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This paper analyzes the relations between the theory of Michell structures, which is one of
the most important theories in structural optimization, and some remarkable engineering
structures, including selected high-rise buildings, large-scale roof coverings and long-span
bridges. The first part of this study briefly presents the development of Michell’s the-
ory, its basic concepts, assumptions, and examples and fundamental features of Michell
structures. Then, several untypical engineering structures that make use of said concepts
are presented, including skyscrapers proposed by the Polish structural designer W. Za-
lewski and the international architectural office of Skidmore, Owings and Merill (SOM).
Next, large-scale roof coverings of “Spodek” arena in Poland as well as selected bridges
are thoroughly analyzed in the context of similarity to Michell structures. The conducted
study reveals that considered structural forms of the analyzed structures follow some of
the concepts known from Michell’s theory and thus possess many features of the optimal
structural designs.
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1. Introduction

The theory of Michell structures is one of the most important and probably
one of the most impressive theories in structural optimization. Michell’s theory
reveals how to optimally transmit the given external load to a given support
and optimally transmit a given system of self-equilibrated loads. In contrast to
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traditional structural optimization settings, in which only selected parameters
are considered as problem unknowns, in Michell’s theory the entire structure is
treated as a design variable. The results from such an approach allow drawing
general conclusions about optimal layout, topology and geometry of the optimal
structure, including members’ connections, directions and sizing. Michell’s theory
discloses that bending in optimal structures is totally eliminated, while single
members are fully stressed by tensile or compressive forces. As a result, the
structure is perfectly adjusted to the applied external loading, requires a minimal
amount of material and has minimal total weight.

Anthony George Maldon Michell proposed the above-mentioned pioneering
concept in his remarkable paper published in 1904 [1], where, e.g., the problem
of the optimal cantilever supported on a circle was solved. Since that time,
many specific Michell structures involving various types of external loads (e.g.,
concentrated, distributed and transmissible) as well as various types of boundary
conditions (e.g., roller and pinned supports) have been presented. The most
significant contributions to the field were made in 1960s by H.S.Y. Chan who
determined geometries of the optimal structures in bounded domains [2, 3], and
in the books authored by Hemp [4] and Cox [5], where various types of elementary
Michell structures were described. The interest in Michell’s theory was revived
in the 1990s by G.I.N. Rozvany and his co-workers, who analyzed problems
regarding layouts of structures located in bounded design domains of various
shapes [6, 7], various allowable stresses in tension and compression, multiple
load cases and the supports costs [8, 9].

In recent decades, the approximate solutions of Michell’s problems have been
obtained numerically using ground structure methods, which rely on the selec-
tion of the optimal structure from the initially assumed system of nodes and
their possible connections. The effectiveness of such methods results from the
application of dual formulation of the weight minimization problem and lin-
ear programming methods, as well as the use of adaptive techniques limiting
the number of simultaneously considered members, as described by Gilbert and
Tyas [10] and Sokół [11]. The application of ground structures with millions of po-
tential unknowns yields optimal designs that clearly resemble analytical layouts
obtained from Michell’s theory and gives almost exact values of corresponding
volumes. As a result, in [12] the ground structure methods that allowed to find
previously unknown Michell structures transmitting three self-equilibrated forces
were presented, in [13, 14] structures transmitting distributed loading to two sim-
ple supports were studied, and [15] pointed out that selected known solutions
of Michell’s problem were entirely incorrect. The theory of Michell structures,
as well as analytical and numerical solutions of the problems involving various
loading and boundary conditions, is comprehensively presented in the book by
Lewiński, Sokół and Graczykowski [16].
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The mentioned above Michell structures were not only the theoretical con-
cepts but also have inspired civil engineers and have influenced selected con-
temporary designs of high-rise buildings, large-scale roofs and long-span bridges.
The objective of this paper is to present and critically analyze practical appli-
cations of Michell’s theory in civil engineering. Firstly, we will study the con-
cepts of Michell-inspired “wingy” and “bulbous” skyscrapers proposed by Wacław
Zalewski and Wojciech Zabłocki as well as selected buildings designed by the
international architectural office of SOM. Then, the constructions of the large-
scale roofs of two famous Polish commercial buildings, Supersam in Warsaw and
Spodek in Katowice, will be analyzed, revealing that their designers used a com-
bination of the tensegrity concept and Michell’s theory. Finally, conclusions from
Michell’s theory concerning the optimal layout of structures created over multi-
ple spans and subjected to distributed loading will be compared against selected
constructions of long-span bridges.

2. Theory of Michell structures in a nutshell

and illustrative examples

2.1. Michell structures in the plane

The topology optimization problem considered in the theory of Michell struc-
tures is to find the lightest structure with the bounded value of stress: −σC ≤
minλi(σ) ≤ maxλi(σ) ≤ σT , which transmits a given load to a given support or
transmits a system of self-equilibrated loads (Fig. 1); λi(σ) represents the i -th
eigenvalue of tensor σ.

a) b)

Fig. 1. Two versions of 2D Michell’s problem: a) transmitting a given point load
to a given support, b) transmitting a self-equilibrated system of loads.

The optimal structures should be examined in the class of trusses since the
elimination of bending leads to a uniform state of stress in the entire cross-
section of each member, while optimization of member’s cross-sections allows to
obtain the fully-stressed design of the entire structure. The structures proposed
by A.G.M. Michell are a generalization of trusses and they take the form of
discrete-continuous structures composed of:

• fibrous domains consisting of infinitely thin and infinitely densely located
members (a single family of straight fibers or two families of orthogonal
fibers),
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• reinforcing members of finite cross-sections (typically located at the bound-
aries of the feasible domain) being the response for the occurrence of point
loads.

In the non-degenerated case, when two families of members exist, all members
are located along the trajectories of principal strains. The theory of Michell
structures originated by solving the problem of finding the lightest cantilever
of equal permissible stresses in tension and compression capable of transmitting
a given point load to a given circular support. The approximation of this solution
with a finite density of parametric lines is presented in Fig. 2 (left).

Fig. 2. Left: Michell cantilever transmitting point load to circular support (case of equal
permissible stresses in tension and compression); right: three subsequent suboptimal trusses
transmitting given force to a straight support: a) Vr = 6.1605, b) Vr = 6.0953, c) Vr = 6.0835,

where Vr = V/V0, V0 = Pa/σ0, σ0 being the permissible stress.

The intuitive understanding of Michell structures can be gained by analyzing
three suboptimal trusses with an increasing number of members, transmitting
a point load to a straight support (Fig. 2 right). These structures can be ob-
tained using an arbitrary numerical method (e.g., ground structure method)
with various discretizations within the planar design domain. Application of the
numerical methods shows that when the spatial discretization becomes finer,
the number of bars increases and the structure becomes lighter. The limit of
this sequence corresponding to the infinitely dense discretization in the plane
and characterized by infinite number of bars is a Michell truss. Although the
structure presented in Fig. 2c is not infinitely dense, it reveals basic features of
the corresponding Michell structure. It is composed of fan regions with straight
members starting at the supports, fibrous domain with orthogonal members and
reinforcing members of larger cross-sections (not visualized) spanning from the
location of the point load to the locations of the supports.
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Mathematical formulation of Michell’s problem requires defining U
(
Ω
)

as
the set of kinematically admissible virtual displacements u, as well as the set
Σ
(
Ω
)

of statically admissible forces Ñ, F̃T , F̃C in fibrous domain and in both
reinforcing members (along the curves ΓT and ΓC respectively) compatible with
external loading. The principal forces in the fibrous domain can be defined as:
N1 = hλ1(σ) and N2 = hλ2(σ), h being the depth (or the transverse thickness)
of the structure. Thus, the total volume of the structure equals:

VΩ = I
(
N, FT , FC ; Ω

)
=

✂

Ω

( |N1|
σT

+
|N2|
σC

)
dΩ+

✂

ΓT

|FT |
σT

ds+

✂

ΓC

|FC |
σC

ds (1)

and the primary formulation of the volume minimization problem reads:

VΩ = min
{
I
(
Ñ, F̃T , F̃C ; Ω

)
such that

(
Ñ, F̃T , F̃C

)
∈ Σ

(
Ω
)}

. (2)

The dual formulation takes the form of maximization of the work of the external
forces on virtual displacements:

VΩ =
1

σ0
max

{
P · u (P) | such that u ∈ U

(
Ω
)
; ε (u) ∈ Bκ

}
, (3)

where Bκ is the so-called locking locus confining allowable values of virtual
strains to those satisfying:

− σ0

σC
≤ λi(ε(u) ≤

σ0

σT
, i = 1, 2. (4)

The above formulation allows to determine the optimality conditions which read:

λ1 (ε(u)) =
σ0

σT
, λ2 (ε(u)) = − σ0

σC
(5)

in the regions where two families of bars occur.
The important conclusion is that all members of the optimal structure have

to be located along the trajectories of principal strains, where the strains achieve
limit constant values. These trajectories may be curved so members of the
optimal structure also have to be curved. As a consequence, there exist two
families of fibers, which create an infinitely dense orthogonal net, the so-called
Hencky net.

In order to find the Hencky net, we have to determine the Lamé functions
A(α, β), B(α, β) defined as:

A(α, β) =
√
a11, B(α, β) =

√
a22, aλµ = aλ · aµ,
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where aλ are bases vectors. The Lamé fields are governed by the differential
equations:

∂2A

∂α∂β
= A,

∂2B

∂α∂β
= B. (6)

The following step is the construction of the mappings: x(α, β), y(α, β) defi-
ning the parametric lines and the adjoint displacement field u = [u(α, β), v(α, β)].
These fields have to satisfy the so-called telegraphers equation and kinematic
boundary conditions. They can be found via the application of Riemann’s method.
Let us note that the above relatively complex procedure allows only for finding
the geometry of Michell structure. The complete solution of Michell’s problem
is constructed in the following steps:

1) Finding geometry of the Hencky net for given support geometry and force
location;

2) Finding force fields in fibrous domains and reinforcing members;

3) Finding the equivalent thickness field of the structure;

4) Computing the volume using: i) virtual work, see (3) and ii) integration of
thickness, see (1).

The agreement of volumes obtained using the two above methods proves
that the duality gap between the primal and dual formulation of the volume
minimization problem vanishes and confirms the determined continuous-discrete
structure’s optimality.

The load-carrying engineering structures are usually designed within a cer-
tain feasible region. In many cases, its boundaries are segments of straight lines.
Just the presence of the boundaries brings about specific shapes of the opti-
mal solutions. Let us recall that the Michell cantilevers transmitting point loads
into a straight support located in a trapezoidal domain are composed of several
regions of the kinematic division with different geometry of parametric lines.
The arrangement of these regions and parametric lines geometry do not depend
upon the location of the point load (Fig. 3a). The initial straight support appears
to degenerate into two pin supports, making the optimal structure externally
statically indeterminate and implying a dependence of the geometry of paramet-
ric lines on allowable stresses in tension and compression (Figs 3a and 3b). The lo-
cation of point load defines regions of the static division with a different distribu-
tion of internal forces (Fig. 3c). The distribution of the thickness of the cantilever
is determined region-wise, and it depends both on the Lamé fields and the force
fields inside the fibrous domain. The overlapping of the regions of kinematic and
static division causes the cantilever thickness’s distribution to be very complex
and containing multiple lines of discontinuities (Fig. 3d). Discrete versions of
Michell structures can be obtained using the method of graphic statics [17].
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a)

b)

c)

d)

Fig. 3. Optimal Michell cantilever transmitting point load to straight support: a) arrangement
of the regions of kinematic division for σT = σC ; b) geometry of Hencky net for σT = σC ;
c) arrangement of regions of kinematic and static division for σT = 5σC ; d) the alternate

thickness distribution of the cantilever for σT = 5σC .

2.2. 3D setting: spatial Michell structures

The subject of consideration is the minimization of the volume of spatial
frameworks to be designed in a given spatial domain; the state of stress is subject
to the conditions: −σC ≤ minλi(σ) ≤ maxλi(σ) ≤ σT , i = 1, 2, 3. Since
optimization excludes bending, the above conditions mean that the axial stresses
in the bars (or fibers) are bounded by −σC , σT . The load is given and should
be transmitted to a prescribed boundary where the supports can be placed;
indeed, the position of supports is also determined by the optimization process.
This setting includes, in particular, designing roofs over large base domains; the
design domain is then a certain layer between two fixed surfaces over the basis
domain.

As in the 2D case, the 3D design process is reduced to solving the two mu-
tually dual problems. The kinematic problem has the form (3, 4) where now the
locking locus for virtual strains is a cube. In contrast to the 2D case, its ver-
tices need not be attained. Some subdomains may be characterized by virtual
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strains whose only two principal strains attain the bounds. Then the optimal
structure becomes a grid surface. The dual or stress-based problem is expressed
by Eq. (3.95) in Lewiński et al. [16]; hence it is reduced to finding a minimum
of a certain functional of the statically admissible stresses.

The number of available exact 3D solutions to the problem stated above is
very limited, see Chapter 5 in Lewiński et al. [16]. On the other hand, the ground
structure method is still being improved to produce clear numerical solutions in
3D, see also Sokół [18]. New highly accurate numerical solutions of 3D problems
will appear soon.

If the applied load is assumed to be transmissible along the gravity direction
and if the roof designed over a given planar basis is to be composed of two
families of mutually orthogonal arches, the optimum roof becomes a Prager-
structure, see also Rozvany and Prager [19]. The theory of such roofs has much
in common with the theory of Michell structures, since the optimization problem
is also here reduced to the two mutually dual problems (kinematic and static)
whose solutions determine the structure itself; the method cuts out the sub-
domains of the basis domain over which the roof is not necessary, see Czubacki
and Lewiński [20].

3. Applications to high-rise buildings design

The engineers who were strongly impressed by Michell’s theory and inspired
by his theoretical optimal layouts were Polish construction engineer and designer
Wacław Zalewski (1917–2016) and architect Wojciech Zabłocki (b. 1930). Dur-
ing their long-term and fruitful cooperation, they have considered, among others,
buildings taller than 200 m with height to width ratios larger than five (h > 5a),
subjected to large torsional and bending moments caused by wind loads. Con-
sequently, in order to develop the basic structural model of the building, they
applied the analogous optimum design problem of the cantilever. They consid-
ered various standard structural systems and topologies based on variations of
Michell cantilevers as candidate solutions for high-rise buildings design [21–23].
Moreover, they intuitively applied optimal structure rationalization by reducing
it to trusses composed of dozens of elements, see also Allen and Zalewski [24].
The fundamental comparison of normalized volumes of these structures (Fig. 4a)
has immediately shown the superiority of Michell-like topologies and revealed
their usefulness in high-rise building construction. This encouraged Zalewski and
Zabłocki to propose the general concept and develop several detailed projects
of “tulip-like (bulbous) buildings” and “wingy buildings”, presented in Figs 4b
and 4c, respectively.

The “wingy buildings” are composed of three or four wings (which stand
for buttresses) connected to the central core. The main feature of the central
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a) b) c)

Fig. 4. a) Comparison of various topologies by Zalewski and Zabłocki [21]; b) sketch
of “tulip-like building” (source: http://www.wz-structure.org/#/unbuilt/); c) wooden
model of “wingy building” (source: https://www.pw.edu.pl/Uczelnia/Materialy-promo-

cyjne/Galeria/Konstrukcje-Waclawa-Zalewskiego-fotorelacja).

core is the capability of resisting vertical loads caused by self-weight. Wings
construction is based on a system of orthogonal members located at the exterior
surfaces and thus possesses the ability to transmit bending moments caused by
wind loads, which is also characteristic for Michell cantilevers. These innovative
designs resulted in an attractive shape of the building and good lighting of spaces.
In addition, the atypical aerodynamics of the building allows for wind energy
harvesting.

The wingy skyscraper presented in Figs 5a and 5b has tapered wings con-
nected to the central transit core. The building has 209 m in height and 50
stories. The self-weight is transmitted by vertical columns located in the cen-
tral core. The structure of each wing clearly resembles the geometry of Michell
cantilever. The members in tension and compression are located approximately
orthogonally and roughly along the directions of principal stresses caused by
bending forces. In addition, the round concrete foundations resemble the ends of
the fan regions of the optimal cantilevers.

The “bulbous” (“tulip-like”) skyscraper is presented in Figs 5c and 5d. The
building has a bulbous shape and it is built on a plan of a clover. The structure
has 164 m in height and 41 floors. The shape of the building is created by rotating
a 2D Michell cantilever around the vertical axis of symmetry and by varying
the slenderness. The vertical loads caused by self-weight are transferred by the
central communication core. The double-curvature steel structure on the facade
surrounds the entire building and transmits lateral forces caused by wind loads.
Because of symmetrical construction, the building has equal resistance to wind
loads from all possible directions.

The application of Michell’s theory to buildings’ construction can also be
clearly seen in some selected designs by the architectural office of Skidmore, Ow-
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a) b) c) d)

Fig. 5. The projects of buildings by W. Zalewski and W. Zabłocki [21]:
a, b) the project of “wingy skyscrapers”; c, d) the project of “bulbous skyscrapers”.

ings and Merrill (SOM). One of the most illustrative examples is the Broadgate
Exchange House in London designed by Srinivasa “Hal” Iyengar and William
F. Baker (Fig. 6). The structure spans over 78 m long rail yard, which imposes
the functional requirements of a building and a bridge. The structure is sup-
ported and strengthened by two large-scale arches located at both sides of the
building. Multiple vertical members are used to transfer the building’s weight to

a) b)

Fig. 6. Broadgate Exchange House in London (design: SOM: Srinivasa “Hal” Iyengar, William
F. Baker): a) view of building front (source: https://commons.wikimedia.org/wiki/File:

Broadgate_-_Exchange_House_BGATEEX_hero.jpg); b) fisheye view (source:
https://www.flickr.com/photos/mhx/20535205995).
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the arch, which transfers it further to the lateral supports. Two skew members
are used to connect the arch and central point of the structure bottom and to
facilitate the transfer of lateral loads. Let us note that in this case the multiple
skew hangers (as presented, e.g., in Hemp’s structure, see also the last result of
Fig. 4.173 in [16]) are not required since there is no concentrated load. In addi-
tion, the shape of the arch is optimized in order to provide minimal weight and
maximal stiffness using the Maxwell load path theorem.

Another design by SOM that is inspired by Michell’s theory is the project of
CITIC Financial Centre in Shenzen (Fig. 7). The complex is composed of two
high towers – 200 m and 300 m, with external bracings. The shorter tower’s
structure is based on a very simplified layout of Michell cantilever with only two
members at each level. This layout is doubled at the width and stretched in
vertical direction (Fig. 7a). In turn, the taller tower has a simplified layout of
Michell cantilever with four parametric lines at each level. The external bracing
evidently possesses fundamental geometrical features of Michell cantilever. In
particular, we can clearly observe the members fanning out at both sides of
the building (Fig. 7b) and bottom circular fans connecting at the right angle
(Fig. 7c). The vertical stretch resulting in changes of members’ angles along

a) b)

c)

Fig. 7. The project of CITIC Financial Centre by SOM (Craig W. Hartman, courtesy of SOM):
a) general view of both towers; b) detailed view of higher tower top; c) detailed view of higher

tower bottom (source: https://www.som.com/projects/citic_financial_center).
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the height of the building, combined with the usage of compliant joints, causes
an improved global seismic performance of the building. The above buildings
designed by SOM follow a general concept of using topology optimization to
advance the process of building design [25].

4. Applications to large-scale roof designs

The applications of the elements of Michell’s theory to design of large scale
roofs can be clearly observed in constructions developed by Wacław Zalewski.
The characteristic feature of his design method is shaping the structures in such
a way that they are perfectly suited for transferring applied static loading. In par-
ticular, in Zalewski’s design, the main load-bearing members are always dom-
inated by compression or tension, while bending is eliminated to the largest
possible extent.

The example of a design that follows this principle is a large-scale roof of
the self-service store “Supersam” in Warsaw designed by W. Zalewski, S. Kuś
and A. Żórawski, and erected in 1962. The roof structure is supported by alter-
nately located parallel convex arch steel girders and concave prestressed cables
of parabolic shapes (Fig. 8). By proper shaping of the steel elements, the design-
ers obtained almost constant values of axial forces along the span of the roof,
which facilitated the optimal selection of elements’ cross-sections and enabled
minimization of material usage.

Fig. 8. The roof of the Supersam in Warsaw (source:
https://pl.wikipedia.org/wiki/Supersam#/media/Plik:SuperSam_Warszawa_1969.jpg).

Moreover, the application of such construction allowed to obtain a perfect
interplay of tensile and compressive forces. In particular, at the side columns,
the outward component of the arches’ thrusts equalizes the inward components
of the cables’ pull such that the columns are not subjected to bending moment
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and they can be designed quite slender. A more detailed description of the Su-
persam roof design can be found in [16] and publications by Zalewski [26, 27].

Another remarkable structure designed by Wacław Zalewski is the event hall
“Spodek” (English: “Saucer”), whose design combines the elements of Michell’s
theory and the tensegrity concept [28, 29]. Spodek is a multipurpose arena for
11 500 spectators, formed in an extremely untypical way as a flying saucer, an
iconic shape of UFO (Fig. 9). It is the first arena in Poland built based on the
tensegrity principle, and still remains one of the largest of this type. The erection
of the structure was started in 1964, and it was stopped for almost two years
due to suspicion of alleged construction errors. After verifications of static cal-
culations by independent experts, it was successfully completed in 1971. Spodek
hosts many international cultural and sport events and remains the landmark of
the city of Katowice until now.

a)

b)

Fig. 9. “Spodek” multipurpose arena in Katowice: a) general view (source: https://pl.wikipe-
dia.org/wiki/Spodek_(hala_widowiskowa)#/media/Plik:Hala_Spodek_2007-10.jpg);

b) view of the roof with central skylight (source: https://www.pexels.com/photo/katowice-ray-
silesia-spodek-84918/).
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From the architectural point of view, the main challenge in the design of
Spodek was to accommodate both: sport events with a surrounding audience
and music concerts with a directional audience. Atypical geological conditions,
resulting in severe difficulties in foundation settlement, called for innovative so-
lutions. The initial candidate location in the city suburbs was characterized by
soft and weak soils, while the final location in the city center was a mining
damaged area (waste dump site) with possible sinkholes, ground discontinuities,
non-uniform soil subsidence and soil creep.

As a solution to this challenging engineering problem, Zalewski proposed
an innovative asymmetric structural form resembling an inverted bowl or dome
(Fig. 10), which provided the possibility for convenient adaptation to various
types of cultural and sport events. The structure has a spectator stand sur-
rounding the central part of the hall, which is strongly asymmetric and signif-
icantly widens in the upward direction. The supporting structure for the stand
has the shape of the inverted cone. In this structure, the circumferential ten-
sion is counterbalanced by prestressing, while the weight of the roof and the
stands is transmitted to a foundation ring of relatively small dimensions. Za-
lewski carefully considered the problem of difficult geological conditions. For the
initial location with the weak ground, he proposed a shell foundation with a box-
like bottom surface resembling an inverted bowl, effectively closing the central
cone from the bottom and denting into soft soil. In turn, for the final location at
the mining damaged area, he proposed an entirely different type of foundation
– the circular ring stiffened by the horizontal diaphragm, which allows the entire
structure to slide with respect to the creeping ground and settle uniformly as
a rigid object.

Fig. 10. Architectural drawing of the initial design of Spodek by W. Zalewski
(source: http://www.wz-structure.org/#/spodek/).

Another important challenge was to design the large-scale roof that would
cover the entire arena. The main problem in such large-scale roof design is the
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requirement of transmitting substantial radial and circumferential bending mo-
ments caused by the roof covering and external loading such as wind or snow.
Three basic types of systems can be applied for large-scale roofs design. They
are as follows [30]:

• The radial system in which radial bending moments are transferred directly
by a system of radial beams connected at the central point. The system is
characterized by the occurrence of large bending moments.

• The circumferential system in which the circumferential bending moments
are transferred directly by concentrically located pairs of upper rings in
compression and lower rings in tension connected by distance posts. The
rings are strengthened by skew hangers (Fig. 11a) or supported by skew
struts located in the opposite direction.

• The radial-circumferential second system in which both the circumferen-
tial and radial bending moments are transferred directly by the pairs of
concentric rings and radially located straight members. In such a system,
the radial compression of the upper elements causes additional bending
in the circumferential direction.

a) b)

Fig. 11. a) The initial design of the Spodek roof by Wacław Zalewski, b) the final design of
the Spodek roof (based on drawings by M. Pelczarski [30]).

Since the design aimed at the minimization of bending, Zalewski chose a cir-
cumferential system for the roof design, which was an extraordinary solution
considering the scale of the building. By conducting detailed calculations, he
proved that a larger amount of materials were not required compared to ra-
dial, radial-circumferential and other analyzed systems. Unfortunately, before
the structure was erected, and after Zalewski emigrated from Poland, his concept
of roof design was significantly modified, probably due to difficulties associated
with the elliptical roof shape. Eventually, the constructors used 120 conventional
2D cable-strut girders with inclined posts (Fig. 11b), which was a proven concept
known from industrial constructions.

Let us note that the entire construction of Spodek, including the inverted
dome and the large-scale roof, can be considered a tensegrity system. Similarly,
as in the case of Supersam, the structure effectively utilizes the balance of tensile
and compressive forces. The inverted dome, which constitutes the support for
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the stage and the grandstands, is subjected to significant circumferential tensile
forces caused by its self-weight and the weight of spectators. According to the
original concept of Zalewski, these tensile forces are balanced by a prestressed
steel ring located at the top of the dome. This ring is compressed by tensioned ca-
bles spanned orthogonally to the internal ring located in the center of the roof
(Fig. 12). Once again, the perfect balance of tensile and compressive forces and

a) b)

c)

d)

Fig. 12. a) Force diagram by E. Allen and D.M. Foxe (source: http://www.wz-
structure.org/#/spodek/); b) scaled wired model used by W. Zalewski for structural concept
testing (source: https://structurae.net/en/structures/spodek); c) external ring at the top of
the bowl (source: https://fotopolska.eu/195932,foto.html); d) internal ring at the center of the
roof suspended by tensioned cables (source: https://structurae.net/en/structures/spodek).
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elimination of bending appear to be the most essential features of Zalewski’s
design.

In summary, it can be stated that “Spodek” ingeniously combines the tenseg-
rity principle and Michell’s theory. The elements of the tensegrity principle can
be observed in the original Zalewski’s design of the large-scale roof and the con-
cept of prestressed ring balanced by tensioned cables. In turn, the correlation to
Michell structures is revealed in the original shaping of the structure aimed at
obtaining the desired distribution of internal forces as well as using orthogonal
members transferring compressive and tensile forces.

5. Applications to long-span bridges design

The Michell theory has also had an impact on the art of the optimal shaping
of bridges. Probably the most important results concern designing for a uniform
load over multiple spans [14], and optimal forms of very long-span bridges under
gravity loading [31]. The solution for the uniform load reveals that the topology
of the optimal structure strongly depends on the ratio of allowable stresses in
tension and compression. In the case of significantly larger allowable compressive
stresses, the optimal structure constructed over a single span resembles a mod-
ified design of the arch bridge; it contains a compressed arch, nearly vertical
hangers and reinforcement extending from the supports. By contrast, in the case
of significantly larger allowable tensile stresses, the optimal structure resembles
a modified design of a cable-stayed bridge; it is composed of posts inclined toward
the center of the span and long cables connecting the posts and the bridge deck.

In turn, the solution of the problem involving self-weight reveals that in-
dependently of the length of the bridge, the optimal structure contains pylons
split at an obtuse angle and hangers spanning to the deck. In [31] such opti-
mal structure is compared against less efficient structures: i) optimized triple
split-pylon design with one vertical and two skew members, ii) optimized dou-
ble split-pylon design with two skew members (approximation of the optimal de-
signs), iii) optimized cable-stayed design and iv) optimized suspension bridge
design. The increase in the volume of the subsequent structures appears to in-
crease with the length of the bridge. In particular, the increase in the volume of
double split-pylon design compared to optimal design is 1.07 and 1.12 for span
lengths of 1 km and 5 km, respectively. The analogous coefficients for the sus-
pended bridge equal 1.40 and 1.73. In addition, the above study reveals that the
design of the world longest suspension and cable-stayed bridges: Akashi Kaikyo
(span: 1991 m) and Russky Bridge (span: 1104 m) is highly non-optimal since
pylons height should be significantly increased.

An interesting type of bridge design, partially based on the above results
from Michell’s theory, combines the concept of a cable-stayed bridge with pylons
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and oblique cables with the concept of an arch bridge with vertical hangers.
An illustrative example of such structure is Seri Saujana Bridge in Putrajaya
(Malaysia), whose construction is based on inclined pylons and a steel arch.
The cables attached to the pylons support the middle of the deck, while hangers
attached to the arch support its edges (Fig. 13a). A similar design was used in the
Lianxiang Bridge in Hunan (China). In this case, the construction successfully
utilized straight H-shaped pylons and an arch constructed as a spatial truss
(Fig. 13b).

a)

b)

Fig. 13. Bridges combing cable-stayed and arch type of construction: a) Seri Saujana Bridge
in Malaysia (source: https://en.wikipedia.org/wiki/Seri_Saujana_Bridge#/media/File:Seri_
Saujana_Bridge_2009. jpg), b) Lianxiang Bridge in China (source: https://commons.wiki-

media.org/wiki/File:Lianxiang_bridge.jpg).

The designs following the above-presented concept of pylons splitting can be
found both among long-span road bridges and short-span pedestrian bridges.
An illustrative example of this is the split-pylon bridge “Flughafenbrűcke” near
Dűsseldorf airport (Fig. 14a). In this case, the designers’ objective was to modify
the classical construction of a cable-stayed bridge avoiding straight pylons due
to proximity of the airport and expected air traffic. For the required length of
the span of 287 m, the required total height of the straight pylon was 110 m. The
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a)

b)

Fig. 14. Untypical bridges with double split-pylon: a) Flughafenbrücke near Düsseldorf airport
(source: https://commons.wikimedia.org/wiki/File:Flughafenbrücke_der_A44.jpg ); b) foot-

bridge in Warsaw (photograph by the first author).

application of the double split-pylon with horizontal reinforcing member allowed
to reduce pylon height to 81 m, with similar material usage and total cost of
the bridge as in classical design. A smaller-scale example of split-pylon design
can be found in the footbridge at Żwirki and Wigury Street in Warsaw, which
is supported by central biforked pylon reinforced by steel cables (Fig. 14b).

6. Conclusions

Michell structures are nowadays a known concept to architects and structural
designers. Simplified versions of optimal Michell’s layouts are used to develop
innovative designs of high-rise buildings, large-scale roofs and long-span bridges.
In the case of buildings, Michell’s layouts are used to propose novel structural
systems resisting substantial bending forces caused by wind loads. In the case
of large-scale roofs, Michell’s theory is often applied together with elements of
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the tensegrity principle and it results in the interplay of tensile and compressive
forces. Eventually, in the case of bridges the similarity to Michell structures is
reflected in the application of the arch bridge and suspended bridge as optimal
structural forms, as well as in the application of atypical split-pylon form of
cable-stayed bridge. More detailed and further information on applications of the
theory of Michell structures in civil and mechanical engineering can be found in
the book [16].
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