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The solution of Stokes flow problems with Dirichlet and Neumann boundary conditions is performed
by a non-singular method of fundamental solutions (MFS) which does not require artificial boundary,
i.e., source points of fundamental solution coincide with the collocation points on the boundary. The
fundamental solution of the Stokes pressure and velocity is obtained from the analytical solution due to
the action of the Dirac delta- type force. Instead of Dirac delta force, a non-singular function called blob,
with a free parameter epsilon is employed, which is limited to Dirac delta function when epsilon is limited
to zero. The analytical expressions for related Stokes flow pressure and velocity around such regularized
sources have been derived for rational and exponential blobs in an ordered way. The solution of the problem
is sought as a linear combination of the fields due to the regularized sources that coincide with the boundary
and with their intensities chosen in such a way that the solution complies with the boundary conditions.
A numerical example for two-dimensional (2D) driven cavity and a flow between parallel plates are chosen
to assess the properties of the method. The results of the posed method of regularized sources (MRS have
been compared with the results obtained by the fine-grid second-order classical finite difference method
(FDM) and analytical solution. The results converge with finer discretisation; however, they depend on
the value of epsilon. The method gives reasonably accurate results for the range of epsilon between 0.1
and 0.5 of the typical nodal distance on the boundary. Exponential blobs give slightly better results than
the rational blobs; however, they require slightly more computing time. A robust and efficient strategy to
find the optimal value of epsilon is needed in the perspective.

Keywords: Stokes flow, regularized sources, rational blobs, exponential blobs, meshless method, driven
cavity problem, convergence study.

1. INTRODUCTION

Stokes or creeping flow is a type of fluid flow [1] where the inertial forces are small compared with
the viscous forces. This typically occurs in situations where the fluid velocities are very slow, the
viscosities are very large, or the length-scales of the flow are very small. Stokes flow occurs in many
natural and technological systems. In nature, for example, this type of flow occurs in swimming of
microorganisms as well as in the flow of lava. In technology, for example, Stokes flow is important in
the mushy zone of metal solidification in castings and in the flow of viscous polymers. Consequently,
Stokes flow appears also in a spectrum of biomedical situations such as the capillary blood flow
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in the cardiovascular systems and the capillary air flow in the lungs. The present research was
stimulated by the simulation needs in microfluidics [2].
The method of fundamental solutions (MFS) [3] has been widely applied in recent years to the

computational analysis of fluid flows. The MFS belongs to the boundary meshless methods. The
solution in MFS is represented by trial functions defined by fundamental solutions of the governing
equation. Their expansion coefficients match, in collocation or least squares sense, the boundary
conditions. Since the fundamental solution is usually singular, the source points are in general
not allowed to be placed on the boundary. Their position forms the so-called artificial boundary.
This represents the main disadvantage of the classical MFS, which is particularly pronounced in
geometrically complex and multi-region situations. The first ideas regarding how to overcome the
artificial boundary issue were presented by Young et al. [4], where the desingularization was per-
formed through the properties of double layer potential. Since 2006, several publications appeared
on the subject of non-singular MFS, treating the spectra of different partial differential equations.
Young et al. [5] developed classical MFS for 2D and three-dimensional (3D) Stokes flows, based on
the Stokes fundamental solution. Curteanu et al. [6] developed a classical MFS solution of Stokes
flow by using Laplace decomposition and Laplace fundamental solution. The pioneering develop-
ments of the non-singular MFS for potential flow, Darcy flow and Stokes flow appear in [7–9],
respectively. The desingularization was achieved by integration of the fundamental solution over
a small vicinity of the singularity. In the case of Neumann boundary conditions, reference solutions
need to be constructed for resolving the diagonal coefficients. Cortez desingularized the Stokes flow
fundamental solution by introducing smoothed sources instead of delta sources, which appear in
the classical fundamental solution, and, next, he applied this method to 2D [10] and 3D [11] flow
problems. The authors of this paper have recently derived the method for axisymmetric Stokes
flow problems [12]. Our approach was rederived for different types of boundary conditions as well
as external and internal Stokes flow problems. In this paper, we conduct a systematic sensitivity
study on the accuracy of the method as a function of the rational and exponential desingularization
function types and desingularization parameter, using the example of a driven cavity problem and
a flow between parallel plates.

2. GOVERNING EQUATIONS

Let us consider a fixed domain Ω with a boundary Γ filled with fluid that exhibits steady incom-
pressible Stokes flow with constant fluid viscosity. The boundary value problem is governed by the
following set of mass and momentum conservation equations:

∇ ⋅ v (p) = 0, (1)

−∇P (p) + µ∇2v (p) + f (p) = 0, (2)

boundary conditions of the Dirichlet type are

vς (p) = vς (p) ; p ∈ ΓD
ς , (3)

and the Neumann type are

∂vς (p) /∂pξ = vςξ (p) ; p ∈ ΓN
ξς , (4)

where p represents position vector, v velocity, P pressure, µ viscosity, f the body force, ΓD
ς Dirichlet

part of the boundary for coordinate ς, ΓN
ςξ Neumann part of the boundary for the coordinate ς and

derivative over coordinate ξ, respectively, and vς and vςξ stand for known boundary conditions
forcing functions. We seek the solution of the pressure and the velocity field in the Ω and unknown
parts of Γ.
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3. SOLUTION PROCEDURE

The Stokes flow solution in point p around the source of the type f (p, s) = f εφ (p − s) is given in
point s by

v (p, s) = [(f ⋅ ∇)∇ε
̂̂
φ (p − s) − f εφ̂ (p − s)]/µ, (5)

P (p, s) = f ⋅ ∇εφ̂ (p − s), (6)

with

∇2
εφ̂ = εφ, (7)

∇2
ε
̂̂
φ = εφ̂. (8)

In the case when the Dirac delta function δ (p − s) is selected for function εϕ (p − s), Eqs. (5)–(8)
give the well-known Stokes fundamental pressure and velocity. Let us Consider a 2D situation with
p = pxix + pyiy (pς and iς stand for Cartesian coordinates and base vectors, respectively). The
governing equations are thus as follows:

∂vx (px, py)
∂px

+ ∂vy (px, py)
∂py

= 0, (9)

−∂P (px, py)
∂px

+ µ(∂2vx (px, py)
∂p2x

+ ∂2vx (px, py)
∂p2y

) + fx (sx, sy) εφ (px, py, sx, sy) = 0, (10)

−∂P (px, py)
∂py

+ µ(∂2vy (px, py)
∂p2x

+ ∂2vy (px, py)
∂p2y

) + fy (sx, sy) εφ (px, py, sx, sy) = 0. (11)

Instead of selecting the Dirac delta function for the source shape, two different non-singular func-
tions called blobs [10] are introduced in this paper. The rational blob is

ε ratφ (p − s) = 3ε3

2π
(∣p − s∣2 + ε2)−5/2 ,

∣p − s∣2 = r2 = (px − sx)2 + (py − sy)2 ,
(12)

and the exponential blob is

ε expφ (p − s) = 1

πε2
exp(− ∣p − s∣2

ε2
) , (13)

where ε stands for the shape parameter. These functions have the same strength as the Dirac delta

function, ∫
Ω

δdΩ = 1, i.e.,

∞

∫
0

εφ (r(p − s))2πrdr = 1; r ∈ 2D, and they approach the Dirac delta
function when ε→ 0. The corresponding harmonic (7) and biharmonic equation (8) functions have
been obtained through the following formulas:

∇2
εφ̂(r) = 1

r

∂

∂r
[r ∂

∂r
εφ̂(r)] = εφ,

∂

∂r
εφ̂ = 1

r
∫ rεφ(r)dr + c1

r
,

εφ̂ = ∫ 1

r
[∫ rεφ(r)dr]dr + c1 log(r) + c2,

(14)
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∇2
ε
̂̂
φ(r) = 1

r

∂

∂r
[rε ∂

∂r

̂̂
φ(r)] = εφ̂,

∂

∂r
ε
̂̂
φ = 1

r
∫ rεφ̂(r)dr + c3

r
,

ε
̂̂
φ = ∫ 1

r
[∫ rεφ̂(r)dr] log(r) + c4.

(15)

The selection of c1 = 1/2π, c2 = 0, c3 = 3ε2/8π, and c4 = 0 gives the following harmonic and
biharmonic rational blobs:

εratφ̂ = 1

2π
{log [(r2 + ε2)1/2 + ε] − ε(r2 + ε2)−1/2}, (16)

εrat
̂̂
φ = 1

8π
{(r2 + 2ε2) log [ε + (r2 + ε2)1/2] − r2 − ε(r2 + ε2)1/2}. (17)

The selection of c1 = 1/2π, c2 = 0, c3 = ε2/8π, and c4 = 0 gives the following harmonic and biharmonic
exponential blobs:

ε expφ̂ = − 1

4π
Ei(−r2

ε2
) + 1

2π
log(r), (18)

ε exp
̂̂
φ = − 1

16π
{2r2 + e−r2/ε2ε2 + (r2 + ε2) [Ei(−r2

ε2
) − 2 log(r)]}, (19)

where Ei stands for the exponential integral function

Ei = − ∞

∫
−x

exp(−t)
t

dt. (20)

The derivation of Eqs. (18) and (19) is detailed in [13]. The coefficients c1, c2, c3, c4 in the integration
have been selected in such a way that the blobs are reduced to the fundamental solution of the
Laplace equation and biharmonic equation for ε→ 0

ε expφ̂
limε→0 = εratφ̂

limε→0 = 1

2π
log(r), (21)

ε exp
̂̂
φ

limε→0
= εrat

̂̂
φ

limε→0
= 1

8π
r2 [log(r) − 1]. (22)

The exponential and rational blobs for two desingularization parameters ε are shown in Fig. 1.
The boundary of the domain is discretized with collocation points pn, n = 1,2, ...,N , where the
desingularized sources with sn = pn and ε = ε (sn) are placed. The unknown forces fxn and fyn
in source points are determined from 2N × 2N system of linear equations in such a way that the
boundary conditions are satisfied. The system of equations has the following form:

Ax = b, Ajnxn = bj, j = 1,2, ...,2N, n = 1,2, ...,2N, (23)

A(2j−1)(2n−1) = ΥD
x (pj) cxxn (pj) +ΥN

xx (pj) cxxn,x (pj) +ΥN
xy (pj) cxxn,y (pj), (24)

A(2j−1)(2n) = ΥD
x (pj) cxyn (pj) +ΥN

xx (pj) cxyn,x (pj) +ΥN
xy (pj) cxyn,y (pj), (25)

A(2j)(2n−1) = ΥD
y (pj) cyxn (pj) +ΥN

yx (pj) cyxn,x (pj) +ΥN
yy (pj) cyxn,y (pj), (26)
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Fig. 1. Rational blob (left) and exponential blob (right).

A(2j)(2n) = ΥD
y (pj) cyyn (pj) +ΥN

yx (pj) cyyn,x (pj) +ΥN
yy (pj) cyyn,y (pj), (27)

x2n−1 = fxn, (28)

x2n = fyn, (29)

b2j−1 = ΥD
x (pj) vx (pj) +ΥN

xx (pj) vxx (pj) +ΥN
xy (pj) vxy (pj), (30)

b2j = ΥD
y (pj) vy (pj) +ΥN

yx (pj) vyx (pj) +ΥN
yy (pj) vyy (pj). (31)

The following boundary conditions’ indicators have been introduced in order to make the notation
compact:

ΥD
ς (p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1; p ∈ ΓD

ς

0; p ∉ ΓD
ς

; ς = x, y, (32)

ΥN
ςξ (p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1; p ∈ ΓN

ςξ

0; p ∉ ΓN
ςξ

; ς, ξ = x, y, (33)

as well as the following coefficients:

cxxn (p) = 1

µ

∂2

∂p2x
ε
̂̂
φ (p − sn) − 1

µ
εφ̂ (p − sn), (34)

cxyn (p) = 1

µ

∂2

∂pxpy
ε
̂̂
φ (p − sn), (35)

cyxn (p) = 1

µ

∂2

∂pxpy
ε
̂̂
φ (p − sn) , (36)
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cyyn (p) = 1

µ

∂2

∂p2y
ε
̂̂
φ (p − sn) − 1

µ
εφ̂ (p − sn) , (37)

cςξn,ζ = ∂

∂pζ
cςξn, ς, ξ, ζ = x, y, (38)

cxn (p) = ∂

∂px
εφ̂ (p − sn), (39)

cxn (p) = ∂

∂px
εφ̂ (p − sn). (40)

After calculating the forces from the system (23), the velocity components and pressure can be
determined as

vx (px, py) = N

∑
n=1
[cxxn (px, py) fxn + cxyn (px, py) fyn], (41)

vy (px, py) = N

∑
n=1
[cyxn (px, py) fxn + cyyn (px, py) fyn], (42)

P (px, py) = N

∑
n=1
[cxn (px, py) fxn + cyn (px, py) fyn]. (43)

4. NUMERICAL EXAMPLES

Example 1. Let us consider a rectangular cavity with dimensions px− ≤ px ≤ px+, py− ≤ py ≤ py+,
px− = py− = −0.5 m with px+ = py+ = +0.5 m. The boundary conditions are of the Dirichlet type
on all the four boundaries. The velocity is set to 0 m/s at the south, east and west boundaries,
and to vx = 1 m/s, vy = 0 m/s, at the north boundary. This setting represents the standard driven
cavity problem [14] with Stokes flow instead of the Navier-Stokes flow. The reference solution to
the problem is obtained by the classical second- order FDM on uniform 91 × 91 and 101 × 101
node arrangements. Both solutions are interpolated by the cubic splines to 501× 501 uniform node
arrangement. The root mean square (RMS) error between the solutions is then calculated by

L2 =
√

1

501 × 501 {[I501101 (vxi,j) − I50191 (vxi,j)]2 + [I501101 (vyi,j) − I50191 (vyi,j)]2}, (44)

where the function IN2

N1
[θ (p)] represents the cubic spline interpolation of the scalar function θ (p)

from the regular node arrangement N1 ×N1 to the regular node arrangement N2 ×N2. The RMS
error between the two obtained solutions is L2 = 6.22 × 10−4 and the maximum error is L∞ =
5.02 × 10−2 which confirms a reasonable mesh independence of the 101 × 101 solution that is used
in all subsequent comparisons. The discretization of the present method and the FDM is shown in
Fig. 2.
Figure 3 represents the sensibility of the solution as a function of the desingularization parameter.

A comparison of the fine-grid 101 × 101 FDM solution with the MRS solutions, based on rational
and exponential blobs, is given in Figs. 5 and 6, respectively. Convergence of the method with finer
boundary discretization is demonstrated. The variation of error in L2 norm with ε is assessed. We
found out that reliable results can be obtained in the cases 0.1∆ς ≤ ε ≤ 0.3∆ς, where ∆pς stands for
the nodal distance. The behavior of the solutions obtained by the rational and exponential blobs
is very similar.
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Fig. 2. Discretization schematics of the driven cavity problem. FDM (left) and MRS (right).

Fig. 3. L2 error of the MRS solution by using rational (top) and exponential (bottom) blobs versus 101×101
FDM solution as a function of ε (left) and as a function of the factor fε (right) between epsilon and nodal
distance (fε = ε/∆pς). The RMS error between the solutions is calculated on a uniform 501 × 501 node

arrangement.

Example 2. Let us consider a flow between two parallel plates with the dimensions px− ≤ px ≤
px+, py− ≤ py ≤ py+, px− = −5.0m, py− = −0.5 m with px+ = +5.0 m, py+ = +0.5 m. The boundary



296 S. Wen, K. Wang, R. Zahoor, M. Li, B. Šarler

Fig. 4. Comparison between MRS solutions, by using rational blobs with a uniform node arrangement
N = 800, ε = 0.001, and 101 × 101 FDM solution.

conditions are of the Dirichlet type on the four boundaries. The velocity is set to vx = vy = 0 m/s
at the south and north boundaries, and to vx = −∆P

2µ
(y − y−) (y+ − y) m/s, vy = 0 m/s, at the

west and east boundaries. The boundary conditions define a developed flow in the pipe with fluid
viscosity µ and pressure drop ∆P = −1 N/m2, set to µ = 1 kg/(ms) and ∆P = −1 N/m2. The
numerical solution is calculated for 2200 uniform nodes on the boundary (1000 on the north and
south boundaries, and 100 on the west and east boundaries). The root mean square (RMS) error
L2 between the solutions is calculated as a function of the shape parameter. The results are given

in Fig. 6. The analytical solution of the velocity derivative is
∂

∂py
vx = ∆P

µ
y m/s, and the velocity

derivative is evaluated at 101 points across the line py− ≤ py ≤ py+ at px = (px+ + px−) /2. All the
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Fig. 5. Comparison between MRS solutions, by using exponential blobs with a uniform node arrangement
N = 800, ε = 0.001, and 101 × 101 FDM solution.

figures below are arranged so that the upper figures represent rational blobs and the lower figures
represent exponential blobs.

Comparison of computing times of Intel Fortran code run on a modern PC by using ratio-
nal and exponential blobs gives the following results. Example 1 with 800 nodes and fε = 0.1
takes 0.83 s of computing time with rational blob and 1.15 s of computing time with exponen-
tial blob, respectively. Example 2 with 2200 nodes and fε = 0.6 takes 7.40 s of computing time
with rational blob and 9.63 s of computing time with exponential blob, respectively. The re-
lated rational blob solution in Example 1 has the RMS error of 2.55e-03, and in Example 2 the
RMS error is 8.35-06. The related exponential blob solution, in Example 1, has the RMS error
of 2.31e-03, and in Example 2 the RMS error is 4.24e-06. From the given numbers, one can see
that the exponential blob gives slightly more accurate results for a slightly higher computational
cost.
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Fig. 6. L2 error of MRS solution with rational (top) and exponential (bottom) blobs of vx as a function of
ε (left) and as a function of the factor fε (right) between epsilon and nodal distance (fε = ε/∆pς). The RMS
error between the solutions is calculated on a uniform 101 node arrangement across the line py− ≤ py ≤ py+ at

px = (px+ + px−) /2.

Fig. 7. L2 error of the MRS solution with rational and exponential blobs of ∂vx/∂py as a function of ε
(left) and as a function of the factor fε (right) between epsilon and nodal distance (fε = ε/∆pς). The RMS
error between the solutions is calculated on a uniform 101 node arrangement across the line py− ≤ py ≤ py+ at

px = (px+ + px−) /2.
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Fig. 8. Profile of vx (left) and ∂vx/∂py (right) calculated by MRS with rational (upper) and exponential
(lower) blobs and analytical solution, evaluated at N = 101, ε = 0.007 across the line py− ≤ py ≤ py+ at

px = (px+ + px−) /2.

5. CONCLUSIONS

The presented, in this paper, novel MRS is a very simple and efficient boundary meshless method
without artificial boundary. The solution is constructed through the superposition of the exact
solutions due to regularized sources placed on the physical boundary of the system. The coefficients
of the trial functions, obtained in this way, are requiring the solution to comply with the boundary
conditions. The method has been assessed for the first time for the problem involving the driven
cavity and the flow between parallel plates. A study of the performance of the method when using
different types of blobs: rational and exponential, has been performed. Accurate results can be
obtained when the regularization parameter scales with the typical nodal distance. In the future,
this method can be connected with a robust algorithm for an estimation of the specific optimum
regularization parameter for each of the boundary nodes separately. If needed, this would make
possible to obtain even more accurate results. Such an algorithm might be of the leave-one-out-
cross-validation-type [15], as recently demonstrated for the determination of artificial boundary
position in classic MFS. A development of the axisymmetric version of the formulation that would
cope with free and moving boundary problems such as the ones appearing between gas and liquid
(gas focusing micro-jets) is published in [12].
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