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Along with the increase in computing power, new possibilities for the use of parametric
coupled analysis of fluid flow machines and metamodeling for many branches of industry
and medicine have appeared. In this paper, the use of a new methodology for multi-
objective optimization of a butterfly valve with the application of the fluid-structure in-
teraction metamodel is presented. The optimization objective functions were to increase
the value of the KV valve’s flow coefficient while reducing the disk mass. Moreover, the
equivalent von Mises stress was accepted as an additional constraint. The centred com-
posite designs were used to plan the measuring point. Full second-order polynomials,
non-parametric regression, Kriging metamodeling techniques were implemented. The op-
timization process was carried out using the multi-objectives genetic algorithm. For each
metamodel, one of the optimization candidates was selected to verify its results. The best
effect was obtained using the Kriging method. Optimization allowed to improve the KV
value by 37.6%. The metamodeling process allows for the coupled analysis of the fluid
flow machines in a shorter time, although its main application is geometry optimization.

Keywords: metamodeling, surrogate model, computational fluid dynamics, design of
experiment, optimization, butterfly valve.

Notation

CAD – computer-aided design,
CCD – centered composite designs,
CFD – computational fluid dynamics,
DN – nominal diameter,

DOE – design of experiment,
FSI – fluid-structure interaction,
GA – genetic algorithm,

GEK – gradient-enhanced Kriging,
KV – flow coefficient of a device,
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LHS – Latin-hypercube sampling,
MOGA – multi-objective genetic algorithm,

NPR – non-parametric regression,
NSGA-II – non-dominated sorted genetic algorithm-II,

OA – orthogonal array,
RSM – response surface method,
y+ – non-dimensional wall distance.

1. Introduction

Improving fluid flow machinery design, its price, and reliability is necessary
to meet the growing demands of the market. Along with the increase in comput-
ing power, new possibilities for the use of multi-objective optimization of such
kind of equipment for many branches of industry and medicine have appeared.
In this paper, the authors proposed a new multi-objective and multidisciplinary
metamodeling methodology dedicated to fluid flow machines. The work is illus-
trated by an example of optimization of the butterfly valve design and operation
based on a metamodeling framework.

In the past, the traditional approach to work on fluid flow machinery de-
sign was based on experience and ready-made solutions. The vision of a designer
was limited in this research area. The development of numerical methods and
their adaptation to various areas of engineering give much more possibilities
for accomplishment in this field. Computational fluid dynamics (CFD) analysis
software has been successfully used, meeting the scientific and industrial require-
ments in the design of butterfly valves. Their large number and the continuous
improvement of the topic indicate a continued interest in this problem. In one of
the earlies research [1], the authors point out that there is a certain relationship
between the turbulence models and the correctness of the results, depending on
its degree of opening. The most expensive models showed the greatest agree-
ment, although most studies allow maintaining a balance between simulation
time and accuracy of results. In another article [2] authors present a comparison
of the experimental and simulation results of the flow coefficient for a butterfly
valve, demonstrating the influence of the length of the inlet and outlet channels
on the value of the estimation error. In the simulation described in [3], the au-
thors investigated the effect of the location of the butterfly valve between two
opposing 90◦ elbows. In their considerations, they use the analysis of torque
fluctuations in the context of the possibility of transmission to mechanical vi-
brations. The possibilities of using numerical software in determining the noise
of butterfly valves are presented in [4]. The next attempt to analyze the large
butterfly valve is presented in [5], where authors show not only structural and
fluid analyses but also indicate the need to change the shape of the disk. Per-
formance between the single disk type butterfly valve and the double disk type
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was investigated in [6]. Another example of simulation on the dependence of the
disk shape and the dynamic-valve-torque is presented in [7]. Interesting solu-
tions can be observed in the work [8], which presents research on a valve with
a rectangular cross-section. Small size and cooling electrical device application,
its cross-sectional area result in a more linear flow characteristic. The process
of optimizing the butterfly valve design can be found in the publication [9].
Researchers utilized the Kriging surrogate model and orthogonal array for the
design of experiment (DOE). Furthermore, in [10] the orthogonal array (OA)
method and the quadratic response surface method (RSM) together with topol-
ogy optimization of the butterfly valve are presented. Genetic algorithms were
implemented in [11] for butterfly valve optimization.

Methods of experimenting were developed to systematize the study, especially
those with a large number of variables. The design of experiment was officially
implemented by Ronald A. Fisher in the 1920s, who researched agriculture. Col-
lecting data was challenging, for this reason, it was necessary to systematize
the way of obtaining results [12]. Searching for experimental points was the first
stage of the procedure. The method of their selection depends on a few matters:
a prediction error, the number of repetitions that can be performed, or the de-
sign shape. When the prediction error has a significant influence on the result,
the DOE method should be applied, e.g., centered composite designs (CCD),
face-centered cubic designs, factorial designs. As the noise is not significant, it
is possible to use Latin-hypercube sampling (LHS), minimum bias designs, and
orthogonal arrays (OAs) methods. Article [13] introduced a few designs of ex-
periment techniques and guidelines used to search for sampling methods.

The selection of the metamodel that connects the generated measurement
points is also significant. The most popular surrogate models are polynomial
response surfaces, Kriging; gradient-enhanced Kriging (GEK); the radial ba-
sis function; artificial neural networks, and Bayesian networks. The polynomial
metamodel referred to as a response surface model is a set of statistical and
mathematical methods. The models are developed using regression, which is the
process of fitting a regression model y = s(x, β) + ε to a dataset of n variable
settings xi and corresponding responses yi. The least-squares method chooses
the regression coefficients β so that the quadratic error is minimized

min

n∑
i=1

ε2i =

n∑
i=1

(yi − s(xi, β))2 . (1)

For example, the second-order polynomial models can be used to fit a metamodel
in k design variables:

y = s(x, β) + ε = β0 +
k∑

i=1

βixi +
k−1∑
i=1

k∑
i<j=2

βijxixj + ε. (2)
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More information about this method and mathematical explanation can be found
in [14]. The polynomial response method is easy to construct, cheap to work with,
but in some cases less accurate than the other methods for high-order nonlin-
ear problems. For low-order nonlinear and small-scale problems, the polynomial
model performs best in terms of both average accuracy and robustness, which
was presented in [15]. In DesignXplorer, non-parametric regression (NPR) is
a method based on the Support Vector Machine classification theorem. The non-
parametric regression metamodel categorizes the noisy data and uses only those
that reflect the outputs the best. This approach utilizes all the main features that
characterize the maximal margin algorithm. Non-parametric regression systems
with nonlinear responses and noisy results can be described as below:

f(x) = 〈w, x〉+ b, (3)

where f(x) is the response of interest, w and b are mathematically defined as:

w =
n∑

i=1

(α∗
i − αi)ϕ(xi), (4)

b =
1

2
〈w, (xr + xs)〉, (5)

where α∗
i , αi are Lagrange variables, and xr, xs are support vectors [16].

The Kriging algorithm, which is a combination of a polynomial model and
localized deviations can be described as:

y(x) = f(x) + Z(x), (6)

where y(x) is the function of interest, f(x) is a polynomial function of x, and Z(x)
is interpolations of the N sample data points. The covariance matrix of Z(x) is
given by:

Cov[Z(xi, Z(xj)] = σ2R
(
[r(xi, xj)]

)
, (7)

where R is the correlation matrix, and r(xi, xj) is the spatial correlation of the
function between any two of the N samples xi and xj . The correlation function
is given by:

r(xi, xj) = exp

(
−

M∑
k−1

θk

∣∣∣xik − xjk∣∣∣2
)
, (8)

θk are unknown parameters of fit, M is the number of design variables, and xik
and xjk are k-th components of sample points [17].
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A metamodel uses simple functions to approximate more difficult objectives
based on a limited amount of data x1, x2, ..., xn. The metamodel can be built to
approximate the true response as:

ŷ = s(x), (9)

where s(x) is the mathematical function defining the metamodel, which maps
the design variables x to the predicted response ŷ. In general, this approximation
is not exact, and the predicted response ŷ will differ from the observed response
y from the detailed model.

The prediction of the simulation-based model output can be defined as:

f(x) = f̂(x) + ε(x) = s(x) + ε(x), (10)

where the error ε consequently represents the approximation error.
A metamodel for a single response is built from a dataset of input xi and

corresponding output yi = f(xi), where i = [1, ..., n] and n is the number of
designs used to fit the model. Consequently, n evaluations of the detailed model
with different variable settings xi = (x1, x2, ..., xk)T of the k design variables are
required to build the metamodel [18, 19].

Choosing the optimal design among multiple objective functions is challeng-
ing. In general, a multi-objective optimization problem is formulated as:

min /max fi(x) i = 1, ..., Nobj. (11)

Subject to:{
gj(x) = 0, j = 1, ...,M,

hk(x) ≤ 0, k = 1, ...,K,
(12)

where fi is the i-th objective function; x is the decision vector that presents
a solution;Nobj is the number of objectives;M andK are the numbers of equality
and inequality constraints [20]. Multi-objective genetic algorithm (MOGA) is
a variant of the popular non-dominated sorted genetic algorithm-II (NSGA-II).
Genetic algorithms (GA) are classified in metaheuristic methods, which aim
to find an acceptable solution in very complex optimization and search pro-
blems [21].

In this study, the multi-objective optimization of a butterfly valve using the
fluid-structure interaction (FSI) metamodel was performed. The objective func-
tion was to maximize the flow rate coefficient and to minimize the mass of the
valve disc.

The paper is organized as follows. The most important information about
the butterfly valve operation and design is presented in Sec. 2. The numerical
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simulation of the fluid flow through the valve and the pressure effect on the
valve components are presented in Sec. 3. The description of the butterfly valve
optimization process and a brief explanation of the methods used are presented
in Sec. 4. The results and discussion are presented in Sec. 5. Section 6 focuses
on the conclusions. Finally, Sec. 7 contains conclusions with recommendations
for the future work.

2. The metamodel of a butterfly valve

2.1. Butterfly valve: construction and operation

The basic elements of the butterfly valve are disk, stem, body, bearings, ac-
tuator. A part that has a direct impact on the flow of the medium is the disk.
Mounted on the stem can rotate 90 degrees, thereby completely opening or clos-
ing the flow (in position 0◦). With this device, it is also possible to regulate the
flow rate depending on the opening degree of the valve. Although the values
of the flow coefficient and the forces acting on the surface of the disk depend
on the opening angle, all presented results in this article refer to an angle of
70 degrees. There are a few different types of butterfly valves on the market,
including the zero offset known as a concentric design, double offset, and triple
offset. An appropriate construction or plastic/rubber sealing prevent leakage.
The basic parameters of the materials used in the study are presented in Ta-
ble 1.

Table 1. Specifications of the butterfly valve.

Operating temperature of the fluid (water) 20◦C
Fluid density 998.2 kg/m3

Disc material X2CrNiMo17-12-2
Solid density 7980 kg/m3

Inlet pressure 0.2 · 106 Pa
Outlet pressure 0.1 · 106 Pa

The geometry of the examined object was created using the SpaceClaim. A
special script was written that automatically provided geometry for analysis.
Scripting in the SpaceClaim environment uses IronPython. The butterfly valve
disk structure consists of simple symmetrical elements that are an advantage
in the creation of a CAD object. The script contains commands for drawing
objects, rotation, extension, rounding, also selection commands to make sur-
faces for a boundary condition. Examples of the IronPhyton script are shown as
follows:
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# Sketch Rectangle
point1 = Point2D.Create(MM(Parameters.D1_obl_2),MM(Parameters.Width_body_2))
point2 = Point2D.Create(MM(Parameters.L1_obl_2),MM(Parameters.Width_body_2))
point3 = Point2D.Create(MM(Parameters.L1_obl_2),MM(-Parameters.Width_body_2))
result =SketchRectangle.Create(point1, point2, point3)
# EndBlock

# Revolve 1 Face
selection = Selection.Create(GetRootPart().Bodies[1].Faces[0])
axisSelection = Selection.Create(GetRootPart().DatumLines[0])
axis = RevolveFaces.GetAxisFromSelection(selection, axisSelection)
options = RevolveFaceOptions()
options.ExtrudeType = ExtrudeType.ForceIndependent
result = RevolveFaces.Execute(selection, axis, DEG(360), options)
# EndBlock

3. Methods

3.1. Input parameters bound

The initial dimensions of the examined object were created based on solutions
proposed by manufacturers. They are only an introduction to further considera-
tions. For the valve with a nominal diameter of 50 mm, an optimization process
was carried out in which the fixed dimensions were: FI; An; Wd; DN; ThB, and
the variable parameters were R1; R2; ThP_2_2. Both the fixed and the bound
variable parameters are presented in Table 2.

Table 2. Value of fixed and variable dimensions.

Fixed dimensions Value
DN 50 mm
Wd 55 mm
ThB 3 mm

ThP_1 1 mm
FI 12.5 mm
An 70◦

Variable dimensions Range
R1 0.1 mm ≤ R1 ≤ 1 mm
R2 0.1 mm ≤ R2 ≤ 45 mm

ThP_2_2 1 mm ≤ Thick_plate ≤ 6 mm

As a result of the working script, a butterfly valve was assembled with inlet
and outlet channels. The pressure differences were measured on the valve and



24 L. Pałys, M.W. Mrzygłód

the channels in the analysis were flow-stabilizing. A fluid domain was introduced
between the inlet and the outlet, on which further CFD calculations were based.
The explanation of the valve dimensions, channel length, and disc thickness are
presented in the drawings below (Figs 1 and 2).

Fig. 1. Dimensions of the butterfly valve.

Fig. 2. Explanation of the designation used in the valve’s description.

3.2. Fluid flow analysis

To meet system requirements and adequately select the valve for the task
and installation, it is necessary to know the fluid rate related to the opening of
the valve. For the correct operation of the device, it is recommended to avoid
using the disk in extreme positions, which may result in unstable operation of
the system. Depending on what unit system is used, the flow coefficient can be
described as:

KV = Q

√
∆PRef · ρRef

∆P · ρ
, (13)

where KV – flow coefficient [m3/h], Q – flow rate [m3/h], ∆PRef = 1 [bar] –
reference pressure drop, ∆P – pressure drop across the valve [P1 − P2] [bar],
ρRef = 1000 [kg/m3] – reference density of water, ρ – water density [kg/m3].
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The location of each valve should be at an appropriate distance from the
source of the disturbance (e.g., pumps, elbows). The influence of the stabilizing
pipe on the results was also shown in [2]. To solve this problem and also comply
with the computing requirements, an upstream pipe equal to twice the length of
the diameter and a downstream pipe with the length equal to six times the length
of the diameter were introduced. The numerical grid was composed of tetrahedral
elements. Calculations used the k–ε turbulence model due to its wide application
but also small computational requirements.

To meet the requirements of numerical calculations of fluid dynamics, but
also to reduce the calculation error, a numerical mesh independence test was
performed (see Table 3). For this purpose, the values of the KV parameter were
compared depending on the numerical grid used. The values of the y+ parameter
were also checked, which is a dimensionless parameter and describes the distance
from the wall to the first mesh node. In the case of using the k–ε turbulence
model, only those meshes with the value of y+ within the range 30 < y+ > 300
were taken into consideration. The parameters of grid number 5 were used in
the further simulations.

Table 3. Mesh independence parameters.

No. Element order Elements KV [m3/h] y+ Comments
1 Linear 29057 98.20 21812 Without inflation
2 Linear 523137 82.89 433 Inflation
3 Linear 215657 83.02 119 Sweep/Inflation
4 Quadratic 300857 83.21 76 Sweep/Inflation/Sizing – 0.001
5 Quadratic 760228 83.58 39 Sweep/Inflation/Sizing – 0.0005
6 Quadratic 2609944 82.24 20 Sweep/Inflation/Sizing – 0.00025
7 Quadratic 4062521 82.54 15 Sweep/Inflation/Sizing – 0.0002

For the initial conditions, the pressure drop between the inlet and outlet
was determined as indicated by the standard describing the methodology for
conducting this type of testing [22]. As shown in Fig. 3, the results obtained
for the computer simulation are consistent with the values presented by the
manufacturers. In particular, the simulation result coincides with the data of
manufacturer No. 3. The two other data sets differ slightly from the simulation
results. In the 70–90 degree of opening, the results of manufacturer No. 1 and 2
are much higher since each manufacturer uses a different disk geometry.

The multi-objective optimization procedure was prepared using ANSYS Pro-
ject Schematic graphic interface. Figure 4 shows the diagram of fluid-structure
interaction components in the Ansys program. The stress analysis occurring
during the flow of the medium through the butterfly valve was carried out, and
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Fig. 3. Examples of the flow rate coefficient for butterfly valves from different manufacturers
against computational data.

Fig. 4. The multi-objective optimization procedure.

the yield stress of 240 MPa (for X2CrNiMo17-12-2 material) was accepted as
a constraint of optimization.

3.3. Optimization procedure

In the first instance, a simple face-centered CCD method was used. It is built
for the second-order response surface model. The minimum number of design
points in CCD with three variables is 15 (2k + 2k+ 1). However, when the num-
ber of variables increases, computing time also is considerably high. The CCD
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method seems to be appropriate for a small number of variables. Nevertheless,
taking into account the range of R2’s values and impact on geometry, the CCD
enhanced method was chosen. As a result, the final number of measurement
points reached 29. Based on the measurement points, metamodels were gen-
erated, the differences of which are best observed by comparing the response
surfaces. Full second-order polynomials, non-parametric regression, Kriging me-
thods were investigated. Next, multi-objective MOGA optimizations were used.
In this research, the multi-objective function is to maximize the flow rate coef-
ficient and to minimize the mass of the valve disc. Thus, based on the general
description of multi-objective optimization (Eqs (11) and (12)), in this research,
the solution procedure goes as follows:

min f(x) = {mass} , (14)

max f(x) = {KV}, (15)

where

x = [R1,R2,ThP_2_2 ]. (16)

MOGA’s parameters were set to generate 3000 samples initially, 600 samples
per iteration in a maximum of 20 iterations with one candidate point. Mutation
probability was equal to 0.01 and crossover probability equal to 0.98.

4. Results

Fluid flow analysis provides information about the pressure field and, more
importantly, allows determining the valve KV coefficient, which is calculated
according to Eq. (13) and with the guidelines contained in the chapter Fluid
flow analysis. A disk shape has a significant impact on the pressure field. The
increasing of radius R2 or ThP_2_2 results in smoother pressure transitions
around the disk (see Fig. 5). Also, the issue that causes the most problems in the
valve’s work is cavitation. It affects increased noise and often results in damage
to the device. It is worth noting that information about the pressure exerted
on the element can be transferred to structural analysis. This happens in fluid-
structure interaction (FSI) where pressure is transferred to other systems. These
loads may cause structural deformation significant enough to change the fluid
flow itself.

In Fig. 6, local sensibility can be noticed. The R1 has the most significant
impact on of the KV coefficient level, but the small range of variables for this
parameter has little scope for change. An increase in ThP_2_2 also expands the
value of KV. The biggest influence on mass is due to the largest size range of
ThP_2_2 and R2 parameters.
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a)

b)

Fig. 5. Pressure contour for valve dimensions: a) ThP_2_2 = 1 mm, R1 = 0.1 mm,
R2 = 0.1 mm at the middle plane and 70 degree opening, b) ThP_2_2 = 6 mm, R1 = 0.55 mm,

R2 = 22.55 mm.

Fig. 6. Local sensitivity analysis.
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Table 4. Design parameters and optimization objectives.

No.
Variables Objectives

ThP_2_2 [mm] R1 [mm] R2 [mm] KV [m3/h] Mass [kg]
1 3.50 0.550 22.550 98.56 0.0601
2 1.00 0.550 22.550 97.11 0.0540
3 2.25 0.550 22.550 101.93 0.0567
4 6.00 0.550 22.550 102.22 0.0694
5 4.75 0.550 22.550 104.76 0.0643
6 3.50 0.100 22.550 82.40 0.0602
7 3.50 0.325 22.550 91.12 0.0602
8 3.50 1.000 22.550 117.35 0.0599
9 3.50 0.775 22.550 102.95 0.0600
10 3.50 0.550 0.100 101.94 0.0491
11 3.50 0.550 11.325 111.58 0.0543
12 3.50 0.550 45.000 93.68 0.0692
13 3.50 0.550 33.775 98.63 0.0650
14 1.00 0.100 0.100 83.58 0.0363
15 2.25 0.325 11.325 92.12 0.0493
16 6.00 0.100 0.100 86.51 0.0629
17 4.75 0.325 11.325 98.63 0.0599
18 1.00 1.000 0.100 105.89 0.0358
19 2.25 0.775 11.325 112.89 0.0491
20 6.00 1.000 0.100 113.71 0.0627
21 4.75 0.775 11.325 110.56 0.0598
22 1.00 0.100 45.000 77.80 0.0693
23 2.25 0.325 33.775 89.32 0.0632
24 6.00 0.100 45.000 83.17 0.0746
25 4.75 0.325 33.775 92.34 0.0681
26 1.00 1.000 45.000 95.56 0.0689
27 2.25 0.775 33.775 97.56 0.0630
28 6.00 1.000 45.000 95.64 0.0743
29 4.75 0.775 33.775 99.40 0.0679

Graphical representation of the metamodel on the KV value with R2 and
ThP_2_2 is presented in this paper. As shown in Fig. 7, the simulation points
do not always coincide with the plot surface. Metamodel compatibility param-
eters and some measurement errors are shown in Table 5. The Kriging method
gives the best matching to the measuring points, but its finite number does
not consider the whole measuring range (especially with CCD). Slightly bet-
ter matching can be seen for non-parametric regression than full second-order
polynomials.
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a)

b)

c)

Fig. 7. Graphical representation of KV, R2, ThP_2_2 parameters response chart plots for:
a) full second-order polynomials, b) non-parametric regression, c) Kriging.
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Table 5. Metamodel compatibility parameters.

Root mean square error Relative maximum
absolute error

Relative average
absolute error

Learning
points

Verification
points

Learning
points

Verification
points

Learning
points

Verification
points

KV Mass KV Mass KV Mass KV Mass KV Mass KV Mass

Fu
ll
se
co
nd

-o
rd
er

po
ly
no

m
ia
ls

2.87 0.0001 2.93 0.0001 64.11 5.42 66.22 5.49 21.40 1.48 22.68 1.46

N
on

-p
ar
am

et
ri
c

re
gr
es
si
on

0.96 0.0003 1.00 0.0003 39.85 4.228 41.17 4.27 5.46 3.35 5.80 3.44

K
ri
gi
ng

0 0 0 0 0 0 0 0 0 0 0 0

The Kriging method best reflects high deviations and may be used as a guide
in further studies. Growth in the number of simulation points could increase
the accuracy of the metamodel, but this is associated with a longer duration
of the process. Furthermore, with such a small number of variables, the num-
ber of DOE points is not significant. However, with their increase, changing
methods of generating experimental points and metamodeling methods should
be considered.

Metamodels presented in graphic form are represented in the form of equa-
tions, and for the full second-order polynomials are described as:

KV = 72.59 + 3.67ThP_2_2 + 51.5R1 + 0.249R2− 0.342ThP_2_2

× ThP_2_2− 16.9R1× R1− 0.00688R2× R2− 0.3ThP_2_2

× R1− 0.0108ThP_2_2× R2− 0.275R1× R2, (17)

Mass = 0.032731 + 0.003492ThP_2_2− 0.00021R1 + 0.000911R2

+ 0.000261ThP_2_2× ThP_2_2− 0.00029R1× R1

− 0.000002R2× R2 + 0.000035ThP_2_2× R1

− 0.000096ThP_2_2× R2 + 0.000001R1× R2. (18)
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The R-squared (R2) parameter describing the fit of the metamodel to the
input data for the KV is 89.57% and for mass 99.9%.

Sets of Pareto fronts based on different metamodels are presented in Fig. 8.
Their shape differs from each other, which is directly related to the methods
used. Pareto fronts present only the best possible options for solving the goals
under consideration. The process of metamodeling and optimization led to the
following results in the form of one candidate in each metamodel presented in
Table 6. Optimal candidate points, selected in the optimization process, were
placed on the Pareto front chart.

Fig. 8. Pareto fronts for different metamodels.

Table 6. Optimal candidates for different metamodels.

Full second-order polynomials Non-parametric regression Kriging
ThP_2_2 [mm] 1.040 1.820 1.910

R1 [mm] 0.990 0.990 0.990
R2 [mm] 1.980 7.140 5.120
KV [m3/h] 110.730 116.300 112.150
Mass [kg] 0.036 0.041 0.039

Optimal point parameters did not differ significantly from each other. The
R1 value was close to 1 mm. The ThP_2_2 parameter varies from 1 mm to
1.9 mm. The parameter R2 has the widest range (1.98 mm to 7.14 mm). In all



Using metamodeling and fluid-structure interaction analysis. . . 33

cases, the obtained KV coefficient value was above 108 m3/h, and the disk weight
varied from 0.036–0.041 kg. All candidates were verified in the CFD simulation
to check metamodels’ correctness.

The next step was to check the stress in the disk stricture caused by the fluid
flow. The scheme of the procedure is presented in Fig. 4. Taking into account the
safety issues, FSI analyses were performed for the higher parameters: pressure
inlet 1.6× 106 Pa and pressure outlet 0 Pa. The analysis of the results between
the initial geometry and the optimized geometry did not reveal any significant
differences in the level or areas of the highest stresses. In the case of the optimal
design, the stress fields are more homogeneous than in the initial version, which
was characterized by the highest stresses in sharp areas without rounds. The
drop in the maximum von Mises stress can be observed for 90◦, 80◦ and 10–40◦

open positions. For both structures, the stress constraint was not exceeded. The
maximum stresses obtained on the disk when changing the disk position are
presented in Table 7.

Table 7. Maximum disc stresses value.

Initial Kriging’s optimal
Angle [◦] Max. stress [Pa] Angle [◦] Max. stress [Pa]

90 2.25E+07 90 6.82E+06
80 4.76E+08 80 1.31E+08
70 1.24E+07 70 1.99E+08
60 3.31E+07 60 1.99E+08
50 1.50E+08 50 1.59E+08
40 4.57E+08 40 1.32E+08
30 1.79E+07 30 1.12E+08
20 1.87E+08 20 1.00E+08
10 1.27E+08 10 1.06E+08

The von Mises stress for the initial and optimal geometry is shown in Figs 9
and 10. The highest level of stress can be observed at the connection between
the stem mounting and the disk.

Considering the small differences between the R1 and ThP_2_2 values, pro-
posed in the optimization process by different metamodels, the R2 parameter was
of the greatest importance. Introducing the radius between the shaft mount-
ing and the disk, significantly reduces the level of stress concentration (from
455× 106 Pa to 198× 106 Pa), resulting in a uniform field distribution and re-
duction of the maximum stress values. In any of the above cases, the values of
hazardous stresses were not exceeded. Compared to the initial design, the maxi-
mum stresses (141× 106 Pa) increased slightly, thus remarkably improving the
flow coefficient.
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a) b) c)

Fig. 9. Equivalent von Mises stress for initial disc geometry and opening angle:
a) 10◦, b) 50◦, c) 80◦.

a) b) c)

Fig. 10. Equivalent von Mises stress for optimal candidates:
a) full second-order polynomials, b) non-parametric regression, c) Kriging.

5. Discussion

The results for the initial, optimal, and verification parameters are listed in
Table 8. It can be seen that despite a significant improvement in the rate of the
KV coefficient, their values are not confirmed at the verification point. Against
the uncertainty as to the methods used, the best results were shown by the
Kriging method. The error between metamodel predictions and the candidate’s
simulation was 3% for KV and 1% for geometry mass.
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Table 8. Result comparison.

KV [m3/h] Mass [kg]
Initial 83.58 0.0362
Optimal

Full second-order polynomials 110.73 0.036
Non-parametric regression 116.30 0.041

Kriging 112.15 0.039
Verification

Full second-order polynomials 104.13 0.0375
Non-parametric regression 119.03 0.0441

Kriging 115.27 0.0430
Error [%]

Full second-order polynomials 6% 3%
Non-parametric regression 2% 4%

Kriging 3% 1%

Weak metamodel matching can be seen for full second-order polynomials
and non-parametric regression. Relative maximum absolute error (KV) for those
methods are slightly high (66.22% and 41.17%, respectively in Table 6) as to the
continuity disturbances of the valve model behaviour. The difference between
the values obtained by simulation and the metamodeling prediction is below
10%. Although the results may seem satisfactory, their geometry was in an area
well represented by each of the metamodels, which does not mean that the
entire studied area is well described. The best concordance was obtained for the
predicted mass of the object. The metamodel performed well for the predicting
mass value.

6. Conclusions

Our aim of the work was to find the metamodeling methodology for the multi-
objective optimization of fluid flow machines. The methods used the FSI analysis
at defined design points to evaluate the KV coefficient as well as structural stress.
Furthermore, optimization of the valve was carried out by using the following
modelling algorithms:

• CCD with full second-order polynomials,
• non-parametric regression,
• and Kriging model.
Moreover, the multi-objective genetic algorithm optimization procedure was

applied to reduce the weight of the valve disc as well as to maximize the KV
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coefficient. Optimization allowed to improve the KV value by 37.6%. However,
this caused an increase in disk mass (0.002 kg) from the optimal valve geometry
when compared to initial dimensions. Verification of the optimal point, to check
the correctness of the selected metamodel, showed a 3% error between optimal
and verification KV coefficient values. The created metamodel can be easily used
as an input parameter to the next element of the system. In the case of a butterfly
valve, the KV coefficient is only a part of the entire hydraulic system, and the
choice of the internal components or an opening angle has a critical effect on
other units. Optimization of the structure resulted in KV improvement, homo-
genization, and a decrease in disk stress at maximum and minimum positions.

The described metamodeling methods have applications in bioengineering.
In the future, our research group plans to implement them in the construction
of artificial heart support chambers.
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