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According to its definition, Poisson’s ratio is a measure of the Poisson effect, the phe-
nomenon in which a material tends to expand in directions perpendicular to the direction
of compression or, in other words, Poisson’s ratio is the ratio of relative contraction to
relative expansion. For the sake of simplicity, it is handled as a constant. However, in reali-
ty, it is a variable. One can find several studies on this topic. This paper aims to study the
impact of the environmental (confining) pressure and rock quality (namely the geological
strength index, GSI) of rock mass on Poisson’s ratio. By using parametric investigation,
several cases were calculated to present the functional dependency between the quantities
mentioned above.
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1. Introduction

Poisson’s ratio is a measure of the Poisson effect [1]. According to the original
definition of the Poisson’s ratio, one can define it by use of the deformations of
a differential volume element loaded with uniaxial stress. Specifically, it is the
ratio between the transverse deformation and the deformation in the direction of
stress. This is a dimensionless number and can be defined by the Lame’s theory
as well, namely in case of isotropic material it is proportional by the Young’s
and the bulk modulus. For the sake of simplicity, it is handled as a constant;
however, in reality, it is a variable. One of the first researches of the variable
Poisson’s ratio was Nadai’s [2] work in 1963. The value of the Poisson’s ratio
can be in principle between +0.5 and −1. It is noted that this is easily verify
by the Lame’s definition. Approximately, it is between +0.1 and +0.3 for most
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civil engineering materials. (A negative Poisson’s ratio means that when a body
of such a material is pulled in some direction, it does not contract transversely,
but expands. When compressed, its size also decreases transversely. By creating
a special microstructure, such materials can actually be created.) As it was noted
earlier, the Poisson’s ratio of a stable, isotropic, linear elastic material must be
between −1.0 and +0.5 because of the positivity of Young’s modulus, the shear
modulus and bulk modulus. According to the Lame’s equation, the Poisson’s
ratio is 0.5 minus the ratio of the Young’s modulus and twice of the bulk modulus.
Lógó and Vásárhelyi [3] investigated the influence of the intact rock rigidity on
the Poisson’s ratio. Vásárhelyi [4] presented a linear equation in which Poisson’s
rate was increasing as the quality of the rock mass was decreasing.

The Poisson’s ratio of natural materials covers the entire range, as in the case
of rubber it is nearly 0.5 (i.e., it is capable of large lateral deformation), while
in the case of cork it is close to 0, showing very little lateral expansion when
compressed. Poisson’s ratio of rock is usually between 0.1–0.4 [5].

Poisson’s ratio as a material constant, even though it is found in most for-
mulas in rock mechanics, has not been studied frequently. According to Bie-
niawski [6], Poisson’s ratio of rocks is constant under linear elastic deformation
but begins to increase due to the appearance of new micro-cracks or expansion
of existing ones. Years later, Kumar [7] investigated the effect of the Poisson’s
ratio on the intact rock properties.

The role of the Poisson’s ratio, its fields of application, and methods of calcu-
lation are briefly presented in this article. Then, depending on the changes in the
GSI and the environmental pressure, we examine the differences in the Poisson’s
ratio. The purpose of this article is to study the impact of the environmental
pressure and the GSI of rock mass on Poisson’s ratio.

2. Theoretical background

The Poisson’s ratio (ν) is a unit of measure defined as the ratio of transverse
deformation to longitudinal deformation. However, this value can be calculated in
many ways, not just as a ratio of the deformations. One such calculation method
is when the internal friction angle is used to obtain the Poisson’s ratio. This
method of obtaining the internal friction angle of each rock requires knowledge
of the Hoek–Brown failure criterion.

The Hoek–Brown failure criterion [8] was used in our calculations. This the-
ory was developed to model the fracture boundary state of intact rock and rock
mass. The theory itself, especially in tunnel construction, is used often for cal-
culating the stress state of the rock environment and for modeling the boundary
curve of brittle rocks. This method, as proved by practice, can be modeled better
than the Mohr–Coulomb theory, and even within certain limits, the internal fric-
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tion angle and cohesion of the rock mass can be determined [8, 18]. The formula
for the fracture interface, in the case of intact rock, looks like this:

σ′1 = σ′3 + σci

(
mi

σ′3
σci

+ 1

)0.5

, (1)

where σ′1, σ′3 are the major and minor effective principal stresses at failure where
σ1 is the biggest principal stress in compression (the paper follows the principles
applied in engineering geology), σ′3 is the environmental stress, σci is the uniaxial
compressive strength, and mi is the Hoek–Brown constant for intact rock.

This formula was later transformed into a general case so that it could not
only be applied to the intact rock. The transformed equation is as follows:

σ′1 = σ′3 + σci

(
mb

σ′3
σci

+ s

)a
, (2)

where mb is a reduced value of the material constant mi and it is given by:

mb = mi exp

(
GSI− 100

28− 14D

)
. (3)

Here s and a are constants for the rock mass given by the following relationships:

s = exp

(
GSI− 100

9− 3D

)
, (4)

a =
1

2
+

1

6

(
e−GSI/15 − e−20/3

)
. (5)

D is a factor that depends upon the degree of disturbance to which the rock
mass has been subjected by blast damage and stress relaxation. It varies from 0
for undisturbed in situ rock masses to 1 for very disturbed rock masses [8].

The disadvantage of the method is that the Hoek–Brown constant can only
be determined by a large number of triaxial tests. In practice, this is not possible
in most cases, and there may be significant discrepancies between the results of
each measurement.

The so-called fracture limit state has been developed for modeling the frac-
ture boundary states of rock blocks and rock mass. The Hoek–Brown failure
criterion is very widespread in practice, especially in tunnel construction, for
modeling the boundary curve of brittle rocks and calculating the stress state
of the rock environment. The empirical theory has been proved by practice be-
cause it is better to model the real state than the traditional Mohr–Coulomb
theory. The Hoek–Brown fracture state also allows, within certain limits, to cal-
culate the friction angle and cohesion of the rock mass.
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The Hoek–Brown constants (mi) of the intact rocks are usually well-known.
These values for the most important rock types are collected in Table 1 (using
the published data of Hoek [9]). According to this table, the minimal value of
mi is 2 (e.g., claystone) and the maximum value is 35 for some granitic rocks.

Table 1. Values of mi for intact rock group [9].

Texture
Coarse Medium Fine Very fine

Sedimentary rock types

Conglomerates
(21± 3)

Sandstone
(17± 4)

Siltstone
(7± 2)

Claystone
(4± 2)

Breccia
(19± 5)

Greywacke
(18± 3)

Shales
(6± 2)

Crystalline limestone
(12± 3)

Sparitic limestone
(10± 2)

Micritic limestone
(9± 2)

Dolomites
(9± 3)
Chalk
(7± 2)

Metamorphic

Marble
(9± 3)

Hornfels
(19± 4)

Quartzite
(20± 3)

Metasandstone
(19± 3)

Migmatite
(29± 3)

Amphibolite
(26± 6)

Gneiss
(28± 5)

Schist
(12± 3)

Phyllite
(7± 3)

Slate
(7± 4)

Igneous

Granite
(32± 3)

Diorite
(25± 5)

Granodiorite
(29± 3)
Gabbro
(29± 3)

Dolerite
(16± 5)

Norite
(20± 5)

Porohyrite
(20± 5)

Diabase
(15± 5)

Peridotite
(25± 5)

Rhyolite
(25± 5)

Dacite
(25± 3)

Obsidian
(19± 3)

Andesite
(25± 5)

Basalt
(25± 5)

Agglomerate
(19± 3)

Breccia
(19± 5)

Tuff
(13± 5)
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However, this constant depends on many things, such as water content [10]
or heat cycles [11].

If it is not possible to perform a large number of triaxial tests, then the
constant value of mi can be determined by both uniaxial compressive strength
(σc) and tensile strength (σt):

mi =

((
σt
σc

)2

− 1

)(
σc
σt

)
. (6)

In such a case, if this ratio is quite small, one can determine the mi constant
with a relatively high error rate. According to the theory of Cai [12], if mi > 8,
the following equation can also be used (the estimated error is plotted in Fig. 1,
according to [12]):

mi =
σc
σt
. (7)

Fig. 1. Relationship between error in mi (the Hoek–Brown material constant) estimate
and the strength ratio R, according to [12].

As can be seen from Eqs (2)–(5), the GSI plays an important role in the
Hoek–Brown failure criterion being one of the most significant failure-criteria
for rock formations. It enables in a fast and easy way, together with the Hoek–
Brown failure criterion, to obtain indirect quantifiable data that can be used
to infer internal friction angle, cohesion, unidirectional compressive strength or
deformation modulus, for example. The method was originally developed for
high-strength homogeneous rocks but soon extended to heterogeneous rocks. The
GSI can be used to indicate the structure of rock and the state of the subdivision
by specifying a single index (Fig. 2) [13].



210 B.A. Lógó, B. Vásárhelyi

Fig. 2. The GSI for jointed rocks [8].

3. Fundamental relationships

Poisson’s ratio is determined in several ways during the calculations. These
equations establish the relationship between the internal friction angle and Pois-
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son’s ratio [14]. It is important to mention Jaky’s [15] and Terzhagi’s [16] equa-
tions,

K0 =
Ph
Pv

= 1− sinϕ, (8)

K0 =
Ph
Pv

=
ν

1− ν
, (9)

since these equations serve as the basis for Eq. (10). Because Eqs (8) and (9) are
used for the same quantity, one can define the following formulation [5]:

ν =
1− sinϕ

2− sinϕ
. (10)

Zhang et al. [14] summarized the most important relationships between the in-
ternal friction angle (ϕ) and Poisson’s rate (ν) of the intact solid material. All
of these equations are based on the Mohr–Coulomb theory, and they use differ-
ent equilibrium methods presented by Stagg and Zienkiewicz [17]. The following
correlations were collected:

ν =
1

2
(1− sinϕ), (11)

ν =
arctan[cosϕ− (1− sinϕ) tanϕ]

90◦
, (12)

ν =
cosϕ− (1− sinϕ) tanϕ

2
, (13)

ν =
tan(45◦ − ϕ

2 )

2
, (14)

ν =
tan(45◦ − ϕ

2 )

1 + tan(45◦ − ϕ
2 )
. (15)

The relationships between major (σ1) and minor (σ3) principal stresses for
Hoek–Brown and equivalent Mohr–Coulomb criteria can be determined [8, 18].
The fitting principal (process) involves balancing the areas above and below the
Mohr–Coulomb plot. By taking into account the Mohr–Coulomb failure criterion,
the relation [9] between the major principal stress σ1, the environmental (minor
principal) stress σ3 and the friction angle can be written as follows:

σ′1 =
2c′ cosϕ′

1− sinϕ′
+

1 + sinϕ′

1− sinϕ′
σ′3. (16)

By the use of the formulation (10)–(15) and (16), one can create graphs for
the variation of Poisson’s ratio in function of the environmental (minor principal)
stress σ3.
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Although some equations were calculated using the same baseline data, the
results show significant variation.

4. Parametric study

The results of each equation have been compared in several ways. One of the
aims of the study was to determine whether there is any relationship between the
Poisson’s ratio and the magnitude of the ambient pressure, and how the change
in the GSI affects the Poisson’s ratio.

Figure 3 shows Poisson’s ratio values for intact rock as a function of σ3. It can
be observed that the results given by each equation, although different in value,
behave the same. It can be seen that although there is no constraint in Eq. (15),
it cannot be used in all ranges as it does not give a relevant result.

9 

By the use of the formulation (10)–(15) and (16), one can create graphs for the variation of 

Poisson’s ratio in function of the environmental (minor principal) stress σ3. 

Although some equations were calculated using the same baseline data, the results show 

significant variation. 

4. Parametric study

The results of each equation have been compared in several ways. One of the aims of the 

study was to determine whether there is any relationship between the Poisson’s ratio and the 

magnitude of the ambient pressure, and how the change in the GSI affects the Poisson’s ratio. 

Figure 3 shows Poisson’s ratio values for intact rock as a function of σ3. It can be observed 

that the results given by each equation, although different in value, behave the same. It can be 

seen that although there is no constraint in Eq. (15), it cannot be used in all ranges as it does not 

give a relevant result. 

Fig. 3. The results for the intact rock (100 GSI). 

This trend is also shown in Fig. 4. Here, too, behavior similar to that of intact rock can be 

observed, whereby the Poisson’s ratio’s value changes suddenly and rapidly as the 

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2 4 6 8

P
o

is
so

n
's

 r
at

io
 [

-]

σ3 [MPa]

Eq. (10)

Eq. (11)

Eq. (12)

Eq. (13)

Eq. (14)

Eq. (15)

Fig. 3. The results for the intact rock (100 GSI).

This trend is also shown in Fig. 4. Here, too, behavior similar to that of intact
rock can be observed, whereby the Poisson’s ratio’s value changes suddenly and
rapidly as the environmental pressure increases, then slows down but does not
disappear. In this case, too, it can be observed that Eq. (15) gives meaningful
results only within certain limits.
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Fig. 4. The results for 60 GSI.

In the case of fragmented rocks, the results show similar behavior, as shown
in Fig. 5.

10 

environmental pressure increases, then slows down but does not disappear. In this case, too, it 

can be observed that Eq. (15) gives meaningful results only within certain limits. 

Fig. 4. The results for 60 GSI. 

In the case of fragmented rocks, the results show similar behavior, as shown in Fig. 5. 

Fig. 5. The results for 30 GSI. 

The following figures (Figs 6–11) show that the value of the Poisson coefficient is not only 

dependent on the magnitude of the environmental pressure but is significantly influenced by 

the fragmentation of the rock. It can be seen that the higher the GSI value of a given sample, 

the higher the value of the Poisson’s ratio will be. In Figs 6–11, the red dots represent the values 

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 2 4 6 8

P
o

is
so

n
's

 r
at

io
 [

-]

σ3 [MPa]

Eq. (10)

Eq. (11)

Eq. (12)

Eq. (13)

Eq. (14)

Eq. (15)

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 2 4 6 8P
o

is
so

n
's

 r
at

io
 [

-]

σ3 [MPa]

Eq. (10)

Eq. (11)

Eq. (12)

Eq. (13)

Eq. (14)

Eq. (15)

Fig. 5. The results for 30 GSI.

The following figures (Figs 6–11) show that the value of the Poisson coefficient
is not only dependent on the magnitude of the environmental pressure but is
significantly influenced by the fragmentation of the rock. It can be seen that the
higher the GSI value of a given sample, the higher the value of the Poisson’s
ratio will be. In Figs 6–11, the red dots represent the values calculated using
each equation. A surface fitted with these results can give a good approximation
of the areas between the calculated results.
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5. Conclusion

On the basis of the results presented above, an interesting correlation can
be found between changes in the value of the Poisson’s ratio so far considered
constant based on the environmental (confining) pressure and the rock mass
quality (namely GSI) value. It is clear that decreasing the GSI value increases
the value of the Poisson’s ratio. If the value of the environmental stress (σ3)
increases, the Poisson’s ratio also increases.
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