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The Pasternak elastic foundation model is employed to study the statics and natural frequencies of thick
plates in the framework of the finite element method. A new 16-node Mindlin plate element of the Lagrange
family and a 32-node zero-thickness interface element representing the response of the foundation are used
in the analysis. The plate element avoids ill-conditioned behaviour due to its small thickness. In the case of
the eigenvalue analysis, the equation of motion is derived by applying the Hamilton principle involving the
variation of the kinetic and potential energy of the plate and foundation. Regarding the plate, the first-
order shear deformation theory is used. By employing the Lobatto numerical integration in which the
integration points coincide with the element nodes, we obtain the diagonal form of the mass matrix
of the plate. In practice, diagonal mass matrices are often employed due to their very attractive time-
integration schemes in explicit dynamic methods in which the inversion of the effective stiffness matrix as
a linear combination of the damping and mass matrices is required. The numerical results of our analysis
are verified using thin element based on the classical Kirchhoff theory and 16-node thick plate elements.

Keywords:Mindlin plate, two-parameter elastic foundation, Lobatto integration, bending and eigenvalue
analysis.

1. INTRODUCTION

The analysis of thick or thin plates interacting with homogeneous or non-homogeneous foundation
is a very important engineering problem. A large number of studies have been conducted on the
bending and vibration of plates lying on an elastic foundation. In the paper by Omurtag et al. [1] the
dynamic formulation of Kirchhoff plate resting on Pasternak foundation was analysed with mixed-
type formulation using the Gâteaux derivative. The free vibration of rectangular clamped thick
plates resting on the two-parameter elastic foundation was analysed in [2], where the Chebyschev
polynomials multiplied by the boundary function were taken to satisfy the geometric boundary
conditions of the plate and the Ritz method was used to derive the eigenvalue equations. Çelik and
Saygun [3], Çelik and Omurtag [4], Ozgan and Omurtag [5], Ozgan and Daloglu [6] and Buczkowski
and Torbacki [7, 8] presented the finite element technique where the material properties of soil are
taken into account to incorporate the surrounding effect outside the plate. The rectangular elastic
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plates resting on a tensionless Winkler foundation were analysed by Celep [9]. The static and
dynamic analysis of a circular plate on a two-parameter tensionless foundation has been recently
investigated using the Galerkin approximation technique by Celep and Güler [10]. The problem of
tensionless elastic foundation under flexible rectangular Mindlin plates has been also studied by
Mishra and Chakrabarti [11]. In the paper by Eratll and Aköz [12], a solution for Reissner plates
on a Winkler foundation was formulated based on the Gâteaux derivative theory. Özçelikörs et al.
[13] also used the Gâteaux differential method combined with the classical Hellinger-Reissner and
Hu-Washizu variational formulations to obtain a solution for the interaction between orthotropic
Kirchhoff plate and orthotropic Pasternak foundation. The mixed Galerkin-perturbation technique
wa recently used by Shen [14] in an attempt to analyse the nonlinear bending of rectangular
Reissner-Mindlin plates with free edges, resting on a Pasternak elastic foundation. In the paper
by Feng and Owen [15], a coupled finite element and boundary element procedure for analysing
a plate-foundation problem was described. In Sadecka [16] infinite elements were used to take into
account the reaction of the ground outside the plate. The discrete singular convolution method was
developed by Civalek and Acar [17] and Civalek and Ersoy [18] for the static analysis of the bending
and free vibration of thick plates on a Pasternak foundation for different boundary conditions and
arbitrary edges. In two papers by Akhavan et al. [19, 20] the authors, considering the first-order
shear deformation theory, presented exact solutions for free vibrations and for the buckling analysis
of rectangular Mindlin plates under in-plane loading while resting on a Pasternak foundation. The
bending of plates resting on a Pasternak foundation was investigated by Zenkour et al. [21–23] and
Vallabhan and Daloglu [24]. The authors in [21, 22] used the mixed first-order transverse (where
both the displacements and stresses are considered arbitrary) or sinusoidal shear deformation [23]
theories that do not require a shear correction factor.

Thick plate element performance depends on the ratio of thickness to length of the plate. When
this ratio becomes extremely small, shear locking may occur. To avoid this shear locking in thick
plates Özdemir [25] has recently developed a fourth- order 17-node Mindlin finite element that
indicates excellent results for the static and dynamic analysis of thick plates resting on a Winkler
foundation.

In the present paper, a Pasternak elastic foundation model is employed to study the bending
and natural frequencies of a thick plate in the framework of the finite element method. A 16-node
Mindlin plate element of the Lagrange family, which is free from shear locking, is used in the
study. The effects of mid-plane stretching due to immovable ends on the deflection of the plate
are neglected. The subspace iteration procedure is used in the paper to obtain eigenvalues and
eigenvectors.

2. FORMULATION OF THE STIFFNESS OF THE FOUNDATION
AND MASS MATRIX OF THE PLATE

2.1. Mathematical relations

The equation of motion is derived by applying the Hamilton principle that requires the variation
of the kinetic and potential energy of the plate and stiffeners considered during any time interval
to equal zero:

t2

∫
t1

(δU − δT )dt = 0. (1)

The potential energy in the case of eigenvibrations corresponds to the strain energy of the Reissner-
Mindlin plate and the elastic foundation according to the formulation typical for the Pasternak
model. Variation of the potential energy is given by [7]
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δU = ∫
Vp

(σxδεx + σyδεy + τxyδγxy + τxzδγxzτyzδγyz)dV

+ ∫
Af

[k0wδw + k1 (w,xδw,x +w,yδw,y)]dA, (2)

where k0 is the first, or Winkler foundation, parameter and k1 is the second, or shear foundation
parameter. The symbols w,x and w,y denote differentiation with respect to Cartesian coordinates
x and y, respectively. For more details see [7].
Employing the Reissner-Mindlin formulation for the description of the plate deflection, three

displacement functions are used: ut and vt for in-plane displacements and wt for out-of-plane dis-
placements.
Variation of the kinetic energy from t1 to t2

t2

∫
t1

δTdt =
t2

∫
t1

∫
Vp

ρ (u̇tδu̇t + v̇tδv̇t + ẇtδẇt)dV dt (3)

can be integrated by parts as follows:

t2

∫
t1

∫
Vp

ρ (u̇tδu̇t + v̇tδv̇t + ẇtδẇt)dV dt = ∫
Vp

ρ (u̇tδut + v̇tδvt + ẇtδwt)dV
RRRRRRRRRRRRRR
t2

t1

−
t2

∫
t1

∫
Vp

ρ (ütδut + v̈tδvt + ẅtδwt)dV dt. (4)

Variations of displacement functions must vanish at the limits of integration t1 and t2, hence

t2

∫
t1

δTdt = −
t2

∫
t1

∫
Vp

ρ (ütδut + v̈tδvt + ẅtδwt)dV dt. (5)

Using the formulation of the displacement function for the first-order shear deformation theory
(FSDT):

ut = u + zθy,
vt = v − zθx, (6)

where θx and θy are rotations of the normal to the undeformed midsurface around the x-axis and
y-axis, respectively. For plates in bending, excluding in-plane effects (u = 0, v = 0):

ut = zθy,
vt = −zθx. (7)

So, from Eq. (5) using equations in (7), we arrive at

t2

∫
t1

δTdt = −
t2

∫
t1

∫
Vp

ρ (z2θ̈yδθy + z2θ̈xδθx + ẅtδwt)dV dt, (8)

where ρ is the material density.
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Strains of the Mindlin-Reissner plate are given by

εx = zθy,x, εy = −zθx,y,
γxy = z (θy,y − θx,x) ,
γxz = w,x + θy, γyz = w,y − θx.

(9)

Constitutive relationships are written in the following way:

σx = E

1 − ν2 (εx + νεy) , σy = E

1 − ν2 (εy + νεx) ,
τxy = Gγxy, τxz = βGγxz, τyz = βGγyz ,

(10)

where β is a shear correction factor which is equal to β = 5/6.
In the finite element approach, the same interpolation functions are used for displacements of

the plate and the elastic foundation to maintain compatibility. Out-of-plane displacements, as well
as rotations, are expressed in terms of the shape functions:

w = Njwj = N (2)1j dj,

θx = Njθxj = N (2)2j dj ,

θy = Njθyj = N (2)3j dj ,

(11)

where N and N(2) are the shape function matrices of the plate element (see Appendix A) and d is
the nodal displacement vector

d = [w1 θx1 θy1 w2 θx2 θy2 ... w16 θx16 θy16 ]T . (12)

The isoparametric approach is used in the present formulation. Therefore, the shape functions are
given in natural coordinates, and their derivatives necessary for formulation of the stiffness matrix
are evaluated by employing the chain rule and the determinant of the Jacobian matrix.
Employing equations in (11) to the original formulations of the Hamilton principle (Eqs. (2)

and (8)) yields

t2

∫
t1

[Kjkdj +Mjkd̈j] δdkdt = 0, (13)

where Kjk is the stiffness matrix of the plate and elastic foundation while Mjk is the mass matrix
of the plate.
Since Eq. (13) must be true for arbitrary variation of displacement and time interval dt, it follows

that

Kjkdj +Mjkd̈j = 0. (14)

Assuming that the displacement is a harmonic function of time

dj = d(0)j sinωt, (15)

Equation (14) becomes

(Kjk − ω2Mjk)d(0)j = 0, (16)

which is a standard eigenvalue problem.
The mathematical model for the static analysis can be formulated beginning with the principle

of virtual work. In particular, the same stiffness matrix is then obtained and the term referring to
the virtual work of external loading yields to the equivalent force vector (details can be found in
[7 ,8]).
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2.2. Stiffness matrix of the foundation

This part of the paper considers relationships used for deriving the stiffness matrix of the 32-node
finite non zero-thickness foundation element, shown in Fig. 1.

Fig. 1. 32-node finite non zero-thickness foundation element.

According to the last part of Eq. (2), the stiffness matrix of the foundation is given by

Kij = k0∬
A

NjNidxdy + k1∬
A

(∂Nj

∂x

∂Ni

∂x
+ ∂Nj

∂y

∂Ni

∂y
)dxdy. (17)

Following the isoparametric concept, the stiffness submatrices linking nodes i and j of the interface
element related to the first k0 and the second foundation parameter k1, (K0)ij and (K1)ij have the
form:

(K0)ij = k0 +1

∫
−1

+1

∫
−1

NjNi detJ dξdη (18)

and

(K1)ij = +1

∫
−1

+1

∫
−1

k1

detJ
(∂Nj

∂ξ

∂y

∂η
− ∂Nj

∂η

∂y

∂ξ
)(∂Ni

∂ξ

∂y

∂η
− ∂Ni

∂η

∂y

∂ξ
)dξdη

+
+1

∫
−1

+1

∫
−1

k1

detJ
(−∂Nj

∂ξ

∂x

∂η
+ ∂Nj

∂η

∂x

∂ξ
)(−∂Ni

∂ξ

∂x

∂η
+ ∂Ni

∂η

∂x

∂ξ
)dξdη. (19)

It can be readily shown that the components of the Jacobian matrix J for the finite rectangular
elements are constants equal to

J =
⎡⎢⎢⎢⎢⎢⎢⎣

a

2
0

0
b

2

⎤⎥⎥⎥⎥⎥⎥⎦
, (20)

where a and b are the lengths of the interface foundation element along the x-axis and y-axis,
respectively.
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The numerical integration of Eqs. (18) and (19) for the quadrilateral element of rectangular
shape with (4×4) sampling points leads to

(K0)ij = 4

∑
p=1

4

∑
q=1

NT
i (ξp, ηq) k0 Nj(ξp, ηq)detJ(ξp, ηq)WpWq (21)

and

(K1)ij = b2
4

4

∑
p=1

4

∑
q=1

k1

detJ(ξp, ηq)(Ni,ξ)2(ξp, ηq)WpWq

+ a
2

4

4

∑
p=1

4

∑
q=1

k1

detJ(ξp, ηq)(Ni,η)2(ξp, ηq)WpWq (22)

with Wp and Wq being the integration weights.
Considering the first parameter only and assuming that the finite element nodes overlap the

positions of integrating points (this particular process leads to the well-known Lobatto quadrature
formulae) we arrive at diagonal (or lumped) stiffness matrices

K0 = k0ab
144
diag [1 1 1 1 5 5 5 5 5 5 5 5 25 25 25 25]. (23)

In a similar way we can construct the mass matrix of the plate. From the last integral of the kinetic
energy (Eq. (8)) with the help of Eq. (11) (neglecting rotational internal effects), the mass matrix
is given by

Mij = ρ t
+1

∫
−1

+1

∫
−1

NjNi detJdξ dη, (24)

which, using the Lobatto 4×4 integration scheme, converts into the non-consistent form

M = ρ tab
144
diag [1 1 1 1 5 5 5 5 5 5 5 5 25 25 25 25], (25)

where t is the thickness of the plate.
In practice, diagonal mass matrices are often employed due to their very attractive time-

integration schemes in the explicit dynamic methods in which the inversion of the effective stiffness
matrix as a linear combination of the damping and mass matrices is required.

3. FOUNDATION PARAMETERS

The two parameters k0 and k1, in terms of the elastic constants and the dimensions of the plate
and the soil foundation, were evaluated by Vallabhan, Straughan and Das in [24]. These parameters
applied to a foundation with a finite depth of soil h can be defined by

k0 = E0(1 − ν20)
h

∫
0

(dψ(z)
dz
)2 dz (26)

and

k1 = E0

2(1 + ν0)
h

∫
0

ψ2(z)dz (27)
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with the mode function ψ(z) which can be described in the following way [24]:
ψ(z) = sinhγ

h − z
h

sinhγ
. (28)

The generalized modulus of elasticity E0 and and the Poisson ratio ν0 are defined by

E0 = Ef

1 − ν2
f

, ν0 = νf

1 − νf , (29)

where Ef and νf are the modulus of elasticity and Poisson’s ratio of the foundation, respectively.
Using the mode function ψ(z) as given in Eq. (28), the foundation parameters k0 (Eq. (26)) and k1
(Eq. (27)) become

k0 = Ef(1 − νf)
8h(1 + νf)(1 − 2νf)

2γ sinh2γ + 4γ2
sinh2 γ

(30)

and

k1 = Efh

16γ2(1 + νf)
2γ sinh2γ − 4γ2

sinh2 γ
. (31)

4. NUMERICAL EXAMPLES

4.1. Free rectangular plate on an elastic Pasternak foundation

A plate of size 9.144 × 12.192 m and thickness of t = 0.1524 m resting on a nonhomogeneous non-
layered soil medium, the properties of which can vary linearly in the vertical direction, is investigated
first (see Fig. 2). A particular case of this problem in which E1 is equal to E2 was considered by
Çelik and Saygun [3] and Buczkowski and Torbacki [7]. For comparison with other results, the value
of Ef = E1 = E2 = 68950 kN/m2 (a sand dense soil) are assumed as those in their works. Here, the

Fig. 2. Free rectangular plate on an elastic foundation (only one quadrant is discretized using 16-node
elements). The plate is of size 9.144 × 12.192 m (the rest is the foundation outside the plate).
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depth of the foundation h is equal to 15.240 m with the same values of elastic moduli of the soil E1

at the top and E2 at the bottom and a Poisson’s ratio equal to νf = 0.25 and νp = 0.20, respectively,
for the soil and plate is used. The elastic modulus of the plate is assumed to be Ep = 20685 MPa.
The results indicate that for the case of uniformly distributed loads, the plate deflections increase
with the depth of the soil. There is an interesting fact to emphasize that the plate deflections for
a concentrated load are not significantly different for various depths of soil. The second parameter
is responsible for the effect of a membrane underneath the plate which explains why the plate
deformations for various depths of soil are just slightly different for this form of loading. From the
other side, however, in the case of the concentrated load the values of the foundation parameters
k0 and, in particular, k1 change (with the depths of soil) to a lesser degree than in the case of
uniformly distributed load.
The results lead to the conclusion that the interaction between the plate and the soil depends

not only on the values of both the foundation parameters varying with the depth of soil, but also
on the distribution of the applied load.
Another way to show the benefits of the proposed method is to use a uniformly loaded plate

that has a different thickness t but the same value of the soil depth h = 15.24 m.
The ability to handle thin plates on elastic foundation by the 16-node Lagrange Mindlin plate

element is illustrated in Table 1. The stable convergence of results for very thin plates up to b/t = 106
is worth noticing. It is clear that for relatively small values of the plate’s thickness and its length,
the overall deflection of the plate should be different. However, for larger ratios t the deflection of
the plate does not alter.

Table 1. The vertical displacement at the centre of the plate in [mm] for a uniformly distributed
load q = 0.02394 N/mm2, k0 = 5964 kN/m3 (Eq. (30)), k1 = 104664 kN/m (Eq. (31)), h = 15.240 m,

b = 12.192 m (the values of the parameter γ are given in [7]).

b/t t [mm] KQ4 MQ16(G) MQ16(L) [7]

2 6096 180.49 194.73 194.73 135.84

4 3048 214.44 214.23 214.23 137.37

10 1219.2 220.77 220.64 220.64 153.42

20 609.6 220.96 220.97 220.97 193.50

80 152.4 220.98 221.01 221.00 220.55

100 60.96 220.98 221.01 221.01 220.90

500 24.384 220.98 221.01 221.01 221.04

103 12.192 220.98 221.01 221.01 221.04

106 0.012192 220.98 221.01 221.01 221.04

KQ4 – 4-node thin plate element based on the Kirchhoff theory, MQ16(G) – 16-node thick
Mindlin element with a Gauss integration scheme (the nodes of the element coincide with the
Gauss integration points), MQ16(L) – 16-node thick Mindlin element with a Lobatto integration
scheme (see Appendix A). For b/t = 100, the authors in [3] give the value of 221.2 mm.
4.2. Free vibration – verification of the theory

The presented approach using a 16-node Mindlin element (MQ16(L)) was verified against the results
produced by Akhavan et al. [20]. In the study, the authors presented a closed-form analytical solu-
tion for free vibration analysis of moderately thick rectangular plates resting on a Pasternak elastic
foundation for various combinations of boundary conditions. In the paper, the non-dimensional
Winkler foundation coefficient k0 is

k0 = k0 a
4

D
, (32)
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where a is the length of plate, D denotes the plate flexural rigidity

D = Et3

12(1 − ν2) (33)

and k1 is the Winkler foundation coefficient, which was taken as 0 and 1000, while the non-
dimensional shear foundation coefficient k1

k1 = k1 a
2

D
(34)

was also taken as 0 and 1000, thus yielding four cases: a plate without an elastic foundation
(k0 = 0, k1 = 0), a plate resting on a Winkler foundation (k0 = 1000, k1 = 0) and a plate resting on
a Pasternak foundation (k0 = 1000, k1 = 1000).
Regarding the plate, the first-order shear deformation theory was employed to extract an eigen-

value equation yielding the natural frequencies for the moderately thick rectangular plates. The
dimensions of the square plate for verification were taken as follows: a = 1 m, plate thickness
t = 1 mm, material properties: Young’s modulus E = 70000 MPa, Poisson’s ratio ν = 0.3 and
density ρ = 2702 ⋅ 10−9 kg/mm3. The actual values of the Winkler and shear coefficients, corre-
sponding to the non-dimensional value of 1000 for both of them, were k0 = 6.41026 ⋅106 N/mm and
k1 = 6.410256 N/mm3.
The finite element models for various mesh densities are presented in Figs. 3 and 4.

Fig. 3. Model of plate – finite element mesh 5× 5.

Fig. 4. Model of plate – finite element mesh 20× 20.

Results are given in the form of frequency parameters where the actual natural frequency is
scaled in the following way:

α = ωa2
√

ρt

D
. (35)
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The results for simply supported plates (four edges simply supported – SSSS) are shown in
Tables 2 and 3.

Table 2. Frequency-scaled parameter α which corresponds to first frequency ω1 [s
−1] for a simply supported

plate (SSSS) for various foundation coefficients.

k0 = 0, k1 = 0 k0 = 1000, k1 = 0
Akhavan et al. [20] 19.7391 37.2778

KQ4 5× 5 19.3471 37.0805

KQ4 20× 20 19.7129 37.2658

MQ16(G) 5× 5 19.7401 37.2784

MQ16(G) 20× 20 19.7384 37.2776

MQ16(L) 5× 5 19.7402 37.2786

MQ16(L) 20× 20 19.7386 37.2777

Table 3. Frequency-scaled parameter α which corresponds to first frequency ω1 [s
−1] for a simply supported

plate (SSSS) for various foundation coefficients.

k0 = 1000, k1 = 0 k0 = 1000, k1 = 1000
Akhavan et al. [20] 141.876 145.358

KQ4 5× 5 141.550 145.047

KQ4 20× 20 141.880 145.363

MQ16(G) 5× 5 141.879 145.361

MQ16(G) 20× 20 141.879 145.361

MQ16(L) 5× 5 141.879 145.362

MQ16(L) 20× 20 141.879 145.362

The results are also given for a plate with a combination of boundary conditions – SCSF (simple
support-clamped-simple support-free). In this case, the results are also given for various foundation
coefficients, corresponding to a plate without an elastic foundation and a plate resting on an elastic
foundation, of either Winkler or Pasternak type. For the SCSF plates, the results are given for
a 20× 20 mesh in Tables 4 and 5.

Comparisons between the reference and present results prove the high accuracy of the present
formulation.

Table 4. Frequency parameter α which corresponds to first frequency ω1 [s
−1]

for a plate with combined boundary conditions (SCSF) for various foundation coefficients.

k0 = 0, k1 = 0 k0 = 1000, k1 = 0
Akhavan et al. [20] 12.6862 34.0726

KQ4-node 5× 5 12.6621 34.1061

KQ4-node 20× 20 12.6859 34.1065

MQ16(G) 5× 5 12.6893 34.0970

MQ16(G) 20× 20 12.6873 34.1009

MQ16(L) 5× 5 12.6893 34.0977

MQ16(L) 20x20 12.6873 34.1011
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Table 5. Frequency parameter α which corresponds to first frequency ω1 [s
−1]

for a plate with combined boundary conditions (SCSF) for various foundation coefficients.

k0 = 1000, k1 = 0 k0 = 1000, k1 = 1000
Akhavan et al. [20] 113.315 117.645

KQ4-node 5× 5 112.596 116.957

KQ4-node 20× 20 112.524 116.896

MQ16(G) 5× 5 112.665 117.025

MQ16(G) 20× 20 112.516 116.885

MQ16(L) 5× 5 112.666 117.026

MQ16(L) 20× 20 112.517 116.885

5. CONCLUDING REMARKS

The formulation for bending and natural frequency analysis of plates resting on a two-parameter
elastic foundation in the framework of the finite element method was presented in this paper. The
problem of the plate resting on an elastic layered foundation was solved using zero-thickness inter-
face elements. The adopted model was employed to analyse thick as well thin plates resting on an
inelastic foundation with common boundary conditions and loading combinations. We recommend
to use a 16-node Mindlin plate element of the Lagrange family to handle extremely thin plates with

very large length-thickness ratios up to
b

t
= 106. By employing the Lobatto numerical integration

in which the integration points coincide with the element nodes, we obtained the diagonal form
of the mass matrix of the plate. Diagonal mass matrices are very attractive for dynamic explicit
analyses. The method was developed to also take into account the surrounding effect outside the
plate.
A significant influence of the elastic foundation on the natural frequency was observed and the

analysed system exhibited the nonlinear response when considering the variation of eigenfrequency
for the smaller values of the Winkler coefficient, while the eigenfrequency increased almost linearly
for the greater values. The influence of the second coefficient for the investigated range of coefficients
was linear. The present results agree quite well with the theoretical and numerical results given by
other authors.

APPENDIX A:
THE SHAPE FUNCTIONS FOR THE CUBIC 16-NODE MINDLIN PLATE ELEMENT
WITH A LOBATTO INTEGRATION SCHEME

Derivation of higher-order isoparametric elements is performed with the help of one-dimensional
Lagrange polynomials defined by

lnen−1
a (ξ) = (ξ − ξ1)(ξ − ξ2)⋯(ξ − ξa−1)(ξ − ξa+1)⋯(ξ − ξnen)(ξa − ξ1)(ξa − ξ2)⋯(ξa − ξa−1)(ξa − ξa+1)⋯(ξa − ξnen) ,

where a is the node, nen − 1 defines the order of the polynomial (nen is the number of nodes in the
element) and ξa denotes the location of the nodes in ξ – space. In the equation above, the a – term
is omitted.
The shape functions for the cubic 16-node element (nen = 4) are set up by taking products of

the cubic Lagrange polynomials (this procedure is schematically illustrated in Fig. A1). We have,
for example, that for node 16 (ξ2 = −1/√5, η3 = +1/√5)

N16 = l32(ξ)l33(η),
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where

l32(ξ) = (ξ − ξ1)(ξ − ξ3)(ξ − ξ4)(ξ2 − ξ1)(ξ2 − ξ3)(ξ2 − ξ4) =
(ξ + 1)(ξ − 1√

5
)(ξ − 1)

(− 1√
5
+ 1)(− 1√

5
−

1√
5
)(− 1√

5
− 1)
= 5

8
(√5ξ3 − ξ2 −√5ξ + 1)

and

l33(η) = −58 (
√
5η3 + η2 −

√
5η − 1) .

Fig. A1. Node location in ξ−η space for the cubic 16-node element.

In an analogous way, we can obtain all shape functions, which are given by

N1 = 1

64
(5ξ3 − 5ξ2 − ξ + 1) ⋅ (5η3 − 5η2 − η + 1),

N2 = − 1

64
(5ξ3 + 5ξ2 − ξ − 1) ⋅ (5η3 − 5η2 − η + 1),

N3 = 1

64
(5ξ3 + 5ξ2 − ξ − 1) ⋅ (5η3 + 5η2 − η − 1),

N4 = − 1

64
(5ξ3 − 5ξ2 − ξ + 1) ⋅ (5η3 + 5η2 − η − 1),

N5 = − 5

64
(√5ξ3 − ξ2 −√5ξ + 1) ⋅ (5η3 − 5η2 − η + 1),

N6 = 5

64
(√5ξ3 + ξ2 −√5ξ − 1) ⋅ (5η3 − 5η2 − η + 1),

N7 = 5

64
(5ξ3 + 5ξ2 − ξ − 1) ⋅ (√5η3 − η2 −√5η + 1),

N8 = − 5

64
(5ξ3 + 5ξ2 − ξ − 1) ⋅ (√5η3 + η2 −√5η − 1),

N9 = − 5

64
(√5ξ3 + ξ2 −√5ξ − 1) ⋅ (5η3 + 5η2 − η − 1),
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N10 = 5

64
(√5ξ3 − ξ2 −√5ξ + 1) ⋅ (5η3 + 5η2 − η − 1),

N11 = 5

64
(5ξ3 − 5ξ2 − ξ + 1) ⋅ (√5η3 + η2 −√5η − 1),

N12 = − 5

64
(5ξ3 − 5ξ2 − ξ + 1) ⋅ (√5η3 − η2 −√5η + 1),

N13 = 25

64
(√5ξ3 − ξ2 −√5ξ + 1) ⋅ (√5η3 − η2 −√5η + 1),

N14 = −25
64
(√5ξ3 + ξ2 −√5ξ − 1) ⋅ (√5η3 − η2 −√5η + 1),

N15 = 25

64
(√5ξ3 + ξ2 −√5ξ − 1) ⋅ (√5η3 + η2 −√5η − 1),

N16 = −25
64
(√5ξ3 − ξ2 −√5ξ + 1) ⋅ (√5η3 + η2 −√5η − 1).

The shape function matrix N(2) is expressed as

N(2) =
⎡⎢⎢⎢⎢⎢⎣
N1 0 0 N2 0 ... 0

0 N1 0 0 N2 ... 0

0 0 N1 0 0 ... N16

⎤⎥⎥⎥⎥⎥⎦
.

APPENDIX B: PATCH TEST FOR THE 16-NODE MINDLIN PLATE ELEMENT

The ideal Mindlin-type element should [26]: (1) converge, (2) not lock, (3) contain no mechanisms,
(4) be capable of providing accurate displacements and stresses, (5) be insensitive to element
distortions and (6) be invariant to the direction of the coordinate system.
The benchmark tests may be used to check that the new element satisfies some of the above

criteria. However, it is known that correct patch test results are neither sufficient nor necessary
conditions for convergence.
Patch tests performed on a plate element with mesh shown in Fig. B1 indicate that the plate

element can represent fields of constant moment, twist or shear.

Fig. B1. Patch test mesh formed by a square of 10× 10 mm, E = 210000 MPa, ν = 0.3, t = 1 mm.
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B.1. Patch test for membrane tension

In the membrane patch test shown in Fig. B2 a distributed force of constant intensity equal to
q = 1 N/mm was applied at the right edge of the plate element. The plate element was clamped
at the left edge and boundary conditions were applied to restrain the longitudinal edges in the
transverse direction. The result was a uniform stress field in the longitudinal direction as well as
a uniform stress field in the transverse direction σx = 1 MPa, with the correct ratio between the
stresses corresponding to the Poisson ratio, σy = 0.3 MPa. Therefore, it can be concluded that the
results show that the present element passed the test.

Fig. B2. Patch test for in-plane tension.

B.2. Patch test for bending

In the bending patch test shown in Fig. B3, a distributed edge moment of constant intensity equal
to m = 1 N⋅mm/mm was applied at the right edge of the plate element. The left edge was clamped.
The result was a uniform stress field σx = 6MPa, which was corresponding to the analytical solution
what confirms that the element passed the test.

Fig. B3. Patch test for bending.

B.3. Patch test for twisting

The plate element was supported on three corners and loaded with distributed moments of constant
intensity equal tom = 1 N⋅mm/mm applied at the edges, meeting at the unsupported point as shown
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in Fig. B4. This test was established for Kirchhoff plate elements but is also reasonable for Mindlin
plate elements which are very thin. The result was a stress field τxy = 6 MPa corresponding to the
analytical solution. The present element therefore passed the test.

Fig. B4. Patch test for twisting.

B.4. Patch test for shear

In the shear patch test shown in Fig. B5, a lateral distributed edge load of constant intensity equal
to q = 1 N/mm was applied at the right edge of the element which was fully clamped at the left edge.
Additionally, all rotations must be constrained in order to prevent the appearance of a bending
moment. The element also passed this test as the uniform shear stress equal to τxz = 1 MPa was
a response to the applied loading.

Fig. B5. Patch test for shear.
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