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The metaheuristic algorithm is proposed to solve the weight minimization problem of truss
structures, considering the shape and sizing design variables. Design variables are discrete
and/or continuous. The design of truss structures is optimized by an efficient optimiza-
tion algorithm called Jaya. The main feature of Jaya is that it does not require setting
algorithm-specific parameters. The algorithm has a very simple formulation in which the
basic idea is to approach the best solution and escape from the worst solution [6]. Analyses
of structures are performed by a finite element code in MATLAB. The effectiveness of the
Jaya algorithm is demonstrated using two benchmark examples: planar truss 18-bar and
spatial truss 39-bar, and compared with results in references.
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1. Introduction

The structural optimal design has always been of interest for engineers in
practice. The attention is not only paid to the cost of construction but also to the
geometry of structures. Engineers are responsible for designing structures with
high reliability and low cost [1]. For these purposes, many optimal algorithms
were investigated to accomplish the tasks including the classical methods and
innovative algorithms.

Metaheuristic techniques have been developed to solve structural optimiza-
tion problems. Genetic algorithms (GA), particle swarm optimization (PSO),
harmony search (HS), teaching-learning-based optimization (TLBO), and fire-
fly algorithm (FA) are all well-established methods for the optimal design of
structures. Depending on the optimization purpose, cross-sectional areas of the
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members and/or nodal coordinates separately or simultaneously can be included
as the design variables of the problem.

An interesting metaheuristic algorithm that has a very simple formulation
and does not require internal parameters is the Jaya algorithm (JA) developed
in [8]. JA was also used for the optimum design of steel grillage by Dede [3].
Degertekin et al. [4] presented a study on the sizing, layout and topology design
optimization of truss structures using the Jaya algorithm. Grzywiński et al. [5]
optimized the braced dome structures with natural frequency constraints.

In [6], the shape and size optimization of trusses with dynamic constraints
was presented using the Jaya algorithm.

The word “Jaya” means “victory” in Sanskrit. This population-based algo-
rithm is based on the concept that the search process should always move to-
ward the best design and avoid the worst design. The search engine continuously
tries to get closer to success (i.e., to reach the best design) trying at the same
time to avoid failure (i.e., by moving away from the worst design). JA does not
include any algorithm-specific parameter when compared to other metaheuristic
optimization algorithms.

In fact, JA only requires two standard control parameters such as population
size (i.e., the number of truss designs in the population) and a maximum number
of iterations. In the optimization process, ndv is the number of design variables
(i.e., the number of member groups ng in sizing optimization problems, the
summation of the number of member groups and the number of shape variables
in sizing-shape optimization problems), and np is the population size (i.e., the
number of truss designs).

The design corresponding to the lowest penalized objective function F best
p is

stored as the best design while the design corresponding to the highest penalized
objective function Fworst

p is the worst design stored in the population.
Let Xk,l,i denote the value of the k -th design variable (cross-sectional areas A

and nodal coordinates X ) for the l -th design of the population at the beginning of
the i-th iteration. Jaya algorithm perturbs this design variable using the following
equation [4, 6]:

Xnew
k,l,i = Xk,l,i + r1,k,i(Xk,best,i − |Xk,l,i|)− r2,k,i(Xk,worst,i − |Xk,l,i|), (1)

where Xnew
k,l,i is the new value assigned to the design variable Xk,l,i, r1,k,i and r2,k,i

are two randomly generated real numbers in the [0,1] range for the k -th design
variable in the i-th iteration. Xk,best,i is the value of the k-th design variable for
the best design of the population at the i -th iteration while Xk,worst,i is the value
of the k -th design variable for the worst design stored in the population.

The term r1,k,i(Xk,best,i − |Xk,l,i|) indicates the tendency of the solution to
move closer to the best solution. The term r2,k,i(Xk,worst,i−|Xk,l,i|) indicates the
tendency of the solution to avoid the worst solution.
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2. Optimization of truss structures

One of the most important factors in structural design is the total structural
weight. There are two types of design variables in this case: cross-sectional areas
of members and nodal coordinates. For this aim, the objective function for the
truss structures is defined as:

minimize W (X) =

ng∑
k=1

Ak

mk∑
i=1

ρi · Li(xi), (2)

where W (X) is the weight of the truss, Ak (bar cross-sectional areas), and xi
(nodal coordinates) are the design variables, respectively; ρi and Li is the ma-
terial density and the length of the i-th element, respectively; ng is the total
number of groups, mk is the total number of groups in group k, and nn is the
total number of nodes.

The constraints imposed on the structure are:
• member stress:

σck ≤ σk ≤ σtk, k = 1, 2, ..., ng, (3)

where σk represents the stress for the k -th group elements, σtk is the allowable
tensile stress, and σck is the allowable compressive stress, respectively;
• Euler buckling stress:

σk ≤ σbk, k = 1, 2, ..., ng, (4)

where σbk is the Euler buckling compressive stress limit for the k-th group ele-
ments; it is usually taken as:

σbk =
K · E ·Ak

L2
k

, k = 1, 2, ..., ng, (5)

where K is a constant determined from the cross-sectional geometry (in this case
K = 4), and E is Young’s modulus of the material;
• nodal displacement:

|di| ≤ dmax, i = 1, 2, ..., nn. (6)

The prescribed limit for the nodal point of the structure does not violate the
displacement constraints;
• limit of design variables:

Amin ≤ Ak ≤ Amax, k = 1, 2, ..., ng, (7)

xmin ≤ xi ≤ xmax, i = 1, 2, ..., nn. (8)
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Inequalities (7) and (8) indicate that the design variables including either shape
and/or sizing variable must take a value between the minimum and maximum
bounds,

ci =
|di|
dmax

, ck =
|σk|
σmax

, (9)

where ci and ck are the values of each constraint.
The objective function must be changed as to include constraints. For this

aim, a penalty function calculating the value of violation of constraints is deter-
mined. By means of this function, the objective function is changed to a function
including constraints.

The penalty function is given as:

C =
nn∑
i=1

ci+

ng∑
k=1

ck. (10)

The objective function is changed to the penalized objective function by adding
a penalty function to it. The penalized objective function F (X) can be given as:

F (X) = W (X)[1 + P · C], (11)

where P is a positive constant, which is a variable for each problem. This constant
can be determined by the user to take into account the constraints. At the end of
the optimization process, the total constraints must be zero. Then, the penalized
objective function can be equal to the total weight of the structure. That is, the
algorithm tries to find the best solution without violating the constraints.

3. Numerical examples

3.1. Planar truss 18-bar

The first example is the 18-bar planar truss shown in Fig. 1a. Properties of
applied material are shown in Table 1. Moving nodes coordinates and grouping
of the elements are presented in Table 2. This truss structure was previously
presented in [7] and [1].

The lower bound and the upper bound for the cross-sectional areas are
2.00 in2 and 21.75 in2 and the interval is 0.25 in2.

For the design optimization, the cross-sectional areas were categorized into
four groups for size optimization and eight nodal coordinates were selected for
the shape optimization. The design variables are discrete for the cross-sectional
areas while they are continuous for the nodal coordinates. Optimal shape after
the optimization with JA is shown in Fig. 1b. The comparison of results with
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a)

b)

Fig. 1. The geometry of the 18-bar truss: a) initial shape, b) optimized shape.

Table 1. Structural constraints and material properties.

Properties/constraints Unit Value/notes
Modulus of elasticity E [ksi] 10 000

Material density ρ [lb/in3] 0.1
Nodal forces P [kips] 20

Displacement constraints δ [in] ± 10 for each direction

Stress constraints σ [ksi] 20 for tension
−20 for compression

Table 2. Initial shape and member grouping for the 18-bar truss problem.

Shape variables Size variables
node x [in] node y [in] cross-area element

775 ≤ x3 ≤ 1225 −225 ≤ y3 ≤ 245 A1 1, 4, 8, 12, 16
525 ≤ x5 ≤ 975 −225 ≤ y5 ≤ 245 A2 2, 6, 10, 14, 18
275 ≤ x7 ≤ 725 −225 ≤ y7 ≤ 245 A3 3, 7, 11, 15
25 ≤ x9 ≤ 475 −225 ≤ y9 ≤ 245 A4 5, 9, 13, 17

those of the other references is given in Table 3. The number of populations
in [1, 7], and this study is 50. The maximum generation numbers are 100, 500,
and 4500 for [7, 1], and this study, respectively. The best results are obtained
in [1]. Due to the fact that the process is a random result, subsequent solutions
may be different. The number of generations can be increased to find a better
solution, but this also does not guarantee obtaining the best solution. The cost
of the calculations was very high. The CPU calculation time for one run was
1021.4688 sec.
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Table 3. Optimal size and shape for the 18-bar truss.

Design variables Kaveh & Kalatjari [7] Cheng et al. [1] This study
A1 12.25 12.50 12.50
A2 18.00 18.00 18.00
A3 5.25 5.25 5.25
A4 4.25 3.75 3.75
X3 913.0 914.524 915.1937
Y3 186.8 188.793 188.4463
X5 650.0 647.351 647.6893
Y5 150.5 149.683 148.9354
X7 418.8 416.831 416.6843
Y7 97.4 101.332 100.6179
X9 204.8 204.165 203.8285
Y9 26.7 31.662 31.3023

Weight [lb] 4547.9 4526.708 4527.850

3.2. Spatial truss 39-bar

The second test problem is the combined sizing and shape optimization of
the 39-bar spatial truss tower shown in Fig. 2a. Problem specifications are listed
in Table 4. Fixed nodes coordinates and elements connectivity are presented in
Table 5. The top and bottom nodes have fixed positions, while the middle nodes’
coordinates are taken as design variables.

a) b)

Fig. 2. The geometry of the 39-bar truss: a) initial shape, b) optimized shape.

The symmetry of the structure is maintained during the optimization process.
The population size and the allowable number of iterations are set to 40 and 100,
respectively.
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Table 4. Input data for the spatial 39-bar truss problem.

Properties/constraints Unit Value/notes
Modulus of elasticity E [GPa] 210

Material density ρ [kg/m3] 7800

Stress constraints σ [MPa] 240 for tension
−240 for compression

Displacement constraints δ [cm] 0.4 for Y directions (nodes 13–15)
Nodal forces F [kN] ± 10 for Y directions (nodes 13–15)

Euler buckling σe [MPa] σe ≤
−KeEAe

L2
e

Table 5. Initial shape and member grouping for the spatial 39-bar truss problem.

Shape variables Size variables
joint x [m] y [m] z [m] cross-area node-node
1 0.000 1.000 0.000 A1 (1–4), (2–5), (3–6)
2 −0.866 −0.500 0.000 A2 (4–7), (5–8), (6–9)
3 0.866 −0.500 0.000 A3 (7–10), (8–11), (9–12)
13 0.000 0.280 4.000 A4 (10–13), (11–14), (12–15)
14 −0.242 −0.140 4.000 A5 the remaining elements
15 0.242 −0.140 4.000

The optimum design found by JA is demonstrated in Fig. 2b, while in Table 6
it is compared with those obtained from other methods. The solution obtained
by JA is better than the cited references [2] and [9]. The fully stressed design
(FSD) algorithm and teaching-learning-based optimization (TLBO) is used by

Table 6. Optimal size and shape for the 39-bar truss.

Design variables Wang et al. [9] (FSD) Dede & Ayvaz [2] (TLBO) This study (Jaya)
A1 11.01 11.9650 12.0000
A2 8.63 11.1457 10.1794
A3 6.69 7.8762 6.5537
A4 4.11 2.7013 2.1396
A5 4.37 2.4058 1.7422
Y4 0.805 0.8996 0.8926
Z4 1.186 1.3507 1.1098
Y7 0.654 0.6917 0.6514
Z7 2.204 2.3122 2.5000
Y10 0.466 0.4825 0.4115
Z10 3.092 3.3031 3.4962

Weight [kg] 203.18 154.13 134.62
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the references [2] and [9], respectively. This optimum design is obtained at the
100th generation (i.e., after 4000 structural analyses).

4. Conclusions

The Jaya algorithm showed good performance when searching the minimum
weight of the truss system. It did not require control parameters as in other
optimization techniques. The design results were compared with the results given
in the literature. This comparison clearly shows that the proposed Jaya algorithm
can be effectively used in the design of truss structures. To optimize the truss
structures, a new and efficient Jaya algorithm was coded in the Matlab.
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