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This paper presents an algorithm for structural design optimization of steel beams and
frames with web-tapered members using the particle swarm optimization (PSO) algorithm
and the finite element method (FEM). The design optimization is done in accordance
with Eurocode 3 (EC 3) for the minimum mass. The proposed algorithm is more flexible
and efficient than traditional design methods based on a trial and error approach. The
effectiveness of the presented PSO-FEM algorithm is evaluated on examples of the size
optimization of web-tapered members cross-section. The results show that the PSO-FEM
algorithm is feasible and effective for finding useful designs.
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1. Introduction

In recent years, steel beams and frames with web-tapered members have
attracted more and more interest [1–4]. This is due to their better distribution
of internal forces throughout structural members and more economical material
usage in comparison to regular frames.

To successfully design a portal frame with web-tapered members, it is of-
ten necessary to simultaneously find several geometrical parameters. The web-
tapered member design requires the selection of member section sizes. The
searching for the optimal designs for these types of sections is rather a com-
plex task because of the large number of design variables, and the selection is
typically performed through trial and error [5].

The design problem is nonlinear, which may cause difficulties for gradient-
based optimization methods. Currently, structural design optimization of steel
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beams and frames with tapered members using population-based algorithms is
of significant research interest. In [6], Kaveh and Ghafari compared nine meta-
heuristics in the design optimization problem for steel frames with tapered mem-
bers. Hasançebi et al., in [7], compared non-deterministic search techniques in the
optimum design of real-size steel frames. The applications of PSO for structural
design optimization were also considered in [1, 8, 9].

Structural design optimization is a process of finding the optimal structure,
and it may lead to substantial savings. This process covers topology optimiza-
tion, shape optimization and/or size optimization [10]. In comparison to the
common design process where the shape of the structure, the cross-sections,
boundary conditions and materials are known in advance, and the deformation
and the internal forces are computed, the structural optimization design process
is a kind of an inverse problem. During the design process, we usually obtain
a structure in which the stress ratio (capacity ratio) is not optimally distributed.
It is often the case that in one cross-section, the structure is under-stressed, and
in another cross-section, the structure is over-stressed. As a result, the design
process requires several steps to obtain a satisfactory solution, which is typically
far from the optimal one. In the case of large and complicated structures this
design process can be very time-consuming.

The description of optimization problems is given in [11], where linear pro-
gramming was applied for optimization of frames and trusses. Design computa-
tions were based on the limit states method, which led to nonlinear constraints.
As shown in [11], structural design optimization problems, due to nonlinear con-
straints, cannot be solved using the direct application of linear programming. In
that case, we have to turn to the approximate methods.

Metaheuristic methods, for example PSO [12, 13], can be applied to problems
with linear and nonlinear cost functions and constraints. The sole disadvantage
of the metaheuristic methods is the fact that these methods lead to good solu-
tions but not the best ones. We often do not have certainty that the best solution
exists and can be found [14].

This solution is acceptable because we obtain a better structure than a struc-
ture designed by trial and error. Especially in the case of steel structures, due
to the high cost of the material, application of structural optimization and ob-
taining a few percent lighter structure can be useful.

This paper presents an algorithm for the optimized designs of non-prismatic
steel I-section members based on minimum mass, taking into account applied
forces and limit states such as maximum displacement. The process begins with
the definition of an objective function and the constraints. The objective function
is usually defined as the total mass of the structure.

This paper is organized as follows. In Sec. 2, the description of the PSO-FEM
algorithm is presented. Section 3 presents three examples of design optimization



Structural design optimization of steel beams. . . 41

problems: Gerber beam, double-span beam and portal frame. In Sec. 4 short
discussion of results is given and in Sec. 5 final conclusions are presented.

2. PSO-FEM algorithm for EC 3-based design optimization

Steel portal frames are designed according to one of several design methods.
For example, Eurocode 3: Design of steel structures (EN 1993) – EC 3 describes
how to design steel structures, using the limit state design philosophy [15]. The
design of steel portal frames with tapered members is a complex task that re-
quires some approximations to be made [16]. In this paper, EN 1993 interaction
formulae are applied. While this method is more conservative than others, it is
the most computationally effective [17].

In this paper, we consider a structural design optimization problem as a size
optimization problem. The design variables are the dimensions of a cross-section
of an I-shaped steel member, such as the height of the web and the thickness of
the flange. The objective is the minimum of the total mass of the structure. We
assume the following constraints in the form of limit states:

1) From ultimate limit state (ULS):

NEd

Nc,Rd
+

MEd

Mc,Rd
≤ SR, (1)

where NEd – the design value of the compression force, Nc,Rd – the design
cross-sectional resistance of the sections to uniform compression force,MEd

– the design bending moment, Mc,Rd – the design cross-sectional bending
moment resistance, SR – the stress ratio (set to two values: 0.9 or 0.8).

2) From serviceability limit state (SLS):

w ≤ wmax, (2)

where w – deflection, wmax – maximum deflection (L/250 for beams and
frames and L/200 for purlins), L – span.

PSO is a population-based stochastic algorithm for solving continuous and
discrete optimization problems. The PSO algorithm is a kind of nature-inspired
metaheuristics and was first proposed by Kennedy and Eberhart in [12]. It solves
optimization problems by using a set of candidate solutions (particles) known as
a population. These particles are moved around in the search-space according to
a few simple mathematical formulae describing updating of the particle position
and velocity.

The updated position vector xi of each particle at iteration i is computed as:

xi = xi−1 + vi∆t, (3)
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where ∆t is the time step value (in this paper, a fixed value ∆t = 1 is assumed)
and vi is the corresponding updated velocity vector defined as:

vi = ωvi−1 + vc + vs, (4)

where ω is the inertia weight, vc is the cognitive part of the velocity and vs is
the social part of the velocity. The updated velocity vector vi of each particle at
iteration i is computed as:

vi = ωvi−1 + c1r1
p− xi−1

∆t
+ c2r2

g− xi−1

∆t
, (5)

where vi−1 is the velocity vector at iteration i−1, r1 and r2 are random numbers
between 0 and 1; p represents the best ever particle position for each particle
and g represents the global best position in the swarm up to the iteration i. The
parameter c1 is a cognitive parameter and the parameter c2 is a social parameter
in the PSO nomenclature.

The basic steps of the PSO algorithm are as follows:
1) Initialize particles’ positions randomly distributed in the design space and

their velocities.
2) Compute the value of the objective function for each particle.
3) Update the optimum particle position and global optimum particle posi-

tion.
4) Update the position of each particle using its previous position and updated

velocity vector.
5) Repeat steps 2–4 until the stopping criteria are met.
Finite element method (FEM) is the most widely used computational method

for solving various engineering problems described by partial differential equa-
tions (PDEs) [18, 19]. FEM is also widely applied for computing structure de-
formations, internal forces and stresses. Finite element analysis (FEA) is thus
a key element of the engineering design of structures.

In the PSO-FEM algorithm, the design objective is formulated as an objective
function. PSO is applied for searching the optimal values of design variables by
minimizing the objective function in the space of feasible solutions. The FEM
solver, in which the design variables are used as input variables, provides results
that allow to check the fulfillment of constraints in the form of limit states.
Then, the global search for the optimal solution is converted to finding the best
particle.

When the PSO-FEM algorithm is started, positions and velocities of parti-
cles are randomly initialized with respect to assumed constraints. Then, in each
iteration, the particles are assigned to structure parameters and the FEM solver
is applied for computing maximal stress ratio and maximal deflection. If the
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newly generated particles lead to FEM solutions that do not satisfy (1) or (2),
they are not taken into account during updating the personal best position and
the global best position and they do not influence the optimization.

Next, the personal best position and the global best position are updated ac-
cording to the value of the objective function computed for each particle. Finally,
velocities and positions are updated according to Eqs (5) and (3), respectively.
The described above updating algorithm is repeated until specified stopping cri-
teria are met. In Fig. 1, a flowchart of the PSO-FEM algorithm is presented.

Fig. 1. Flowchart of the PSO-FEM algorithm for EC 3-based design optimization.

In numerical examples presented below, the structural design of beams and
frames is done according to EC 3 [15]. For computing structure displacements
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and internal forces, we use in-house software based on FEM for bar structures.
This software was written in C++ and run under Linux OS. It combines inter-
nally FEM and PSO algorithms, which allows efficient data transfer during the
PSO-FEM based optimization process. The problem of repeatability of results
is solved by setting the seed of a pseudorandom numbers generator (PRNG) to
a known value.

3. Examples of structural design optimization

3.1. Gerber beam

In this section, we illustrate the workflow presented in the previous section
by applying the PSO-FEM algorithm to the optimization of a Gerber beam
with three spans and two hinges. The beam is assumed to be symmetrical. Such
beams are often used as purlins in industrial halls. The schematic diagram of the
beam is shown in Fig. 2, together with its geometrical and statical parameters.
Figure 3 presents a schematic diagram of a three-beam structure corresponding
to beam in Fig. 2. The beam is made of a steel IPE 180 cross-section (Class 1)
and has a span with a length assumed to be 5850 mm. The beam is loaded with
a design constant loading 40 kN/m.

Fig. 2. Schematic diagram of a Gerber beam with two hinges (depicted by small circles).

Fig. 3. Schematic diagram of a three-beam structure corresponding to beam in Fig. 2.

The design variable X for this simple optimization problem is the distance
from the support to the hinge, see Fig. 2. The goal of the analysis is to find such
a value of variable X for which the maximum bending moment in the end-span
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is equal to the absolute value of the maximum bending moment at the support,
and as a result, the stress ratio for the whole beam would be minimal.

3.1.1. Analytical solution. In the analytical solution, the maximum bending
moment Mspan for a simply supported beam with the L−X span length is

Mspan = q(L−X)2/8, (6)

and the reaction force R is

R = q(L−X)/2. (7)

The maximum bending moment at the support Msup is

Msup = RX + qX2/2. (8)

By equating Eqs (6) and (8), after some modifications, we finally obtain a
quadratic equation with respect to X

X2 − 6LX + L2 = 0. (9)

The analytical solution of the optimization problem is the positive root of the
quadratic equation shown in Eq. (9). For example, for L = 5850 mm we obtain
an analytical solution X = 1003.7 mm.

3.1.2. Numerical PSO-FEM based design solution. The objective function

in this example is defined as the maximum value of the stress ratio
MEd

Mc,Rd
,

whereMEd is the design bending moment andMc,Rd is the design cross-sectional
bending moment resistance (see Eq. 6.12 in EC 3 for Section Class 1, [15]).

The assumed constraints are: for the ultimate limit state (ULS) the assumed
stress ratio is below 0.9 and for serviceability limit state (SLS) we assume w <=
wmax = L/200 (for purlins according to EC 3). The statical analysis is carried
out by using an analytical formula for the maximal bending moment and the
maximal deflection of the simply supported beam (instead of FEM).

In numerical experiments, we assume the design variable domain for pa-
rameter X to be 400 mm ≤ X ≤ 1541 mm, from which we sample the initial
parameter value Xi for each particle. After 10 iterations of the PSO algorithm,
we obtained the solution X = 1004.7 mm for the span length L = 5850 mm,
which is very close to the analytical solution X = 1003.7 mm. Similarly, for the
span length L = 7000 mm, the PSO-based solution was close to X = 1189 mm,
which is also very close to the analytical solution X = 1201 mm.
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Fig. 4. Plot of optimization process of X parameter for the Gerber beam using five particles
(horizontal arrow indicates analytical solution).

In Fig. 4, a plot of the optimization process of X parameter for the Gerber
beam is presented, for a beam with the span length L = 7000 mm, applying
only five particles. The horizontal arrow on the right side of the plot indicates
the analytical solution. As can be seen all particles converged to the analytical
solution (X = 1003.7 mm).

3.2. Double-span beam

The subject of the second optimization example was a web-tapered simply
supported two-span beam with the span length L and the column height h.
The span was 2× 25 m and the level difference between the ridge and the outer
supports was 2.5 m. A schematic diagram of the beam is shown in Fig. 5. The
beam is made of steel (S355) as a welded plate girder with an I-beam cross-
section. The web height over the outer supports was assumed to be H1 and the
flange thickness was assumed to be tf1 . Over the middle support, the web height
H2 and the flange thickness tf2 were assumed. In the beginning, it was assumed
that the beam width was 330 mm and the web thickness was 10 mm.

Fig. 5. Schematic diagram of the web-tapered two-span beam with its geometrical parameters.

During the FEM-based analysis, the beam was divided into eight finite ele-
ments with constant cross-section. In the design process, the asymmetrical snow
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loading condition was taken into account. The best velocities presented in Sub-
sec. 3.3 were applied in the PSO algorithm.

The optimization problem for the beam with tapered members is formulated
below:

Minimize fw(x), (10)

Subject to gSLS(x) ≥ 0, (11)

gULS(x) ≥ 0, (12)

x ∈ {x1 = H1, x2 = tf1 , x3 = H2, x4 = tf2}, (13)

where fw is the objective function, gSLS refers to the SLS constraint and gULS
refers to the ULS constraint.

In this experiment, fw(x) refers to the objective function describing the search
for the minimum mass of the beam. The solutions are checked against constraints
in Eqs (11) and (12). Each design variable has its own range of values coming
from design restrictions and parts available in production.

The results of numerical experiments for a various number of particles and
60 iterations are presented in Table 1. The best solution was obtained for the
fifth experiment with 100 particles: H1 = 668 mm, tf1 = 11 mm, H2 = 966 mm,
tf2 = 19 mm. The maximal deflection was, in that case, 87 mm. The results show
that the mass of the best solution in each experiment depends on the number of
particles and probably also on c1 and c2.

Table 1. Geometrical parameters of the web-tapered steel beam for a various number
of particles N after 60 iterations T of the PSO-FEM algorithm.

Experiment N T H1 [mm] tf1 [mm] H2 [mm] tf2 [mm] Mass [kg]
1 5 60 603 13 1019 19 7393
2 10 60 609 13 1027 19 7378
3 20 60 618 13 1033 19 7358
4 50 60 605 13 1038 19 7357
5 100 60 668 11 966 19 7287
6 200 60 616 13 1024 19 7365

3.3. Portal frame

In this example, we consider a web-tapered portal frame with I-shaped doubly
symmetric cross-sections made of steel (S355) welded plates. The main advantage
of the welded plates is that their dimensions can be easily fitted to the project
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requirements, which is not the case for the prismatic members with fixed cross
sections. Figure 6 shows a schematic diagram of the portal frame.

Fig. 6. Schematic diagram of the web-tapered portal frame with its geometrical parameters.

We analyze frames with assumed outer dimensions. It means that we have
to compute the position of the central axis of the frame in consecutive iterations
according to the change of height of the rafters and the change of thickness of
the flanges. The outer dimensions of the frame are set as:

• Lz – span of the frame (71 800 mm),
• HK

z – height of the frame, from the base to the top (14 800 mm),
• HN

z – height of the frame, from the base to the connection (10 860 mm).
The width of the column and the rafter are assumed to be 560 mm. The

following geometrical parameters are being optimized:
• H2 – height of the rafter at the connection,
• H3 – height of the rafter at the top,
• tf2 – flange thickness of the rafter at the connection,
• tf3 – flange thickness of the rafter at the top.
The FEM model with several finite elements with fixed cross-sections is used

in place of a model with rafters and columns with variable cross-sections. It is
assumed that the flanges thickness and rafters height are changing linearly along
the length of the element. Calculations of internal forces are carried out based
on the FEM model consisting of 18 elements and 19 nodes. It is assumed that
the frame is simply supported. To simplify the task, concentrated loads from
purlins are replaced by an evenly distributed load. It is assumed that the frame
is concentrated by densely spaced purlins so that the effect of lateral-torsional
buckling is ignored in the calculations. In the structural design optimization, it
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is assumed that the stress ratio (SR) calculated according to Eq. (1) at no point
in the frame could exceed 0.8.

In numerical experiments, the normalization of frame parameters and velo-
cities was applied and initially population of nine particles was assumed. Para-
meter values were initiated with pseudo-random values ranging from 0.5 to 1.0
for H2, tf2 and tf3. The parameter H3 was initiated in the range from 0 to 0.5.
The velocity values were initialized from −1.0 to 1.0.

The optimization problem for the frame with tapered members is formulated
below:

Minimize fw(x), (14)

Subject to gSLS(x) ≥ 0, (15)

gULS(x) ≥ 0, (16)

x ∈ {x1 = H2, x2 = tf2 , x3 = H3, x4 = tf3}, (17)

where fw is the objective function, gSLS refers to the SLS constraint and gULS
refers to the ULS constraint. In this experiment, fw(x) refers to the objective
function describing the search for the minimum mass of the beam. The solutions
are checked against constraints in Eqs (15) and (16). Each design variable has
its own range of values coming from design restrictions and parts available in
production.

3.4. Results of numerical experiments

Below we present the results of five numerical experiments for the structural
design optimization of the portal frame with web-tapered members with five
different settings for the PSO-FEM algorithm. The final dimensions of the cross-
sections are also collected in Table 2.

3.4.1. Optimization with only nine particles. During experiments, it was
found that using only nine particles that satisfy the constraints leads to fast
convergence but the result for one particle was inaccurate. Figure 7 shows the
initial problem with convergence for this particle during optimization of the
parameter H2. Therefore, the parameter tf3 for particle number 7 was initial-
ized in a different range (from 0 to 0.5) so that the particle did not satisfy the
constraints at the beginning of the optimization process. Finally, the optimal
parameters found by the PSO-FEM algorithm, after 14 iterations, were:

• H2 = 1795 mm,
• H3 = 1198 mm,
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• tf2 = 39 mm,
• tf3 = 25 mm,
• mass = 29 636 kg.

Fig. 7. Plot of changes of the parameter H2 with pointed particle number 7.

The value of flange thickness (tf2 = 39 mm) obtained as a result of the
calculations is considered to be too large.

3.4.2. Optimization for different ways of computing cognitive component of
velocity. In Fig. 7, bad convergence of particles number 3 and 7 may be seen. The
reason for this is the way of computing the cognitive component of velocity vc

(described in Eq. (5)) for particles, which in previous iterations did not satisfy
the assumed constraints. This velocity was calculated on the basis of p (“personal
best value” from Eq. (5)), which is incorrect for these particles.

It is worth noting that optimized parameters are cross-section dimensions.
This statement indicates that if the constraints are not satisfied, then the pa-
rameters are too small. Then, it is recommended to use the positive value of vc.
In further calculations, for particles that in previous iterations did not satisfy
the constraints and elements of vc that were less than zero were set to zero. This
way, the obtained velocity of particles should be positive due to the remaining
components of their velocity.

Despite the apparent faster convergence, the calculated parameter values
changed very little: H2 = 1793 mm, tf2 = 39 mm, H3 = 1208 mm, tf3 =
25 mm, mass = 29 536 kg. It was assumed that the convergence runs too fast
and only at first 10 iterations vc = 0 was set, which did not significantly improve
the result. Figure 8 shows the plot of optimization of the parameter H2 for the
frame assuming vc = 0. It is worth emphasizing that the results are still far



Structural design optimization of steel beams. . . 51

Fig. 8. Plot of changes of the parameter H2 assuming vc = 0.

from optimal ones, even though the parameters, values visible in Fig. 8 seem to
change towards the optimal value.

3.4.3. Optimization with a large number of particles. The number of par-
ticles was increased from 9 to 50, which still did not significantly improve the
results: H2 = 2546 mm, tf2 = 30 mm, H3 = 870 mm, tf3 = 24 mm, mass
= 28 982 kg. The results are presented in Fig. 9.

Fig. 9. Plot of changes of the parameter H2 using 50 particles.

3.4.4. Optimization with variable parameter ω. According to [20], a variable
parameter value ω (described in Eq. (4)) was applied. The convergence of the
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solution was lost for ω greater than 0.4. Therefore, the linear reduction of the
parameter ω has been applied during iteration from value 0.4 to 0.1. After 15
iterations, the results were obtained: H2 = 2467 mm, tf2 = 33 mm, H3 =
848 mm, tf3 = 25 mm, mass =30 366 kg, which means that parameter variability
did not improve the optimization in our case.

3.4.5. Optimization using velocities of the best particles. In order to im-
prove the optimization, the velocity of the best particles was remembered for
use in the next iterations. The “best particles” were considered the ones that
satisfied the constraints and ensured the largest decrease in the optimization
function. That signifies the highest value of the velocity gradient. It is important
to note that even better results were obtained using pseudorandom numbers as
velocities when the rate of iteration decreased.

In the current experiment, 25 particles were applied. From the first to the
nineteenth iterations, the particles with the highest value of the velocity gradient
were selected and memorized. After 20 iterations, the particles, velocity assumed
pseudorandom values from 0.0 to 1.0 (first vertical arrow in Fig. 10). After 40
iterations, the particles, velocities were assigned the best-remembered velocities
from previous iterations. This place is marked in Fig. 10 with the second vertical
arrow.

Fig. 10. Plot of changes of H2 using velocities from “the best particles” and pseudorandom.

After 60 iterations, the following results were obtained: H2 = 2313 mm,
tf2 = 25 mm, H3 = 1079 mm, tf3 = 20 mm, mass = 26 550 kg. As a result of
the optimization, the parameters of the construction with minimum mass and
low thickness of the plates were finally obtained.

Table 2 presents the summary of the results, where N depicts the total num-
ber of particles used in the structural design optimization and T is the total
number of iterations of the PSO-FEM algorithm. As can be seen, the best solu-
tion (experiment 5) is about 10% better than the worst optimal solution (expe-
riment 4).
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Table 2. Geometrical parameters of the web-tapered steel portal frame for a various number
of particles N and iterations T of the PSO-FEM algorithm.

Experiment N T H2 [mm] tf2 [mm] H3 [mm] tf3 [mm] Mass [kg]
1 9 14 1795 39 1198 25 29 636
2 9 14 1793 39 1208 25 29 536
3 50 14 2546 30 870 24 28 982
4 50 15 2467 33 848 25 30 366
5 25 60 2313 25 1079 20 26 550

4. Discussion

During the optimization process, it is important to maintain the diversity
of particles, including ones that initially do not fulfill the optimization require-
ments. This deliberate treatment allows to obtain better results.

In the case of the optimization of structures with a number of parameters
greater than one, it is usually not possible to obtain the optimal results globally.
In this case, for the normalization of the design parameters, more particles and
more iterations are usually needed. Moreover, to avoid local minima it can be
useful to assign to velocities pseudorandom values saved as the best in initial
iterations.

It was experimentally stated that the best optimization results are obtained
for the parameters c1 and c2 in the interval from 0.3 to 0.5. The parameter
ω should be not greater than 0.4. For greater values of the parameter ω, the
optimization process is divergent. Changing ω during the optimization process
did not have a positive impact on the results.

5. Final conclusions

In this paper, we have shown that the PSO-FEM algorithm is able to optimize
a steel structure: both a simple one such as a Gerber beam and more complicated
structures such as a two-way beam and a portal frame. For the Gerber beam,
the obtained solution is close to the exact (analytical) solution. We have applied
PSO with only 5 particles and only 10 iterations were needed. For the portal
frame, we have applied PSO with 25 particles and 60 iterations. Moreover, some
improvements to the basic PSO algorithm were needed. For the two-way beam
and the portal frame, the obtained solutions are close to the solutions obtained
by a simple “trial and error” method but probably better due to the uniform
stress ratio along the length of the structure. For the Gerber beam, the obtained
solution has equal bending moments in the outer span and in the support.
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The application of the PSO-FEM algorithm-based optimization process also
allows to assess the direction of structure parameters’ change during the de-
sign process made by hand. For example, it is possible to objectively assess
which changes are better. Also, more parameter combinations can be checked in
a shorter time.

The welded plate girder obtained during the optimization process has a mass
probably close to the optimal one but also fulfills the optimization requirements
in all cross-sections: not exceeding stress ratio and ultimate deflection. This ap-
proach allows to obtain the most important parameters of the optimized struc-
ture quicker than by using the “trial and error” method. This optimized structure
also carries out the applied loading safely.

In this work, we have investigated to some extent the effects of random values
of PSO parameters on the results of design optimization with the PSO-FEM
algorithm, and we have found that the effects are rather negligible. In future
work, we plan to investigate these effects in more detail because this can be
beneficial to estimate the uncertainty in the obtained solutions.
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