structure of a system, even without formal derivation of system
equations.

In this paper, inverse kinematics of 3R2S spatial mechanism, under various
applications, has been directly obtained from the bond graph structure. Simu-
lation coding has been written directly from the bond graph of the system al-
gorithmically. The various kinematic variables, such as joint angles, have been
calculated and analyzed using various plots.

The paper is organized as follows: modeling of the mechanism is discussed
in the next section. Section 3 describes various applications of the mechanism.
Simulation results and discussion are explained in Sec. 4. Various applications of
the mechanisms, along with plots of obtained trajectories and variations in joint
angles, are mentioned in the same section. Section 5 presents the conclusion.

2. Modeling of a 3R2S spatial mechanism

The schematic diagram of a 3R2S spatial mechanism is shown in Fig. 1. The
considered mechanism has four rigid links connected to each other using three
revolute (3R) and two spherical (2S) joints. The reference frames are assigned at
each joint using the Denavit-Hartenberg (DH) conventions [3]. Frame {0} is the

Fig. 1. 3R2S closed chain spatial mechanism.
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inertial frame. In Fig. 2, link 1 is connected to the inertial frame by a revolute
joint at point Q1. Link 1 has rotary movement about its Z1 axis. The second
end P1 of this link is connected to link 2 at point Q2. Link 1 and link 2 are
connected using a revolute joint. Similarly, second end P2 of link 2 is connected
to link 3 by a revolute joint at point Q3. Link 3 is connected to link 4 at point
P3 by a spherical joint. The end point of link 4 is connected to a fixed frame
by a spherical joint at point P4. θ1 is taken as the angle between the X0-axis
and X1-axis. Similarly, θ2 is the angle between link 1 and link 2. Angle θ3 and
angle θ4 show the position of link 3 and link 4 in relation to link 2 and link 3,
respectively.

Fig. 2. Schematic diagram of the mechanism.

For modeling dynamics of the mechanism, each link of the mechanism has
been considered as a separate rigid link. Modeling of a rigid link using a multi-
bond graph approach has been explained in detail by Vaz [26] and Mishra and
Vaz [27]. Here, a brief review of this procedure is presented considering one link of
the mechanism. The flow mapping approach, based on the kinematics, is used to
initiate the bond graph modeling of the system. For example, link 1 of the mech-
anism, shown in Fig. 3, is considered. The end points of this link are Q1 and P1,
as shown in Fig. 3. The link has a revolute joint at point Q1. Point Q1 coincides
with the origin O1, which is at the origin 0 of the inertial frame.

Let 0
0rP1 be the position vector of point P1. It can be represented as

0
0rP1 = 0

0rC1 + 0
C1
rP1 = 0

0rC1 + 0
1R

1
C1
rP1 , (1)

where 0
0rC1 is the position vector of the center of mass of link 1. 0

1R is the
orthonormal rotation matrix. The velocity of point P1 can be obtained by dif-
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Fig. 3. Link 1 of the spatial mechanism.

ferentiating Eq. (1). Using notation d
dtx = ẋ for differentiation with respect to

time t, we obtain

0
0ṙP1 = 0

0ṙC1 −
[

0
C1
rP1×

]
0
0ω1. (2)

Similarly for point Q1:

0
0ṙQ1 = 0

0ṙC1 −
[

0
C1
rQ1×

]
0
0ω1. (3)

The kinematic relationship of (2) and (3) can be expressed in the form
of a multibond graph, as shown in Fig. 4. Scalar or single bonds are repre-

Fig. 4. Sub bond graph for the kinematic relationship of (2) and (3).
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sented by the thin harpoon arrows, while the thick harpoon arrows show a mul-
tibond with cardinality 3, indicating the number of scalar bonds in a multi-
bond.

When the mass of the link is taken into account, translational and rotational
dynamics come into the picture. This is presented in the bond graph of Fig. 5.
Let M 1 be the mass of link 1 and g be the gravitational acceleration. The trans-
lational part of the dynamics is represented by the right side of the bond graph,
while the rotational part is shown on the left side.

Fig. 5. Bond graph for the dynamics of link 1.

In the bond graph shown in Fig. 5, the inertia element I : [m] relating to trans-
lational dynamics is connected to the common flow junction 10

0ṙC1
, while the in-

ertia element I : [0CI1] pertaining to rotational dynamics is connected to the com-
mon flow junction 10

0ω1
. 0

0ṙC1 and 0
0ω1 represent the translational velocity and

the angular velocity of the link, respectively. By using the same procedure, the
bond graph model of each rigid link is prepared and assembled. The systematic
procedure to assemble the sub bond graphs of individual links to obtain a com-
plete bond graph of the entire system, has been well explained by Vaz [26] and
Mishra and Vaz [28].

During assembling the sub bond graphs of individual links, the derivative
causality occurs. The bond graph is converted to an integrally caused type by
adding viscoelastic subsystems. The viscoelastic subsystem is modeled using C
and R elements. These viscoelastic subsystems act like translational and rota-
tional couplings. Viscoelastic translational and rotational coupling elements are
used to join the bond graphs of two links. The use of these couplings makes
the model more realistic. A source of flow sf is applied at point P3 of the me-
chanism, shown by bond 42 in Fig. 6. The comprehensive multibond graph of
the spatial mechanism is presented in Fig. 6.



Inverse kinematics of a spatial mechanism using multibond graph 77

Fig. 6. Complete multibond graph of the spatial mechanism.
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3. Various applications of the mechanism

The 3R2S mechanism consists of two spherical joints, one at point P3 and
another at point P4. These two spherical joints provide the ability for the mech-
anism to move in 3D space, and the mechanism may be used in various appli-
cations. For example, such a mechanism can be used to operate a joystick. It
may also be used to operate a gear lever of an automobile. These two applica-
tions are modeled using a bond graph and simulated using MATLAB [29]. In the
first case, various desired trajectories are provided as input flow to the spherical
joint at point P3. Due to the fixed length of link 4, the actual output trajectory
profile at point P3 is on an imaginary sphere. After the simulation, the results
from various plots are analyzed. In the second case, the application in the gear
mechanism is discussed.

4. Simulation results and discussion

Initially, the system is considered to be at rest. Each rigid link is considered
as a cylindrical rod having a diameter equal to 0.02 m. A flow Sf is given at
point P3 shown by bond 42 in the main bond graph. The bond graph model
of the mechanism is simulated and various results are drawn, analyzed and dis-
cussed. The simulation code is written in MATLAB [29]. Link properties for
the simulation are shown in Table 1. Table 2 shows the values of stiffness and
damping elements of various couplings used during the construction of the main
bond graph of the entire system.

Table 1. Link properties used for simulation.

Length of links [m]
l1 = 0.07 l2 = 0.06 l3 = 0.05 l4 = 0.05

Mass of links [kg]
m1 = 0.7 m2 = 0.6 m3 = 0.5 m4 = 0.4

Initial relative angles of links [rad]
θ1 = 0 θ2 = π/6 θ3 = −π/2 θ4 = −π/6

4.1. Case 1: Application in operating a joystick

A joystick is a principal controlling device to control civilian and military
aircraft. The joystick is like a stick that pivots on a base and reports variations
in its angle and direction to the device it is controlling. The 3R2S spatial mech-
anism may also be used to operate a joystick. In 3R2S mechanism, during the
simulation, various trajectories are given as input flow to point P3. These two
desired trajectories and actual trajectories are shown by the various plots. Due
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Table 2. Stiffness and damping of various couplings for simulation.

Location Stiffness Damping
Translational coupling between

Fixed frame and link 1 k1t = 108 N/m r1t = 50 N · s/m
Link 1 and link 2 k2t = 108 N/m r2t = 50 N · s/m
Link 2 and link 3 k3t = 108 N/m r3t = 50 N · s/m
Link 3 and link 4 k4t = 108 N/m r4t = 50 N · s/m
Link 4 and fixed frame k5t = 108 N/m r5t = 5 N · s/m
At point p3 where flow is applied kft = 105 N/m rft = 5 N · s/m

Rotational coupling between

Fixed frame and link 1 k1rx = 100 N ·m/rad
k1ry = 100 N ·m/rad

R1rx = 1 N ·m · s/rad
R1ry = 1 N ·m · s/rad

Link 1 and link 2 k2rx = 100 N ·m/rad
k2ry = 100 N ·m/rad

R2rx = 1 N ·m · s/rad
R2ry = 1 N ·m · s/rad

Link 2 and link 3 k3rx = 100 N ·m/rad
k3ry = 100 N ·m/rad

R3rx = 1 N ·m · s/rad
R3ry = 1 N ·m · s/rad

to the constrained length of link 4, both the actual trajectory and projected
desired trajectory are not coinciding.

In the first case, a circular motion is applied to point P3. In Fig. 7, point
p3 is shifted outward, covering a distance equal to the radius of the circle. Then
a circular motion is provided as input. Actual and desired trajectories are shown
in Fig. 7. The orientation of matrix 0

4R is presented in Fig. 8. The loci covered
by unit vectors 0 î4, 0 ĵ4, and 0 k̂4 are shown in Fig. 8. The loci of unit vectors
0 ĵ4 and 0 k̂4 show that link 4 rotates about its own axis. This is due to the

Fig. 7. Projected desired trajectory and actual trajectory of a circular profile.
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Fig. 8. Orientation of unit vectors of 0
4R.

gyroscopic effect. 1
0θ1 is the angle between the X-axis of frame {0} and the X-axis

of frame {1}. Similarly, 2
1θ2 between link 1 and link 2, 3

2θ3 between link 2 and
link 3, and 4

3θ4 between link 3 and link 4, are relative angles. The variation in
relative joint angles 1

0θ1, 2
1θ2, 3

2θ3, and 4
3θ4 with regard to time is shown in Fig. 9.

Initially, point p3 moves in a straight line to cover a distance equal to the radius,
and then the circular motion starts. Figure 9 shows the variation in angle 1

0θ1,
the initial graph is a straight line for 2 seconds, and then the variation in the
angle starts.

Fig. 9. Variation in joint angles 1
0θ1, 2

1θ2, 3
2θ3, and 4

3θ4 in time in the case of circular profile.
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To control the movement and directions, sometimes different types of move-
ments are applied to the joystick. During the simulation, a path trajectory, shown
by the projected desired trajectory in Fig. 10, is applied by the mechanism.

Fig. 10. Projected desired trajectory and actual trajectory.

The actual trajectory given by the system is also shown in Fig. 10. The upper
circle shown in the shape of the profile “8” is small compared to the lower circle.
The history of relative change in the various joint angles versus time is shown in
Fig. 11. The graph of the variation in relative angle 1

0θ1 shows that the total time

Fig. 11. Variation in joint angles 1
0θ1, 2

1θ2, 3
2θ3, and 4

3θ4 in time.
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taken by point P3 is 2 seconds. The variation in angle takes place from −0.07
radians to 0.07 radians for the first circle and from −1.14 radians to 1.14 radians
for the other circle. Similarly, variations in other angles are shown in Fig. 11.

4.2. Case 2: Application in operating a lever of a gear mechanism

Another important application of the 3R2S spatial mechanism is in operating
a gear lever in an automobile. To shift the gear lever, various movements to the
lever are applied. An example, showing the application of the 3R2S mechanism
in operating automobile gear, is shown in Fig. 12. The input movement applied
to the gear lever is shown by the desired projected trajectory in red color, while
the actual trajectory is shown using a blue line.

Fig. 12. Projected desired trajectory and actual trajectory of the profile
used in the gear mechanism.

The changes in the relative joint angles versus time are presented in Fig. 13.
The plot shows that the total time taken by point P3, to complete the desired
trajectory is 10 seconds. The angle covered by each link in radians is shown in
Fig. 13. The angle changes within the range of 0.04 radians to −0.17 radians.
The angle may be computed at any position from the plot. The changes in other
relative angles are also observed in Fig. 13.

5. Conclusion

In summary, the methodology for inverse kinematics using the bond graph
approach has been explained and demonstrated using the example of a 3R2S
spatial mechanism. The uses of such a mechanism were studied for operating
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Fig. 13. Variation in joint angles 1
0θ1, 2

1θ2, 3
2θ3, and 4

3θ4 in time in the profile used in the gear
mechanism.

a joystick and operating the gear lever of an automobile. In these applications,
the joint angle trajectories required to obtain the desired motion of the end
effector were obtained using the above methodology for inverse kinematics from
the bond graph model. The simulation code has been generated algorithmically,
directly from the bond graph.

The ideas developed in this paper can be employed to determine and control
joint forces and joint torques at various joints for various mechanisms used in
a wide range of applications.
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