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This paper presents the design of flexible interfaces between finite element (FE) codes and solvers of linear
equations. The main goal of the design is to allow for coupling FE codes that use different formulations
(linear, non-linear, time dependent, stationary, scalar, vector) and different approximation techniques
(different element types, different approximation spaces — linear, higher order, continuous, discontinuous,
h- and hp-adaptive) with solvers of linear equations that use different storage formats for sparse system
matrices and different solution strategies (such as, e.g., reordering of degrees of freedom (DOFs), multigrid
solution or preconditioning for iterative solvers, frontal and multi-frontal strategies for direct solvers).
Suitable data structures associated with the design are presented and examples of algorithms related to the
interface between the FEM codes and linear solvers, together with their execution time and performance
estimates, are described.
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1. INTRODUCTION

The problem of optimal coupling of FE codes with solvers of linear equations can be ana-
lyzed from different perspectives. In the 1990s and 2000s this problem was investigated in the
context of new programming languages and paradigms — object- and component-oriented (see,
e.g., [1,2,9,22 23, 38]). Recently, the attention has been focused on the problem of efficiently
utilizing the new computer architectures such as GPUs, massively multi-core processors and het-
erogeneous clusters [10, 15, 18, 24, 31, 34]. These new architectures favour data structures for which
efficient vector accesses to data are enabled. For many codes such requirements induce the neces-
sity to design new data structures or to design suitable interfaces between the currently utilized
structures and the new ones.

Adaptive FE codes have to be equipped with sophisticated mesh data structures that allow
for mesh adaptations and, possibly, dynamic load balancing in the message passing execution
environments [7, 33]. Such data structures represent complex graphs that are difficult to transform
to linear structures required by massively multi-core architectures. Fortunately, the execution times
of operations related to mesh data are usually much smaller than the times associated with the
creation and solution of systems of linear equations during the typical FE simulations [4]. Hence,
for the efficient implementation of FE algorithms on modern hardware, only these two latter phases
require the use of suitable linear structures. Such structures have to be designed together with the
interface modules that translates the data from the FE mesh data structures.

The current paper is devoted to the description of one of such interface modules. First, the
assumptions concerning the data structures associated with the FE meshes are presented, followed
by the description of possible solver data structures. Then, a data structure is proposed for the
interface coupling mesh and FEM solver. Finally, the use of the proposed data structure in several
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operations during the FEM solution procedure is presented. To show the advantages of the proposed
design several computational experiments are performed for testing the performance estimates
derived for the new data structures. We draw the summarizing conclusions at the end of this paper.

2. FE MESH AND SOLVER DATA STRUCTURES

FE meshes are understood in the current article as combinations of purely geometrical objects
(termed “mesh entities”) with the FEM solution objects, i.e., the FE DOFs (FE solutions are
represented as the linear combinations of the FEM basis functions, and DOFs are the coefficients
of these combinations) [30]. For the most popular linear FEM approximations DOF's are associated
with the vertices of FEs, forming the FE nodes. For higher-order approximations, DOFs can be
associated with mesh entities of any type. In such a case, they are often called generalized nodes [13].
In the current paper, we use the notion of a DOF entity that corresponds to any mesh entity with
which a set of DOF's has been associated.

We concentrate on volumetric FEs and 3D problems (the application of the investigations in
the paper to 2D or 1D problems is straightforward) and, hence, we consider four types of mesh
entities: vertices, edges, faces (quadrilateral and triangular) and elements (tetrahedral, hexahedral,
prismatic, pyramidal). These entities are interlinked by several relationships of different kinds:
some entities belong to other entities, some entities are composed of other entities, some entities
are neighbours of other entities, and some entities are parents of other entities (i.e., they have been
divided into these entities, with the reverse relation of being a child entity).

To accommodate such diverse relations, complex data structures for mesh entities are de-
signed [32]. We assume that these data structures are stored in standard CPU memories that
are optimized for low-latency accesses.

Parallel to mesh data structures, the structures for storing the DOF's data are designed. They
are usually simpler, and with less relationships, but they must follow the changes to mesh data
structures induced by the FEM adaptivity processes. Hence, we also assume that they are stored
in CPU main memories (at least during the mesh adaptation processes).

We want to design such a FEM code-linear solver interface that minimizes the number of memory
accesses to the FE mesh and approximation data structures during the solution procedure. In order
to do that we analyse the process of solving a single FEM problem. Such a problem may constitute
a whole FEM simulation (but then, the problem of efficient execution may be of less importance) or
may form one step in complex iterative strategies for non-linear and/or time dependent problems.
We take into account the latter situation, since for such types of problems the efficiency of execution
becomes even more important factor.

The process of solving a FE system of linear equations can be divided into three phases: the
creating solver data structures, filling structures with particular problem data and solving the
obtained system [3]. For systems solved for the same mesh (and approximation) many times during
iteration processes, the same solver data structures can be reused, with only values of variables
changed. Hence, the first phase of the process should be clearly separated in the design of solver
interface modules. Similarly, the second and the third phases should be separated due to the fact
that the second phase involves interactions between the FEM code and the solver, while the third
phase is usually performed independently by the solver of linear equations.

Different solvers for the FE systems of linear equations, direct as well as iterative, can have
different forms, especially when they are designed for complex problems and approximation
types [8, 28, 29]. Nevertheless each such a solver has to use the entries obtained by integration
(usually numerical) of the terms from the weak statement of the approximated problem. The in-
tegration is performed over the whole computational domain, divided into FEs, using the locally
polynomial shape functions. The calculated entries contribute to the global system of linear equa-
tions, but in different solution strategies they may be used in several different ways. Contributions
from an integration performed for a single element can be used separately or can be grouped into
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an element stiffness matrix and an element load vector. They can be used “on-the-fly”, just after
calculating, in explicit or matrix-free methods [10, 19], they may be left in the form of element
data structures for the use of frontal and multi-frontal solvers [27] or they may be assembled into
a global, sparse system matrix and a vector of right-hand side.

In each case, the most important information associated with each individual entry is its position
in the global system of linear equations. For each entry in the system matrix (and correspondingly
in the right-hand side vector) its row and column positions must be specified. The form of this
information is usually called “local to global” mapping, reflecting the essential meaning: at which
position a given entry, obtained locally and hence having some local position, related to the local
numbering of DOFs, should be assembled in the global system of equations. In traditional FE codes,
a “local to global” mapping is related to the local and global numbering of FE nodes (usually vertices
of FEs, see, e.g., Fig. 1). We adopt a more general perspective, where the global to local mapping
explicitly reflects the relation between positions in local and global data structures.
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Fig. 1. Illustration of the FE assembly process.

We present a design of data structures and some related algorithms for storing the “local to
global” mapping data. The proposed data structures can be used in different strategies of using
integrated terms in the FE solution procedures. In the examples of practical applications, we
concentrate on a situation, typical for FE codes, where the system matrix and right-hand side
vector entries are obtained by the summation of contributions related to individual FEs. Small,
dense element matrices and vectors are produced by the FE part of a code and should be submitted
to the solver with the suitable information about the positions at which they should be assembled
into the global structures.

3. FE ASSEMBLY PROCESS
3.1. Global matrix storage formats

The input to the FE assembly is formed by element system matrices and right-hand side (RHS)
vectors. Their entries are added at proper places in the global system matrix and the right-hand
side vector. The global vector of unknowns forms the third part of the system of linear equations.
A single entry in the FE global vector of unknowns corresponds to a single DOF. The corresponding
row of the global system matrix and the corresponding entry in the global right-hand side vector
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contain data related to this DOF. Similarly, due to properties of the FE approximation, each column
of the system matrix also corresponds to a single DOF (see Fig. 1). As a result, each entry in the
global system matrix corresponds to a pair of DOFs. The appearance of non-zero entries in the
system matrix is related to properties of the FE approximation: DOF's, forming a pair for which
a non-zero entry exists, are associated with the mesh entities that are close to each other in the
mesh (including the case of DOF's associated with the same mesh entity). For such DOFs and DOF
entities we say that there exist the relation of neighbourhood between them (hence, for each pair of
neighbouring DOFs or DOF entities there exist one or several non-zero entries in the global system
matrix). Since each mesh entity is close to only several other mesh entities, the system matrix is
sparse and a single row in the matrix has usually at most several tens of non-zero entries (or several
hundreds for vector problems and/or higher-order approximations). Since for large scale problems
the total number of DOFs easily exceeds several millions, the number of non-zero entries may be
smaller than 0.01%.

There are many storage formats for sparse matrices [6], row or column oriented, for single entries
or blocks of entries, or even special hybrid formats developed recently for the GPU solvers [21]. All
these formats are used in practice and their optimality depends on many factors. There is no single
format considered optimal for all problems solved, approximations used and hardware employed.
There are, however, several formats, such as COO, CRS or CCS [6], which are frequently used, due
to their simplicity and flexibility. They are also often used as base formats for more sophisticated
storage options [20], which are often designed with special functions to effectively transform sparse
matrices from the base formats.

3.2. CRS storage format

We concentrate on one such format — the compressed row storage (CRS, sometimes also called
compressed sparse row, CSR) [6]. In this format, all non-zero entries in a matrix are stored con-
tiguously in one array, usually named val, row by row. The second array, named usually row_ptr,
stores for each row the position of its first entry in the val array, while the third array, named
col_ind, stores for each entry in val its column index. The format was designed with the purpose
of efficiently performing the matrix-vector products for sparse matrices. The basic algorithm for
the CRS (with several details omitted) looks as follows:

for(row=0; row<number_of_rows; row++) {
for(i=row_ptrl[row]; i<row_ptr[row+1]; i++) {
ylrow] += valli]l * x[ col_ind[i] ];

)

One of the advantages of the CRS format is that the matrix-vector product presented above
allows for easy and efficient parallelization, since the outer loop over rows has no dependencies.
The CRS storage is also used for many direct solvers (such as, e.g., open source solvers PARDISO,
SuperLU) as the base storage option. In the article we assume the CRS format as the base format
for storing the FEM global system matrices and concentrate on assembly using the CRS, leaving
the question of adapting to other formats to specialized solver procedures.

3.2.1. Iterative solvers and preconditioning with CRS

Despite enabling the efficient parallel execution of matrix-vector product, the CRS format allows
also for efficient implementation of other important operations, e.g., operations related to precondi-
tioning, which form a crucial ingredient of popular Krylov space iterative solvers, like preconditioned
conjugate gradient or GMRES. As an example, we show the possibility of implementing the widely
used Gauss-Seidel preconditioning that we employ in our computational experiments reported later
in the paper.
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The original Gauss-Seidel algorithm for solving systems of linear equations

N
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uses subsequent iterations, repeated until convergence, and a loop over subsequent rows of the
system matrix for a single iteration. For k-th iteration, the operations for i-th row looks as follows:
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Using the CRS format the algorithm (with several details omitted) can be implemented as

for(row=0; row<number_of_rows; row++) {

for(i=row_ptr[row]; i<diag_ptr[row]; i++) {
x[row] += vall[i] * x[ col_ind[i] 1;

}

for(i=diag_ptr([row]+1; i<row_ptr[row+1]; i++) {
x[row] += vall[i] * x[ col_ind[i] 1;

}

x[row] = ( blrow] - x[row] ) * diag_precon[row]

3

The only additional data structures required are: diag ptr array storing, for each row, the position
of the diagonal entry in the val array and the diag precon array storing inverted diagonal entries
of the system matrix. We use this algorithm directly for preconditioning, without splitting into the
matrix-vector product and triangular solution.

The algorithm above does not allow for direct parallelization, because of the real data de-
pendency in each iteration over rows of the system matrix. There are several approximate par-
allelizations [35], in our computational experiments we employ the variant based on the domain
decomposition paradigm. We parallelize the loop over rows in the straightforward manner (e.g.,
using “parallel for” OpenMP directive), but assume that each thread operates on its own copy
of the vector x. The management of separate copies of x for different threads creates an overhead
of parallel computations, while the convergence of the algorithm deteriorates, since each thread
performs its operations independently (in the additive Schwarz or block-Jacobi manner).

For other forms of preconditioning and the use of the CRS storage format we refer to [6, 16, 35].

3.3. The “local to global” mapping

The input to the assembly procedure is formed by the element system matrices. Each entry in
a local system matrix has its local indices. The question that we want to address is: how to find
global indices for such an entry?

We start by simple observation that each such an entry corresponds to a pair of DOF entities.
If these DOF entities have only a single DOF associated with them (as it is, e.g., in the case for
scalar problems and linear approximation with element vertices, being DOF entities), the global
row and column indices may be taken from the global identifiers of DOF entities (FE nodes). The
situation becomes more complicated, when the DOF entities have more DOFs associated with them
(forming a single vector, as we further assume), which is the case, for example, for higher-order
approximations and /or vector problems. In such situations we adopt a simple rule stating that each
single DOF has an identifier composed of a pair: the identifier of the corresponding DOF entity
and the position in its vector of DOFs.

Another difficulty related to higher-order approximations is that DOFs are associated with
different types of mesh entities. Usually each type (vertices, edges, faces, elements) has its own
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global numbering and, hence, a single global numbering of DOF entities has to be established by
some convention. The convention that we adopt is again simple: an identifier for each DOF entity is
composed of an identifier of the associated mesh entity and an identifier of the type of mesh entity.

The final problem that we address is related to the specific properties of adaptive codes. In many
designs, the so-called constrained approximation [14] is applied, in which not all DOF entities that
are used in the computations of local system matrices (in the procedure of FE numerical integration)
are present in the final global solution procedure. This is the case, e.g., for, so-called, hanging nodes
or other DOF entities, for which the values of DOF's are not computed as the global FEM solutions,
but are interpolated using the values associated with the neighbouring DOF entities.

The information on constrained approximation can be applied either at the local level, when
forming element matrices, or at the global level. The latter solution requires that the global system
matrix is assembled for all DOF entities and then certain rows and columns are distributed among
other rows and columns (the process corresponding to the interpolation of the values associated
with the constrained DOF entities using the values of other DOF entities). This process means
that the storage form of the global system matrix changes, the number of rows and columns is
reduced, and a set of operations is performed on a compressed structure of the global system
matrix.

However, we choose another strategy. Each local, element matrix in which the constrained
DOF entities are present is rewritten prior to the assembly, in such a way that only uncon-
strained DOF entities are represented in local systems [14]. The advantage of this strategy is that
the modifications are performed on small dense matrices and, hence, should be faster than modifi-
cations of large, sparse, compressed structures. In effect, all DOF entities that are associated with
local systems, have their associated rows and columns in the global system of equations. Moreover,
we assume that the information on local to global mapping (at that moment referring to the global
numbering of DOF entities in the mesh) for rows and columns of the local matrix does not come
from simple numbering of mesh entities composing the element, but has to take into account also
the constraints. As a result, this information must be directly incorporated in the interface between
the solver and the FEM approximation part, i.e., the routine that supplies the solver with element
matrices, must also supply it with arrays storing the local to global information. This solution
should have additional advantage of simplifying the assembly process.

The final strategy that we adopt in our investigations is the following. The FEM part of a code
supplies the solver part with local element system matrices and right-hand side vectors. For each
entry its local indices are induced from the position in the supplied data structures. Additionally,
the FEM part supplies for each entry information that is further used for establishing the global
numbering of DOFs. This information is composed of types and global identifiers in the FE mesh
of the associated DOF entities. Based on this data, the module responsible for coupling the FEM
part with a solver of linear equations produces a unique linear global numbering of DOFs for the
solver.

The final numbering of DOFs may be optimized in different ways for different solvers, iterative
as well as direct, with the numbering of DOF's for the latter having significant impact on their
performance [36]. In our setting, the interface module between the FEM approximation code and
the linear solver first creates a provisional numbering and then applies any form of renumbering
to establish the final, optimized for the selected solver, global numbering that is also used in the
assembly process.

4. PRACTICAL IMPLEMENTATION

In this section, we present a simple implementation of the presented ideas for flexible coupling of the
FEM approximation related modules with solvers of linear equations in FE codes. We concentrate on
data structures, using C notation, but the presentation leaves the question of selecting programming
language and environment as well as further modifications and enhancements, open.
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We assume that the whole information provided by the FE part of the code is contained in
arguments of the procedure returning element stiffness matrices and load vectors. The interface of
such a procedure may look as follows:

return_local_stiff_mat( /* procedure returns stiffness matrix (SM) */
/* and load vector (LV) for some mesh entity */

int Mesh_entity_id, /* in: unique identifier of the mesh entity */

int Control, /* in: indicator for the scope of computations: */
/* PDC_NO_COMP - do not compute anything */
/* PDC_COMP_SM - compute entries to stiff matrix only */
/*  PDC_COMP_RHS - compute entries to rhs vector only */
/*  PDC_COMP_BOTH - compute entries for sm and rhsv */

int* Nr_dof_ent, /* out: number of DOF entities associated with SM and LV */
int* List_dof_ent_type, /* out: list of types for DOF entities */

int* List_dof_ent_id, /* out: list of IDs for DOF entities */

int* List_dof_ent_nrdofs, /* out: list of no of dofs for DOF entities */
double* Stiff_mat, /* out(optional): stiffness matrix */

double* Rhs_vect, /* out(optional): right hand side (load) vector */

)

The procedure allows the FEM part of the code to provide arbitrary numbering of DOF entities,
separate for each type (vertex, edge, face, element interior) with the only assumption that each
DOF entity is associated with a unique pair: type and ID. For higher-order approximations and/or
vector problems the number of scalar DOFs associated with a single DOF entity is arbitrary and
the solver usually treats them as a single block (vector). In each practical implementation some
conventions must be applied for associating the order of DOFs on the returned lists with the order
of stiffness matrix and load vector entries.

The presented design assumes that the procedure for returning stiffness matrices is used twice:
first, it does not provide the actual stiffness matrix and load vector entries, but only lists of DOF
entities. At this stage, it is used for creating the FEM code-linear solver interface data structure
that is used for preparing the final numbering of DOFs. Then, in the stage when stiffness matrix
and load vector entries are calculated the structure is used, either in the assembly process or in
other forms of using computed entries.

The basic proposed data structure for the interface module is the following:

typedef struct{

int dof_ent_type; /* type of the associated FEM code (mesh) entity x/
int dof_ent_id; /* ID of the associated FEM code (mesh) entity x/
int nrdofs; /* number of single (scalar) DOFs *x/
int pos_glob; /* position in the global RHS vector, denoting *x/

/* also the row of the global system matrix x/
int nrneig; /* number of neighbouring entities/blocks x/
int* 1_neig; /* list of neighbouring DOF entities (structures) *x/
int* 1_neig bl; /* list of their positions in the global RHS vector, */

/* denoting also the columns for non-zero entries x/

} sit_DOF_struct;

Such a data structure (that we further call "DOF structure”) is associated with each DOF entity.
The number of DOFs associated with a DOF entity is stored in the nrdofs field. It is assumed that
all such DOFs form a single small vector and that this vector is included in the global vector
of unknowns. As a consequence, from the perspective of the proposed data structure, the global
vectors of unknowns and right-hand side are composed of linear blocks (as a special case, these
blocks can have one DOF'), while the global system matrix is made of quadrilateral blocks. This
storage is especially useful for higher order and hp-adaptive finite element approximations [30].
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A DOF structure corresponding to a single DOF entity corresponds to a block of rows of the
global system matrix. Non-zero entries in the block of rows form quadrilateral blocks with their
column indices, derived from the data related to the neighbouring DOF entities, stored in [_neig_bl
array. In that way, the interface is ready to present to a solver a graph like structure (using adjacency
information) representing the non-zero pattern of the global stiffness matrix. In order to do so, first,
a global numbering of all DOFs must be obtained. This is necessary for vector problems, higher-
order approximations and non-consecutive numbering of DOF entities by the FEM part of the code.
Then, having the provisional ordering, a renumbering algorithm can be applied, in order to produce
optimal ordering from the solver point of view (for solvers that perform the final renumbering by
themselves this step is skipped).

4.1. Assembly process for CRS format

The FEM code supplies the linear solver with the element system matrices and right-hand side
vectors, e.g., by using the interface procedure presented in Sec. 4. The lists supplied by the FEM part
of the code are used by the interface module to find the DOF structure (of type sit DOF_struct).
Then for each local DOF entity the position in the right-hand side vector, pos_glob, being also the
row and the column in the global system matrix, is directly retrieved from the DOF structure.

Finding the final position for each local matrix entry in the global system matrix stored in the
CRS format requires a linear search — knowing the global column index for an entry, the part of
col ind array has to be searched to find the position of the entry in the CRS val array. The
pseudo-code for the main part of the assembly process (again with many details omitted) looks as
follows:

for(local_row=0; local_row<size_of_local_SM; local_row++) {

global_row = ... // find the global row based on global position pos_glob
for(local_col=0; local_col<size_of_local_SM; local_col++) {
global_col = ... // find the global col based on global position pos_glob

for(i=row_ptr(global_row); i<row_ptr(global_row+1); i++) {
if (col_ind[i]==global_col){
val[i] += local_SM[local_row, local_col];
break;

Prr}

Here, the lines where the use of pos_glob variable is indicated, require the application of the DOF
structure, where global positions for each DOF in the final element mesh after renumbering have
been stored.

It is possible to get rid of the search during the assembly process. Additional arrays can be
created, prior to assembly, in the phase of creating the system of linear equations, which directly
store the position in the val array for each entry in the local system matrix. During a creation of
such arrays the search is performed in a similar way as in the assembly above:

for(local_row=0; local_row<size_of_local_SM; local_row++) {

global_row = ... // find the global row based on global position pos_glob
for(local_col=0; local_col<size_of_local_SM; local_col++) {
global_col = ... // find the global col based on global position pos_glob

for(i=row_ptr(global_row); i<row_ptr(global_row+1); i++) {
if(col_ind[i]==global_col){
int jaux = local_row+local_col*size_of_local_SM;
Assembly_table[mesh_entity_id, jaux] = i;
break;

rrr}
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Thanks to this, the final assembly is simplified, becoming a straightforward matrix rewriting
with indirect addressing in val for each entry:

for(local_row=0; local_row<size_of_local_SM; local_row++) {
for(local_col=0; local_col<size_of_local_SM; local_col++) {
int jaux = local_row+local_col*size_of_local_SM;
int icrs = Assembly_table[mesh_entity_id, jaux];
val[icrs] += local_SM[local_row, local_col];

I

However, there is a price paid for this simplification in the form of the increased storage required
for the arrays storing assembly data, as well as the additional time for creating the arrays. The
size of arrays depends on the number of elements in the mesh and the number of DOF's associated
with a single element. Hence, it scales linearly with the problem size.

During the assembly procedure the arrays Assembly table and local SM are accessed with
the unit stride which is advantageous, especially when the hardware optimized for stream pro-
cessing, such as GPUs, is used. The array val is accessed using the indirect addressing, but after
suitable renumbering, the accesses for a single row of local stiffness matrix may lie closely to each
other in the memory storing val.

4.2. Parallel assembly

Numerical integration in the FE codes is a perfectly scalable procedure for parallel execution.
However, this is not the case for the assembly phase. Usually several entries from different elements
contribute to the same entry in the global stiffness matrix. To avoid the race condition several
strategies can be implemented [10]. One of the most popular, employed also in the computational
experiments described later in the paper, uses coloring of elements. Elements are colored in such a
way, that the elements having the same color do not contribute to the same entries in the global
element stiffness matrix. Then, the loop over all elements in the integration and assembly processes
is split into two: the outermost loop is performed over all colors in the mesh, while the innermost
loop that is perfectly parallelized, is done over the elements of the same color.

5. POSSIBLE PERFORMANCE GAINS FOR FE ASSEMBLY AND SOLUTION
OF LINEAR SYSTEMS

As it can be seen from the original assembly algorithm, the main operations (from the performance
point of view) are done in the innermost loop, indexed by i, over entries in one row of the global
system matrix and include:

e retrieving the column index of an entry in the global system matrix from the col_ind table —
with the accesses to consecutive memory locations,

e comparing the column index in the global system matrix with the column index of the considered
entry provided by the interface module as input to the assembly procedure,

e when both indices are equal, storing the proper element matrix value in the CRS array val.

The last operation is performed once per each matrix entry and, hence, the computational cost
of rewriting the entries is determined by the three accesses to memory, from which accesses to
the element matrix should be mostly realized using L1 cache (the element matrix should fit into
several cache lines and almost always fits into L1 cache). The accesses to the global system matrix
may include more L1 and even L2 (or L3) misses, depending on the structure of the matrix that
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is always sparse, but with the sparsity pattern determined by the FEM mesh, approximation and
even weak statement of the problem solved.

The cost above has to be paid by all assembly algorithms. When optimizations are applied,
which involve special assembly tables aimed at removing the search over all entries of a given row
of the global system matrix, the costs of the first two operations in the assembly algorithm can
be eliminated. What can be gained in this case? The operations comprise of several accesses to
memory and several comparisons per each assembled entry. Usually, memory accesses are much
more expensive than comparisons, hence it may happen that removing comparisons will have no
impact on performance. For memory accesses, one can expect that due to the fact of accessing
subsequent memory locations, they can be again mostly realized using L1 cache.

When an assembly array is used, instead of several memory accesses and comparisons, one
memory access for an index in the CRS matrix is done. The actual gains can be computed when
data on the sizes of local matrices, the sparsity pattern of the global matrix as well as information on
performed compiler optimizations together with details of the cache organization and performance
are given. For typical sizes of local matrices with one row fitting in a single or at most several cache
lines, the performance gains of only several tens of percents can appear, with even lower values
possible for large FEM matrices (local and global), when more cache misses are induced during
rewriting the matrix entries. However, the large number of factors influencing the final performance
of the algorithm may result in a much larger performance increase.

The solver interface module allows also for performing arbitrary DOF renumbering. The perfor-
mance gains associated with renumbering depend on the particular solver algorithms. For example,
for many iterative solvers, the most time consuming operation is the matrix-vector product, pre-
sented for the CRS storage format in Subsec. 3.1.

In this case, the significant portion of execution time is spent on retrieving the values of the
vector x, for which indirect addressing is used. Renumbering can change the order of DOFs in
the vector of unknowns in order to reduce the bandwidth of the global system matrix, and by this
reduce the number of cache misses when accessing the vector x. The exact estimates for performance
gains once again depend on the actual structure of the global matrix, but one can expect reduction
of execution time from several to several tens of percents.

6. COMPUTATIONAL EXPERIMENTS

We present two computational problems, the first shows the performance of the proposed solutions
and the second demonstrates its flexibility (the initial form of the interface was also used for hp-
adaptive approximations described in [30]). To test the performance of the proposed FEM solver
interface module, a simple Poisson problem in the unit cube was selected. The number of elements
with linear approximation was equal to 782 336, with the number of faces with Neumann boundary
data (for which the numerical integration and assembly was also performed) equal to 206 592. The
number of unknowns (being also the number of rows of the global stiffness matrix) was equal to
446 265, with 8 608 425 non-zero entries in the system matrix. Hence, the average number of non-
zero entries per single row of the global stiffness matrix was 19.29 (with the ratio of non-zero entries
to the full size equal to 0.004%).

For this problem, several experiments have been conducted using a standard workstation with
Intel Core i7 4790 processor, 4 DIMMs of 1600 MHz, 12800 MB/s, DDR3 RAM (in dual channel
configuration) and Linux operating system (CentOS 7 with 3.10.0 kernel). Since the arithmetic
performance of the processor is of less importance for the algorithms that we investigate (with the
performance of execution bounded by the speed of memory accesses), we establish the performance
of the processor in the STREAM benchmark [25] as the reference performance. The benchmark
consists of several simple loops, e.g., for the COPY test case it is:

#pragma omp parallel for
for (j=0; j<N; j++) c[jl = aljl;
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When compiled for large enough values of N (in our experiments we set N = 20000000), with
proper parallelization and vectorization options, it is often used to indicate the memory bandwidth
possible to be obtained for a given hardware in real-life applications (as opposed to theoretical
limits).

The Intel Core 17 4790 processor has four cores with hyperthreading, thus the standard reference
number of threads is equal to 8. The STREAM COPY benchmark (representative for testing
assembly algorithm) gives the bandwidth around 23 GB/s, which translates into an average access
time for a single double precision value close to 0.32 ns (the theoretical maximal bandwidth is
25.6 GB/s). Since the STREAM tests consist of operations on huge arrays, with the optimal use of
all cache levels and prefetching, in the case of assembly, where there are thousands of small matrices
rewritten to a single array, with indirect addressing and accesses not necessarily for subsequent
locations in memory, the performance that is several times lower can be expected (for random
accesses to memory the average access time can be several dozen times longer than for optimal
accesses, such as in the STREAM tests).

For this problem and the hardware, the main phases of the FEM solution procedure were per-
formed with their wall-clock execution times measured using system tools (gettimeofday Unix sys-
tem call). To test the performance of assembling we used the interface coupled with a Gauss-Seidel
preconditioned GMRES iterative solver. The execution times for the main phases of calculations
are presented in Table 1 (for all the cases with multiple threads the GMRES solver converged in 77
iterations, while for the sequential run it required 76 iterations for convergence, i.e. in our case, the
reduction of the initial residual by the factor 10'2). For parallel multithreaded runs, the integration
and assembly phases were preceded by the coloring algorithm with the duration around 1.7 sec.

Table 1. Execution time (time) and the related parallel speed-up (pspd) for different solution phases
and the Poisson test case (782336 elements, 446 265 unknowns).

Number of threads
1 2 4 8
Phase of calculations time pspd time pspd time pspd time pspd
Integration 2.898 - 1.484 1.95 0.774 3.74 0.688 4.21
Assembly 0.232 - 0.121 1.92 0.065 3.57 0.044 5.27
Total matrix creation | 3.203 - 1.657 1.93 0.882 3.63 0.809 3.96
Iterations 1.329 - 1.102 1.21 1.036 1.28 1.087 1.22
Total solver 4.622 - 2.839 1,63 2.008 2.30 1.986 2.33

For the assembly, two variants were tested — with and without assembly tables (the times for
the former are included in Table 1). The total number of assembled entries in all element (and
face) stiffness matrices was equal to 41534976. From the results in Table 1 it can be seen that,
in a memory intensive assembly algorithm, the bandwidth of CPU-memory bus is almost fully
exploited for 4 threads. Hence, we obtain a reasonable speed-up of 3.57 for 4 threads, while for
8 threads, the speed-up remains at 5.27, the value much lower than the perfect 8. The final average
access time for a single scalar value (assuming four memory accesses per single entry assembled into
the global system matrix) was equal to 0.28 ns, equivalent to the bandwidth close to 25 GB/s (since
three memory accesses are done with double-precision values and one with integers). This result
is very good, comparable to the best results from the STREAM benchmark and the theoretical
bandwidth. The explanation for this fact may be related to the relatively large size of the processor
cache memory (8 MB), with possibly some percentage of val entries retrieved from cache and
not from the main memory during the calculations. Nevertheless, the algorithm shows good use of
multithreading, with the assembly result for 8 threads still better than for 4 threads, while for the
STREAM tests the results for 8 threads were the same as for 4 threads (and even for 2 threads).
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For the case without assembly tables, the execution times for the assembly phase were respec-
tively: 0.228 for 8 threads, 0.281 for 4 threads and 1.049 for 1 thread. Hence, despite the fact of
relatively small changes in the source code with theoretically possible small impact on performance,
the execution times were several times longer than when the assembly tables were used. This con-
firms the fact, well known in the HPC community, that even small changes in memory management
can have a profound impact on the performance of codes.

In order to show the importance of reordering we present the results for the same problem,
but on a smaller mesh with 97792 elements and the system of equations with 62845 unknowns.
We use the presented interface coupled with the PARDISO direct solver [36], employed without
internal reordering. The original numbering of DOF entities, provided by the FEM part of the
code, resulted in the half-bandwidth of the system matrix equal to 62760. This strongly suboptimal
ordering resulted in the solution time of 915 sec. After applying the reverse Cuthill-McKee (RCM)
algorithm for bandwidth reduction [11], the half-bandwidth of the system reduced to 616 with the
solver producing results just after 2.39 sec.

This example shows a situation, to certain extent, artificial since all popular direct solvers
employ internally some form of renumbering. However, when the PARDISO solver is used with
internal reordering for the same problem and the larger mesh with the problem size of 446 265,
the reported execution time 4.45 sec includes 0.48 sec spent for reordering. This 10% of the time
can be saved, when the internal solver reordering is switched off and the assembly is performed for
already renumbered DOFs in the manner proposed in the paper.

The second example problem is the coupled simulation of incompressible fluid flow and heat
transfer — the buoyancy driven flow in a cube cavity [12]. Similarly to the previous example, this test
case is solved using the ModFEM code [26], in which the presented interface has been implemented.
We present here neither the details of the FE formulation nor the results of calculations, but
concentrate solely on the coupling between the FE part of the code and the solvers of linear
equations.

The simulation consists of certain number of time steps (using the implicit Euler method),
with several Picard’s iterations to solve the non-linear problem at each time step. The iterations
are performed alternately for each of the coupled problems with the proper information exchanged
between the problems. In each iteration, a system of linear equations is solved. For the heat problem
the problem is scalar, hence the number of DOFs for each DOF entity is 1, while for the vector
Navier-Stokes problem the number is 4 (due to the used SUPG stabilization [5, 17]).

To test the flexibility of the approach two different solvers were used for each of the coupled
problems, both employing the same interface presented in the paper. The heat problem was solved
using the direct PARDISO solver (employing the CRS format), while the Navier-Stokes problem was
solved using the iterative solver developed in-house for ModFEM. For the latter, the preconditioned
GMRES method was applied with the ILU(1) preconditioning and the BCRS storage format.

The h-adaptivity was used for increasing the accuracy of the results, with derivative recovery
error estimates for both problems [37]. The results are reported for the third consecutive adapted
mesh with 670738 elements and 363 784 nodes, which resulted in 363 784 unknowns for the heat
problem and 1358 768 unknowns for the incompressible fluid flow problem.

For each new mesh, the solver interface prepares the new data structures described in the
paper (including the base data structure together with assembly tables and element coloring data
structures). Then, for consecutive time steps and non-linear iterations, the same data structures
are reused.

The reported execution times are presented in Table 2. The first observation is that the only
algorithm that benefits from hyperthreading is assembly. For all the other, the execution times for
8 threads remain close to those for 4 threads, with even some results deteriorating (this concerns
especially the ILU(1) decomposition). When up to 4 threads are used for the 4-core hardware,
some algorithms exhibit good and some poor scaling. The coloring algorithm that scales poorly was
always used in its sequential version (it took approximately 1.68 sec). The same concerned ILU(1)
iterations (forward reduction and back substitution). The ILU(1) factorization scaled poorly and



Design of interface modules for flexible coupling of finite element codes... 15

Table 2. Execution time (time) and the related parallel speed-up (pspd) for different solution phases
and the buoyancy driven cavity flow test case (670 738 elements, 363 784 nodes).

Phase of calculations Number of threads
1 2 4 8

Navier-Stokes problem time pspd time pspd time pspd time pspd
Integration 21.080 - 10.595 1.99 5.553 3.80 5.093 4.14
Assembly 1.007 - 0.505 1.99 0.266 3.79 0.210 4.80
Total matrix creation 22.176 - 11.197 1.98 5.916 3.75 6.245 3.55
ILU(1) factorization 56.729 - 39.684 1.43 42.510 1.34 75.990 0.75
Iterations 7.601 - 7.377 - 7.410 - 8.917 -
Total solver 86.646 - 58.395 1.48 55.954 1.55 91.302 0.95
heat transfer problem time pspd time pspd time pspd time pspd
Integration 4.127 - 2.107 1.96 1.098 3.76 0.997 4.14
Assembly 0.180 - 0.096 1.88 0.050 3.60 0.035 5.14
Total matrix creation 4.361 - 2.260 1.93 1.179 3.70 1.072 4.07
Direct solution 25.690 - 16.869 1.52 13.785 1.86 14.317 1.79
Total solver 30.180 — 19.260 1.57 15.074 2.00 16.138 1.87

only for 2 threads, the direct solver scaled slightly better, but still with the results for 4 threads
being only slightly better than for 2 threads. As before, the integration and assembly procedures
described in the paper scaled almost perfectly.

7. CONCLUSIONS

The main motivation for the introduced mechanisms in the interface modules between the FEM
codes and solvers of linear equations was to increase the flexibility of the interface. The presented
design can accommodate different FEM meshes and approximations (including hp-adaptive) as well
as different storage formats for solvers. In addition, it does not require the FE code to produce
optimal ordering of DOF's, can take any ordering as input to the interface, perform reordering in
the interface module and create matrices for the solver already using the optimal numbering, so
the time consuming procedure of rewriting a sparse matrix in compressed format is avoided. The
adjacency graph of FE model is constructed in the interface module using the data associated
with individual element matrices. In that way, the interface between the solver and the FE part of
simulation codes can be reduced to a single procedure call (usually several additional procedures of
less importance are also used). The information associated with the proposed interface can be used
to create linear data structures that can increase the performance of the main steps of FE solution
procedures. The paper presented the results, showing the increase in performance for FE assembly
associated with the introduced data structures on an example of standard multi-core processor. We
plan to present the effects of using the proposed design for execution on graphics processors and
accelerators in forthcoming papers.
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