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The paper deals with the numerical simulation of strain localization in granular two-phase material.
A gradient enhancement of modified Cam-clay model is introduced to overcome the problem of spurious
discretization sensitivity of finite element solution. Two- and three-field finite elements implemented in
the finite element analysis program (FEAP) are used in numerical simulations. The attention is focused
on imperfection sensitivity of shear banding simulations. An application of the modelling framework to
the slope stability problem is also included.
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1. INTRODUCTION

The material softening and the non-symmetry of the tangent stiffness operator are possible sources
of strain localization in the form of shear banding encountered for instance in soil. Selected aspects
of the numerical simulation of these phenomenon in granular materials are addressed in this paper.
The problems such as a loss of material stability and the ill-posedness of governing equations of the
boundary value problem resulting in a pathological mesh sensitivity of numerical results are first
discussed. Different techniques used to overcome the problem of discretization sensitivity in the
presence of strain localization are reviewed. The gradient-dependent Cam-clay plasticity model is
applied to investigate the influence of imperfections on predicted shear banding patterns. Moreover,
the cut slope stability benchmark is analyzed including the evolution of pore pressure, i.e. within
the framework of two-phase modelling. The computations are carried out using two and three-field
finite elements implemented in the FEAP package.
The issue of material instabilities causing strain localization was investigated for example in

the review papers [13, 39, 66], in the extensive study of bifurcations in geomaterials [64] and
in the proceedings of the International Union of Theoretical and Applied Mechanics (IUTAM)
symposium [14]. Discussion of numerical finite element method (FEM) simulations of shear banding
combined with experimental research can be found in [53]. If a material instability [26, 34] is
encountered in the deformation history of a body, the strains often localize in a number of narrow
bands, while the remaining parts of the body unload. Within a classical continuum formulation and
for static problems this phenomenon is associated with a loss of ellipticity of the governing partial
differential equations. Therefore, discretization methods used to solve these equations may yield
mesh-sensitive and hence questionable results. To overcome this problem, a form of rate-dependent
or non-local enhancement of the constitutive model should be adopted [13, 54]. The non-locality
may have the form of micropolarity, integral averaging or spatial gradient-dependence. All these
approaches imply the introduction of an internal length parameter in the continuum description.
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In certain cases, for instance for the simulation of discrete fissures in rocks, discontinuum modelling
can also be an option.

The developments of the last ten years concerning the problem of numerical simulations of
localized deformation bands in multiphase (granular) media have been covered among others
in [5, 7, 8, 10, 18, 25, 32, 41, 70, 71]. In [7] the problem of deformation and strain localization in
partially saturated porous medium is considered and a constitutive model (extension of the modified
Cam-clay model) for such a three-phase medium is proposed. A new, small-strain constitutive model
of sand taking into account the essential features of granular materials is proposed in [18]. In [41]
a general variational framework of Cam-clay theory is constructed within the finite deformation
plasticity. The propagation of multiple shear zones in the interior of cohesionless sand is analyzed
in [70]. The hypoplastic constitutive model enhanced by a characteristic length of micro-structure
by means of the non-local theory has been applied in the finite element calculations. In [71] the
issue of internal length scale introduced by the fluid-solid interaction is considered in a dynamic
context. A strain localization phenomenon in 3D specimen of dense saturated sand under triaxial
loading conditions is studied in [32]. The main focus in [32] is to investigate the role of the fluid
components and the influence of factors such as permeability, water suction, draining conditions and
geometry of the sample on formation and development of strain localization patterns. The problem
of dispersive wave propagation in two-phase, fluid-saturated softening medium is addressed in [10].
The lack of regularization effect due to vanishing internal length scale is indicated. The stability
issues in the presence of material softening and within gradient theories are examined in [5]. The
paper by Gryczmański [25] is a review of the research on phenomena occurring in overconsolidated
(and thus prone to softening and instabilities) soils at small strains. In [8] the effect of varying
degree of saturation on shear band initiation in granular materials is investigated. The coupled
solid deformation and fluid flow problem is solved using stabilized low-order mixed finite elements.

In this paper, the attention is focused on the Cam-clay model of cohesive soil and its performance.
On one hand, this paper has an overview character. On the other hand, it is focused on examination
of the role of imperfections in the analysis of the shear banding phenomenon. A practical application
of the developed two-phase regularized soil model to the solution of a slope stability problem is also
shown. The paper is a continuation of the studies reported in [55–57]. For completeness, the issue
of ill-posedness of the boundary value problem and the main aspects of the regularized plastic flow
theory as well as of granular material modelling are first recalled.

The paper is organized as follows. In Sec. 2 the sources of spurious discretization sensitivity of
finite element solution in the presence of material instability and the approaches used to overcome
the problem are briefly discussed. The adopted two-phase continuum theory for a granular material
is described in Sec. 3. In Sec. 4, the gradient-enhanced Cam-clay plasticity model is presented and
the formulation of an appropriate three-field finite element is presented in Sec. 5. The influence of
imperfections is examined in Sec. 6 and the results of the numerical analysis of steep slope stability
benchmark are included in Sec. 7. The computations are carried out using FEAP package. The
paper ends with final remarks in Sec. 8.

2. STRAIN LOCALIZATION AND REGULARIZATION TECHNIQUES

The sources of localization phenomena lie at the meso- or micro-level of observation (e.g. hetero-
geneity or local material defects). Following [44] the problem of material instabilities inducing a loss
of ellipticity and strain localization is now recapitulated. A broader discussion of the issues can be
found in [13, 39, 54, 66] and the study of bifurcations in geomaterials in [64]. The more general
theoretical considerations are gathered in [46, 47].

The material stability [34, 36, 67] is determined by the condition of positive second-order work
density

ǫ̇ij σ̇ij > 0. (1)
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In the above inequality ǫ̇ij and σ̇ij are the strain and stress rate tensors, respectively, and the
summation convention is adopted. The consideration is limited to incrementally linear constitutive
equations:

σ̇ij =Dijklǫ̇kl. (2)

The loss of positive-definiteness of the tangent stiffness tensor Dijkl, i.e. the singularity of the
symmetric part of Dijkl indicates the material instability:

det(Dijkl +Dklij) = 0. (3)

When the material stability is lost (due to softening or nonsymmetry of the tangent operator) the
so-called discontinuous bifurcation can occur, cf. [13, 40, 42, 48, 52, 67]. In such a case the continuity
of the displacement field and the equilibrium condition are preserved at each point, while the jump
of strain is permitted across a discontinuity surface with normal νi, see Fig. 1

⟦ui,j⟧ ≡ u+i,j − u−i,j ≠ 0, (4)

where ⟦ ⟧ denotes a jump of a quantity while the ‘+’ and ‘−’ signs refer to the two sides of the
discontinuity surface. In order to satisfy the kinematic compatibility condition the strain rate jump
across discontinuity surface has to be expressed as

⟦ǫ̇ij⟧ = 1

2
(νiµj + νjµi), (5)

where µi is an arbitrary vector. Using the linear constitutive Eq. (2), the stress rate jump is obtained
at the onset of the discontinuity

⟦σ̇ij⟧ =Dijkl⟦ǫ̇kl⟧, (6)

where it is assumed that the same tangent stiffness moduli represent the material behaviour on
both sides of the discontinuity surface.

Fig. 1. Material instability: 2D idealization of discontinuity surface
and vectors ν (normal) and µ (defining instability mode).

In [16] different modes of the localized bifurcation in elastoplastic solids are distinguished. The
authors describe plastic/plastic and elastic/plastic bifurcation modes.
From the equilibrium condition the zero value of the jump of traction rate across the discontinuity

plane results in:

⟦ṫj ⟧ = νi⟦σ̇ij ⟧ = 0. (7)

Now, substituting Eq. (6) and Eq. (5) into Eq. (7), and using the symmetry property Dijkl =Dijlk

the following equation is obtained:

(νiDijklνl)µk = 0. (8)
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It has a non-trivial solution only when the determinant of the so-called acoustic tensor (product
within brackets) vanishes:

det(Qjk) = 0. (9)

The singularity of the acoustic tensor implies a local loss of ellipticity of the rate equilibrium
equations and thus the ill-posedness of the boundary value problem (BVP). Thereby, the strain
localization (e.g. shear band formation) is initiated. A shear band can be defined as a zone of intense
deformation bounded by two discontinuity surfaces. For a classical material model, the distance
between these two surfaces remains undefined which results in their coincidence and localization
in a set of measure zero. In this paper the notion of strain localization is understood in a broader
sense, as the emergence of bands of concentrated deformation caused by material instabilities.
Nevertheless, the first point in the deformation history for which the acoustic tensor becomes
singular marks the possible onset of localization.
It should be mentioned that in addition to the so-called weak discontinuities (discontinuities of

strain field) also strong discontinuities (jumps in the displacement field) can be considered, cf. [68].
For such a case a displacement discontinuity (crack) occurs along surface interfaces while in the
other parts of the body ellipticity and thus well-posedness of BVP are preserved. In computations
using numerical methods (e.g., FEM) in the presence of the weak discontinuities the results become
pathologically dependent on discretization density (and the mesh alignment). The problem results
from the attempts to simulate the localization in the smallest material volume admitted by the
adopted discretization. An example of mesh-dependent numerical results is presented in Fig. 2 for
a plane strain biaxial compression test (which will further be discussed in Sec. 6) and the classical
Cam-clay plasticity model.

Fig. 2. Scaled incremental displacements for local model in biaxial compression test.

Two different approaches are applied to overcome the problem. One possibility is to permit the
occurrence of strong discontinuity surfaces or lines. This approach is recommended for instance for
a quasi-brittle materials which undergo macroscoping cracking. The concentrated deformation is
then modelled using interface finite elements (see, e.g., [51]) or the extended finite element method
(XFEM) resulting from the use of partition of unity (see, e.g., [3, 17, 35, 65]). In this method the
approximation basis of the finite elements used to simulate the formation and propagation of strong
discontinuities through element domains are enriched with Heaviside-type functions.
The problem of ill-posedness of the mathematical model can also be solved by application of

enhanced (regularized) continuum theories. In this concept higher order deformation gradients
or time rates are introduced into the constitutive description. The spurious mesh sensitivity of
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the numerical simulation results is then removed by incorporating the so-called internal length
scale which defines a (non-zero) width of the localization band and is understood as an additional
material parameter. In granular materials, the internal length parameter is related to the average
grain diameter: directly in micropolar models [59, 60] or indirectly in nonlocal ones [70].
The regularized models include the plastic flow theories which incorporate higher deformation

gradients, see, e.g., [1, 11, 15, 30, 37, 43, 58, 63], and gradient theories of continuum damage,
e.g., [2, 19, 29, 31, 45]. An alternative solution is provided by a micropolar continuum, e.g., [9, 38,
61], rate dependent models, in particular viscoplastic, see for instance [21, 33, 54, 69], or nonlocal
integral models, see, e.g., [4, 6, 23, 28, 49].

3. NUMERICAL MODELLING OF GRANULAR MATERIAL

In Fig. 3 the porous and granular nature of soil is depicted. Soil is a multiphase material which
consists of a skeleton and voids filled with fluids. In the case of partially saturated soil voids are
partly occupied by water and partly by air. Such a three-phase medium is described by: the solid
displacement, water pore pressure and air pore pressure. When pores are completely filled with
water then soil is fully saturated and it is modelled as a two-phase medium. The problem variables
are: the solid displacement vector and the water pore pressure. Noteworthy are two limiting cases
of the so-called drained state and undrained state. In the former case, if long-term load together
with appreciable permeability is assumed, the fluid flows out freely and the pore pressure does not
depend on the material deformation. Thus, the excess pore pressure pf is equal to zero and soil can
be treated as a one-phase medium. In the latter case of undrained state, for rapidly loaded soil with
low (zero) permeability, the fluid motion relative to soil skeleton is negligible. The consideration
can then also be limited to a one-phase medium.

Fig. 3. Soil as a multiphase, porous and granular medium.

The case of partially saturated soil is not investigated in the present paper. The attention is
focused on fully saturated material. The common assumption of solid grains incompressibility is
adopted. The behaviour of a two-phase medium is governed by the momentum and mass balance
equations [62, 72]:

LTσt + ρ̂g = 0, (10)

∇
Tu̇ +∇Tvd + n

ṗf

Kf

= 0. (11)

The balance of the medium is maintained by the total stress σt which decomposes into the
effective stress σ in the soil skeleton and the (excess) pore pressure pf in the fluid constituents.
The adopted sign convention is that the compressive pressure is regarded as positive

σt = σ −Πpf . (12)
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This decomposition is necessary to reproduce the dominant role of the solid phase in the load-
carrying capacity of soil. The effective stress is responsible for the deformation and limit states of
saturated soil and appears in the constitutive equations. The saturated density of the solid-fluid
mixture is given by

ρ̂ = (1 − n)ρs + nρf , (13)

where ρs is the density of the solid phase and ρf denotes the density of the fluid phase. The porosity
n and the void ratio e are related by

n = e

1 + e
, e = Vp

Vs
, (14)

where Vp is the pore volume and Vs is the skeleton volume.
The fluid flow velocity is denoted by vd and assumed to follow Darcy’s law (gravity term is

neglected here):

vd = −k∇pf
γf
. (15)

Moreover, L is a differential operator matrix (Voigt’s matrix-vector notation is used), g is the
gravitation vector, u is the displacement vector and u̇ denotes its first time derivative, Kf is the
bulk modulus of the fluid, k is the permeability matrix (with the assumption of isotropy it is
substituted by a scalar quantity), and finally superscript T is the transpose symbol.
The governing (differential) Eqs. (10) and (11) require appropriate boundary and initial condi-

tions. The initial conditions for the displacements and pore pressures at time t = 0 are:
u = u0,

pf = pf0.
(16)

The boundary conditions to be satisfied at any time t are:

σtν = t̂ on Γt,

vdν = q̂ on Γq,

u = û on Γu,

pf = p̂f on Γp,

(17)

where Γt⋯Γp are appropriate boundary parts, such that Γt ∩ Γu = ∅, Γt ∪ Γu = Γ, Γq ∩ Γp = ∅,
Γq ∪ Γp = Γ.
The complex microstructure of soil determines its features and causes instabilities observed at

macroscopic scale. One of the fundamental soil features is its sensitivity to volume changes. They
can be caused either by a change in effective confining pressure or by a rearrangement of grains in
the structure due to shearing load. This is conveniently modelled by a suitable plastic flow theory.
The tendency to reach a critical state, in which only the deviatoric plastic strain increments are
observed and the strength and volume are constant should also be taken into account in material
modelling. Therefore, the modified Cam-clay model originally proposed in [50], belonging to the
critical state models [20], has been chosen to describe the behaviour of the soil skeleton and is
summarized next.

4. REGULARIZED CAM-CLAY MODEL

The yield function for the modified Cam-clay model, see Fig. 4, can be written as

f = q2 +M2p(p − pc) = 0, (18)
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Fig. 4. Material model: yield surface. CSL denotes the critical state line.

where the equivalent deviatoric stress q is defined as q = √3J2, M is a function of the internal
friction angle φ, M = 6 sinφ

3 − sinφ
, p is the effective pressure acting on the soil skeleton, which is

assumed to evolve according to the following secant relation [24]:

p(∆θe) = p0 exp [−1 + e0
κ

∆θe], (19)

where e0 denotes the initial void ratio, κ is the swelling index which defines the inclination of the
unloading and reloading diagram relating the void ratio to ln(p), θe is the volumetric part of the
elastic strain tensor. Further more, pc is the current preconsolidation pressure, the evolution of
which is given by the formula similar to Eq. (19):

pc(∆θp) = pc0 exp [−1 + e0
λ − κ

∆θp], (20)

where λ is the inclination of the virgin consolidation line in 1+e vs ln(p) diagram, θp is the volu-
metric part of the plastic strain tensor. Since the fraction 1+e0

λ−κ is positive, the signs of ṗc and θ̇
p

must be opposite. This means that the hardening (contraction) is observed for decreasing incre-
ment of plastic volumetric strain (θ̇p < 0 Ô⇒ ṗc > 0). The material exhibits softening (dilatation)
for increasing increment of plastic volumetric strain (θ̇p > 0 Ô⇒ ṗc < 0). Note that the hardening
rule has the character of the mixed hardening. Let us introduce the so-called over-consolidation
ratio (OCR) which is a relation between the initial preconsolidation pressure pc0 and the initial
compressive pressure:

OCR = −pc0
p0
. (21)

If OCR≫ 1 the soil is overconsolidated and has a tendency to dilatant (softening) behaviour. The
soil for which OCR = 1 is called normally consolidated and it exhibits contraction (hardening).
As stated in Sec. 2, in order to avoid the loss of ellipticity of the governing equations and to

stabilize the numerical response in the presence of material instabilities the regularization of the
Cam-clay model is necessary. The Cam-clay yield function is made dependent on the Laplacian of
the plastic multiplier Λ and takes the following form [55–57]:

F = q2 +M2p [p − pc(θp) + g∇2(Λ)], (22)

where g > 0 is a gradient scaling factor proportional to a square of an internal length scale l. The
yield (and plastic consistency) condition is thus a differential equation to be solved in parallel with
the standard governing equations. The yield condition F = 0 is recast into a weak format and the
plastic multiplier is discretized in the monolithic solution algorithm.
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5. THREE-FIELD FINITE ELEMENT

The governing equations in the analysis of the coupled deformation and fluid flow problem com-
bined with the gradient-enhanced plasticity modelling of the solid skeleton are derived from the
mechanical equilibrium of the soil skeleton, the mass balance of the pore fluid and plastic con-
sistency condition. The unknown variables in the obtained system of equations are not only the
solid displacements, fluid pore pressure and plastic multiplier but also the displacement and pore
pressure rates. The solution to such a system of equations requires the application of a stable and
accurate time integration scheme. The discretization in time is usually carried out using the gen-
eralized trapezoidal method (called Θ-method). With this method, all time dependent variables
are estimated at some intermediate point within the interval, depending on the chosen value of Θ.
To assure the unconditional stability of the algorithm, the integration coefficient should satisfy the

condition Θ ≥ 1

2
. This method and the problems of convergence, consistency and stability of the

numerical algorithms (and various aspects of their analysis) are covered for instance in [27]. In the
discussed implementation the backward Euler scheme with Θ = 1 is used. The application of this
integration method gives:

uN+1 = uN +∆tu̇N+1, (23)

pN+1 = pN +∆tṗN+1. (24)

To formulate a three-field u − p − Λ finite element the weak forms of Eqs. (10), (11) and (22) are
required. The momentum balance equation in a weak form reads

∫
Ω

vT(LTσt + ρ̂g)dΩ = 0. (25)

The mass balance equation is written as

∫
Ω

w (∇Tu̇ +∇Tvd + n
ṗf

Kf

)dΩ = 0. (26)

The weak form of the yield condition is

∫
Ω

vpF (σ,Λ,∇2Λ)dΩ = 0. (27)

For the gradient-dependent yield function, i.e., for the plastic multiplier field homogeneous natural
boundary conditions are postulated, cf. [12, 43]. In Eqs. (25)–(27) v, w and vp are suitable weighting
functions. Integration of momentum and mass balance equations by parts and incorporation of
natural boundary conditions lead to:

∫
Ω

(Lv)TσtdΩ − ∫
Ω

vTρ̂gdΩ −∫
Γt

vTt̂dΓ = 0, (28)

∫
Ω

w∇Tu̇dΩ − ∫
Ω

(∇w)Tvd dΩ + ∫
Ω

w
n

Kf

ṗf dΩ + ∫
Γq

w q̂ dΓ = 0. (29)

The backward Euler integration of Eqs. (28) and (29) over time increment ∆t is performed and
both Darcy’s law and Terzaghi’s decomposition of the total stress are introduced. The following
finite element discretizations for displacements u, excess pore pressure pf and plastic multiplier Λ
are introduced:

u =Nǔ, pf =Npp̌, Λ = hΛ̌, (30)
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where N , Np and h contain the respective interpolation polynomials and ǔ, Λ̌ and p̌ are vectors
with the discrete nodal values. The weighting functions are interpolated similarly according to the
Bubnov-Galerkin approach. In order to provide a proper balance between interpolations in this
coupled problem [62, 72] the functions used to interpolate the unknown fields are quadratic for
the displacements, linear for the pore pressure and cubic (Hermitean) for the plastic multiplier.
In Fig. 5, the nodes with nodal degrees of freedom are shown. The displacements are interpolated
between eight nodes while the excess pore pressure and the plastic multiplier between four nodes.

Fig. 5. Three-field u-p-Λ finite element.

The incremental-iterative algorithm with the following decomposition is used to linearize the
governing equations at the current time instant:

∆σ(i+1) =∆σ(i) + dσ(i+1), ∆p(i+1) =∆p(i) + dp(i+1), ∆Λ(i+1) =∆Λ(i) + dΛ(i+1). (31)

In Eqs. (31) dσ, dp and dΛ denote the corrections of increments computed in the current iteration(i + 1). The yield function F is developed in a truncated Taylor series around (σ(i),Λ(i),∇2Λ
(i))

to obtain the following incremental equation:

∫
Ω

vp [∂F
∂σ

dσ +
∂F

∂Λ
dΛ +

∂F

∂∇2Λ
∇

2(dΛ)]dΩ = −∫
Ω

vpF (σ(i),Λ(i),∇2Λ(i))dΩ. (32)

We eventually obtain the set of equations:

∫
Ω

BTdσ

dǫ

(i)
BdΩ∆ǔ(i+1) −∫

Ω

BT
ΠNpdΩ∆p̌(i+1) −∫

Ω

BTdσ

dΛ
hdΩ∆Λ̌

(i+1)

= ∫
Ω

NTρ̂gdΩ + ∫
Γt

NTt̂dΓ −∫
Ω

(BTσ(i) −BT
Πpf

(i))dΩ,

∫
Ω

NT
p Π

TBdΩ∆ǔ(i+1) +
⎛⎜⎝
∆t

γf
∫
Ω

(∇Np)Tk∇NpdΩ +∫
Ω

NT
p

n

Kf

NpdΩ
⎞⎟⎠∆p̌(i+1)

=∆t
⎛⎜⎝−∫Γq

Np
Tq̂ dΓ−∫

Ω

NT
p Π

TBdΩ ˙̌u(i)−
1

γf
∫
Ω

(∇Np)Tk∇NpdΩp̌
(i)
−∫
Ω

NT
p

n

Kf

NpdΩ ˙̌p(i)
⎞⎟⎠,

−∫
Ω

hT∂F

∂σ

dσ

dǫ
BdΩ∆ǔ(i+1) −∫

Ω

(∂F
∂σ

dσ

dΛ
+
∂F

∂Λ
)hThdΩ∆Λ̌

(i+1)
− ∫

Ω

∂F

∂∇2Λ
hTsdΩ∆Λ̌

(i+1)

= ∫
Ω

hF (σ(i),Λ(i),∇2Λ(i))dΩ,

(33)
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where the notations B = LN and s = ∇2h are used. Moreover,
dσ

dǫ
denotes the consistent tangent

operator for the material model.
The obtained coupled system of linearized equations is now rewritten in a matrix form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kuu −Kup KuΛ

−KT
up Kpp 0

KΛu 0 KΛΛ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆ǔ

∆p̌

∆Λ̌

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fext − fint

ff

fΛ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where the submatrices are defined as follows (the iteration index has been skipped):

Kuu = ∫
Ω

BTdσ

dǫ
BdΩ,

KuΛ = −∫
Ω

BTdσ

dΛ
hdΩ,

KΛu = −∫
Ω

hT∂F

∂σ

dσ

dǫ
BdΩ,

KΛΛ = −∫
Ω

[(∂F
∂σ

dσ

dΛ
+
∂F

∂Λ
)hTh + ghTs]dΩ,

Kup = ∫
Ω

BT
ΠNpdΩ,

Kpp = −∆t
γf

H −M ,

H = ∫
Ω

(∇Np)Tk∇Np,dΩ,

M = ∫
Ω

NT
p

n

Kf

NpdΩ,

fext = ∫
Ω

NTρ̂g dΩ +∫
Γt

NTt̂dΓ,

fint = ∫
Ω

(BTσ −BT
Πpf)dΩ,

ff =∆t
⎛⎜⎝∫Γq

NT
p q̂ dΓ +KT

up
ˇ̇u +

1

γf
Hp̌ +M ˇ̇p

⎞⎟⎠,

fΛ = ∫
Ω

hTF (σ,Λ,∇2Λ)dΩ.

(35)

It should be noted that the tangent operator in Eq. (35) is nonsymmetric. If the gradient’s
influence is neglected, the two-phase Cam-clay plasticity model can be reduced to the classical
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format, i.e., the plastic multiplier is not discretized and the first two rows of the set of equations
are solved with KuΛ = 0. On the other hand, if the influence of the pore fluid changes is not taken
into account an alternative two field problem of gradient plasticity is obtained with just the first
and third fields to be determined.

6. INFLUENCE OF IMPERFECTIONS

In order to examine the role of imperfections in the analysis of the shear banding localization
phenomenon the biaxial compression test of drained soil sample (one-phase soil model described by
the first and the third equation of system (34)) is considered. The size of the specimen is 1× 2 m.
It is discretized with 20× 40 two-field gradient plasticity finite elements. In the computations the
following material data are adopted: Poisson’s ratio ν = 0.2, swelling index κ = 0.013, initial void
ratio e0 = 1.0, hardening parameter pc0 = 2.0 MPa, compression index λ = 0.032, material constant
M = 1.1. The initial stresses σ0 = [−0.2,−0.2,−0.08,0.0] MPa (necessary to start calculations when
the Cam-clay model is used) are introduced by uniform compression. To load the sample a vertical
traction downwards on the top edge is prescribed.
Unlike in dynamics (cf. [22]), in static simulations of localization phenomena the imperfections

merely trigger the process and set the initial position of deformation bands. Here, the analysis is
focused on the influence of imperfection location, size and intensity on the results. In Fig. 6 the
locations of the imperfection area are shown. The following five cases are considered:

● case A – 10% four-element imperfection located in the middle of the sample,

● case B – 10% four-element imperfection located in the middle of the left edge of the sample,

● case C – 1% four-element imperfection located in the middle of the left edge of the sample,

● case D – 10% sixteen-element imperfection located in the middle of the left edge of the sample,

● case E – two 10% four-element imperfections located in the left edge of the sample.

In the presented tests, four or eight elements are assigned the 10% or 1% smaller value of the initial
overconsolidation measure. However, the different values of the initial void ratio can also be used
in order to start the localization process.

Fig. 6. Imperfection location.

The load-displacement curves for cases A–E are shown in Fig. 7. The diagrams almost coincide
with each other (only the solution for case D exhibits lower load-carrying capacity due to larger
imperfect area). In Figs. 8–12 the contour plots with the distributions of invariant J2

ǫ of the strain



126 A. Stankiewicz

Fig. 7. Load-deformation curves for cases A–E.

Fig. 8. Shear band evolution for the 10% imperfection located in the middle of the sample.

Fig. 9. Shear band evolution for the 10% imperfection located in the middle of the left edge of the sample.
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Fig. 10. Shear band evolution for the 1% imperfection located in the middle of the left edge of the sample.

Fig. 11. Shear band evolution for the 10% sixteen-element imperfection located in the middle of the left
edge of the sample.

Fig. 12. Shear band evolution for two 10% imperfections located on the left edge of the sample.
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tensor are shown for different stages of the loading process (for advanced plastic deformation J2
ǫ

represents quite closely the equivalent plastic strain). The shear band evolution is observed in all
the cases. First a crossed pattern of bands is formed, then one of them remains active, because this
is energetically preferable. Finally, as the critical state is approached, the band width increases.
Unlike in gradient plasticity with a constant internal length parameter, standard (e.g., HMH)
yield function and linear softening, in Cam-clay gradient plasticity the shear band width grows
since softening is nonlinear. A uniaxial approximation of the relation between the gradient scaling
coefficient g and the internal length scale l is g = −hl2, where h is the evolving softening modulus,
in this case the derivative of pc with respect to ∆Λ. The width of the shear band is governed by l
and for the dilatant flow the derivative decreases, hence l apparently grows. To reduce this effect,
the gradient factor g would have to be made a (decreasing) function of a plastic strain measure.
This would physically mean a reduction of nonlocality as the critical state is approached which is
not unrealistic and should be examined in the future research.
In the simulation presented in Fig. 10 the 1% smaller value of the initial preconsolidation pressure

is assigned to the small area of the specimen to initiate the shear band formation. The shear band
pattern is then qualitatively similar to the one obtained for 10% imperfection, shown in Fig. 9 but
it is reflected with respect to the horizontal symmetry axis. Moreover, for the 10% imperfection
assigned to a larger area (case D) the predicted shear band evolution is similar to case A, but
its position is reflected with respect to the vertical symmetry axis. Finally, in Fig. 12 the results
obtained for two imperfections are shown and the ones for advanced plastic process are similar to
those obtained for the other cases.
It is concluded that the influence of the imperfection size and intensity on the evolution of the

shear band width is negligible, since it is governed by l and h. On the other hand, it is observed
that different positions and orientations of the shear band can be triggered in the simulation, so the
solution of the problem is not unique although the alternative solutions are similar and physically
sound.

7. APPLICATION – CUT SLOPE STABILITY

As a practical application and a test of the developed two-phase model the stability of a cut slope
is examined. The problem of pore pressure evolution combined with the gradient-enhancement of
plasticity model is considered. The side length of a square specimen of soil is 10 m. The specimen is
loaded by a rigid footing which extends over 7 m along the left part of the top surface. The drainage
of the pore fluid (pf = 0) is only allowed through the remaining part of the upper surface of the
specimen. For points at the bottom edge of the sample the vertical displacement is prevented and at
the right boundary of the specimen the horizontal displacement is not allowed. The configuration,
loading and boundary conditions for the displacement and pore pressure fields are shown in Fig. 13.

Fig. 13. Cut slope stability problem: geometry, natural and essential boundary conditions.
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Note that for this configuration no imperfections are needed to trigger localization. The plastic
multiplier is constrained in such a way that the normal and mixed derivatives Λ,n and Λ,ξη are
equal to zero on the whole circumference. To load the sample the vertical displacement of the
rigid footing is prescribed. In fact, since the infinite stiffness of the footing has been assumed,
it cannot rotate (although it can slide along the top edge) and thus equal vertical displacements
of the upper nodes of the sample are prescribed. Due to the expected softening behaviour the
loading is imposed under displacement control. The model is discretized with two- and three-
field finite elements. Three densities of finite element mesh are considered: 10 × 10, 20× 20 and
40× 40.

Material data adopted in computations are as follows:

ν = 0.2, κ = 0.013, e0 = 1.0,
pc = 640.0 kPa, λ = 0.032, M = 1.1,
γf = 10 kN/m3

, Kf = 3.0e03 kPa,

k = 1.0 × 10−4 m/day, g = 1.0e05 kN2/m2.

7.1. Cut slope stability – local Cam-clay simulation

To show the effectiveness of the applied gradient enhancement the results obtained for local and
regularized models are discussed. For the local version of the modified Cam-clay model (two-field
element) gradient scaling factor g is assumed to be equal to zero. The results of computations
are presented in Figs. 14–17. The diagrams of reaction force versus vertical displacement for three
different meshes are shown in Fig. 14. At the stage of the process when localization occurs the
presented curves split and further do not coincide. In Fig. 15 the deformed meshes and in Fig. 16 the
vertical strain distributions for the final state of calculations are plotted. The presented deformation
patterns show that for each mesh strains localize in the narrowest possible area. The pore pressure
distributions that do not exhibit localization are depicted in Fig. 17. However, it should be noted
that the pore pressure distribution can be different for various values of the permeability coefficient,
cf. [56].

Fig. 14. Load-deformation curves for local Cam-clay model (g = 0).
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Fig. 15. Deformed meshes for local model.
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Fig. 16. Vertical strain distribution for local model.
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Fig. 17. Pore pressure distribution for local model.
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7.2. Cut slope stability – regularized two-phase medium

Further results have been obtained for the gradient enhanced model (three-field element). As can
be seen in Fig. 18 the results for the coarse mesh are not accurate enough due to a standard
discretization error. However, the diagrams for the medium and the fine meshes almost coincide
with each other. In Fig. 19 the deformed meshes and in Fig. 20 the vertical strain distributions are
presented. This time the width of the shear band, which for the gradient model is in a relationship
with the internal length introduced by the gradient scaling factor g, is similar for each of the three
considered discretizations. The pore pressure distributions depicted in Fig. 21 do not depend on the
mesh density and do not exhibit localization. Summarizing, the results for the gradient enhanced
model are free from pathological discretization sensitivity. As shown in [56], for the two-phase Cam-
clay model the pore pressure distribution depends on the permeability coefficient, but the shear
band width does not.

Fig. 18. Load-deformation curves for gradient-enhanced Cam-clay model g = 1.0e05 kN2/m2.

8. FINAL REMARKS

In this paper, the numerical simulations of strain localization in one- and two-phase geomateri-
als have been addressed. The influence of imperfections on shear band formation in the biaxial
compression test of drained soil sample and the problem of slope stability have been presented.
In order to avoid the ill-posedness of the governing equations and to stabilize the numerical

response in the presence of material softening the enhanced continuum theory has been applied.
The gradient enhancement to the employed Cam-clay plasticity model has been introduced due
to its universality and relatively convenient numerical implementation. Three and two-field finite
elements implemented in FEAP package have been used in numerical simulations.
The examination of the influence of imperfections on shear band formation shows that, in static

simulations, the role of imperfections is limited to the initiation of strain localization. When the
pre-peak deformation is uniform (as in the biaxial compression test), imperfections trigger the
localization process and determine the initial position of deformation bands. The size of imperfection
area and intensity have no significant influence on the final shear band position. The location of
imperfection affects the initial deformation pattern, i.e. the arrangement of shear bands. Further in
the loading process the deformation with just one shear band is predominant. Its width is related to
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Fig. 19. Deformed meshes for gradient-enhanced Cam-clay model.
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Fig. 20. Vertical strain distribution for gradient-enhanced Cam-clay model.
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Fig. 21. Pore pressure distribution for gradient-enhanced Cam-clay model.
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the internal length parameter and does not depend on area of imperfection. In the employed model
the Laplacian influence scaling factor g is assumed to be constant, but the material hardening
modulus evolves, hence the band width is observed to increase.
The analysis of steep slope stability problem with local Cam-clay model yield mesh-dependent

distribution of strains while the gradient-enhanced version of the model provides discretization-
independent solution.
The obtained results show that the gradient enhancement of Cam-clay model assures the well-

posedness of BVP and eliminates the spurious mesh-sensitivity of discrete, numerical solutions by
introduction of the internal length scale.
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[4] Z.P. Bažant, G. Pijaudier-Cabot. Nonlocal continuum damage, localization instability and convergence. ASME
J. Appl. Mech., 55: 287–293, 1988.

[5] A. Benallal, J.-J. Marigo. Bifurcation and stability issues in gradient theories with softening. Modelling and
Simulation in Materials Science and Engineering, 15(1): 283–295, 2007.

[6] J. Bobiński. Implementation and application examples of nonlinear concrete models with nonlocal softening.
Ph.D. dissertation, Gdańsk University of Technology, Gdańsk, 2006. (in Polish).

[7] R. Borja. Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain
localization analyses of partially saturated porous media. Comput. Methods Appl. Mech. Eng., 193: 5301–5338,
2004.

[8] R.I. Borja, X. Song, W. Wu. Critical state plasticity. Part VII: Triggering a shear band in variably saturated
porous media. Comput. Methods Appl. Mech. Eng., 261–262: 66–82, 2013.

[9] R. de Borst. Simulation of strain localisation: A reappraisal of the Cosserat continuum. Eng. Comput., 8:
317–332, 1991.

[10] R. de Borst, M.-A. Abellan. Dispersion and internal length scales in strain-softening two-phase media. In
G. Meschke et al. [Ed.], Proc. EURO-C 2006 Int. Conf. Computational Modelling of Concrete Structures, pp.
549–556, Taylor & Francis, London/Leiden, 2006.
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[13] R. de Borst, L.J. Sluys, H.-B. Mühlhaus, J. Pamin. Fundamental issues in finite element analyses of localization
of deformation. Eng. Comput., 10: 99–121, 1993.

[14] R. de Borst, E. van der Giessen, editors. Material Instabilities in Solids, Chichester, 1998. IUTAM, John Wiley
& Sons.

[15] R.A.B. Engelen, M.G.D. Geers, F.P.T. Baaijens. Nonlocal implicit gradient-enhanced elasto-plasticity for the
modelling of softening behaviour. Int. J. Plasticity, 19(4): 403–433, 2003.

[16] S. Forest, E. Lorentz. Localization phenomena and regularization methods. In J. Besson [Ed.], Local approach
to fracture, pp. 311–370. Les Presses de l’École des Mines, Paris, 2004.
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[28] M. Jirásek. Nonlocal models for damage and fracture: comparison of approaches. Int. J. Solids Struct., 35(31–
32): 4133–4145, 1998.

[29] E. Kuhl, E. Ramm, R. de Borst. An anisotropic gradient damage model for quasi-brittle materials. Comput.
Methods Appl. Mech. Eng., 183(1–2): 87–103, 2000.

[30] T. Liebe, P. Steinmann. Theory and numerics of a thermodynamically consistent framework for geometrically
linear gradient plasticity. Int. J. Numer. Meth. Eng., 51: 1437–1467, 2001.

[31] T. Liebe, P. Steinmann, A. Benallal. Theoretical and computational aspects of a thermodynamically consistent
framework for geometrically linear gradient damage. Comput. Methods Appl. Mech. Eng., 190: 6555–6576, 2001.

[32] A. Scarpas, X. Liu, J. Blaauwendraad. Numerical modelling of nonlinear response of soil. Part 2: strain local-
ization investigation on sand. Int. J. Solids Struct., 42: 1883–1907, 2005.

[33] T. Łodygowski. Numerical solutions of initial boundary value problems for metals and soils. In Perzyna [46],
pp. 392–468.

[34] G. Maier, T. Hueckel. Nonassociated and coupled flow rules of elastoplasticity for rock-like materials. Int. J.
Rock Mech. Min. Sci. & Geomech. Abstr., 16: 77–92, 1979.
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