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Cross-trainers are machines that use link mechanisms to mimic walking or running as
part of workout sessions or rehabilitation systems. The simplest cross-trainer incorporates
a crank-rocker or a crank-slider mechanism and provides a nearly elliptical path for foot
motion. However, the natural human foot trajectories are far from being elliptical. There-
fore, existing designs require modifications. Artificial neural networks are used for this
purpose. Instead of trying to match the foot trajectory directly, here we tried to match
different geometric properties of the area enclosed by the foot trajectory. Neural networks
are trained to predict these geometric properties as outputs with the dimensions of the
linkage as inputs. With the help of the same trained network, the “best-fit dimensions”
were predicted for the desired trajectories.
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1. Introduction

1.1. Gait cycle of human foot motion

Rehabilitation systems are used for patients who lost locomotor abilities due
to injuries or diseases. To enhance such systems, the accurate study of the gait
cycle of human locomotion is important. Such studies were extensively conducted
over the past two decades. Many of these studies focused on planar motion, while
some focused on motion over the staircase. The shapes of the foot trajectories
turn out to be quite different in these two cases.

Schmidt et al. [1] built a robotic device to facilitate the movement of the
patients’ feet in programmable trajectories. Grasso et al. [2] studied the im-
provement in the gait cycles in rehabilitation training of the patients suffering
from spinal cord injuries. Chang and Troje [3] studied the local inversion effects
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in the motion perception of the human foot trajectory by dividing it into mul-
tiple segments. Shirota et al. [4] studied recovery strategies of the transfemoral
amputees through the gait cycles of their sound and prosthesis sides. Mendoza-
Crespo et al. [5] through studies on human subjects, developed a human-like
gait pattern generator. Figure 1a represents the ankle trajectory as reported
by Mendoza-Crespo et al. [5] and Fig. 1b represents the same in the centroidal
principal coordinate system of the enclosed area.
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Fig. 1. Human ankle trajectory on a plane walk (a) as reported by Mendoza-Crespo et al. [5];
b) the same represented in the centroidal principal coordinate system.

Figure 2a shows the ankle trajectory reported by Park et al. [6], while Fig. 2b
shows the reoriented configuration in the centroidal principal coordinate system
of the enclosed area. While most commercial robotic locomotion rehabilitation
systems are designed for a plane walk, Park et al. [6] studied the stair-gate
patterns and applied them to a robotic rehabilitation system to facilitate vertical
motion. Unlike plane motion, here the vertical span of the trajectory is noticeably
high and almost matches the horizontal span. The angle φ in Figs 1b and 2b
represents the amount of rotation required to orient the shapes in their respective
centroidal principal coordinate systems.

Cross-trainers are machines that use link mechanisms to mimic walking or
running as part of workout sessions or as rehabilitation systems. The simplest
cross-trainers are four-bar crank-rocker mechanisms with one degree of freedom
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Fig. 2. Human ankle trajectory on stair walk (a) as reported by Park et al. [6],
b) the same represented in the centroidal principal coordinate system.

(DOF). One such mechanism (Fig. 3a) is considered here. Table 1 describes the
different components of the mechanism along with the dimensions.

The sample shown in Fig. 3a is considered as the existing design. The footrest
for the existing design lies on the coupler, therefore making r2 = 0. Figure 3b
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Fig. 3. Existing cross-trainer design: a) identification of different dimensions;
b) foot trajectory represented in a centroidal principal coordinate system.

Table 1. Different components of the mechanism and their dimensions.

Components Crank Coupler
Ratios defining foot position

Rocker Fixed length
Parallel to L2 Normal to L2

Symbols [units] L1 [in] L2 [in] r = S2
L2

(NA) r2 (NA) L3 [in] L4 [in]

Dimensions 6 25 0.3846 0 30 39.60

shows the ankle trajectory represented in its centroidal principal coordinate sys-
tem. All the dimensions in this analysis are taken in inches.

These two trajectories represent the two extremes of the wide spectrum of
foot-trajectories. In the current study, these two trajectories are considered as
targets.

The objective of the present work is to develop a two-way correlation between
the dimensions of the components of the cross-trainer and the resulting foot
trajectory. Artificial neural networks (ANN) will be trained for this purpose.
Therefore, once trained, the network should be able to predict the foot trajectory
given the dimensions of the components as inputs. On the other hand, the same
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network should be able to predict the “best fit” dimensions if presented with the
desired trajectory.

2. Design of cross-trainers

Numerous designs of cross-trainers are available in the commercial market.
However, academic studies are also conducted to improve their designs further
to make them more suitable for gait rehabilitation. Lee [7] used the creative
mechanism design method to present five alternative designs of elliptical trainers
with two DOFs. Nelson et al. [8] used a crank-rocker mechanism with a curved-
contoured secondary coupler participating in a small-displacement slider-based
sublinkage. The sublinkage helped in fine- tuning the motion path. Nelson and
Burnfield [9] proposed a new design by replacing the crank with a modified
Cardan gear for a flatter foot trajectory. Chen et al. [10] proposed a quick re-
turn mechanism to mimic the timing of foot trajectory for jogging. Burnfield
et al. [11] designed a modified elliptical trainer for children with physical disabi-
lities through a series of seat adjustments, pedal height, step length, etc. Chen
et al. [12] proposed an innovative design for an elliptical trainer to effectively
mimic the foot-trajectory of jogging. The design was achieved by incorporating
a timing adjustment wheel with a protruded slider, which slides through the slot-
ted flywheel which doubles as the crank of the main linkage. Hummer et al. [13]
designed an elliptical trainer to achieve a converging footpath and a reduced
inter pedal distance to reduce overuse injuries.

Most of these advanced designs are more complicated than a crank-rocker or
a crank-slider mechanism and sometimes have more than one DOF. However, in
the present work, only one DOF crank-rocker mechanism is considered.

3. Application of ANN in structural engineering

Application of ANN has entered into different structural and mechanical en-
gineering fields, from modeling of constitutive relations to designing the manu-
facturing process. Modeling of material behavior has been a goal for many au-
thors. For example, Shabani and Mazahery [14] used ANN for the finite element
simulation of an aluminum-silicon alloy. Gupta et al. [15] used ANN to develop
a constitutive model for 304 stainless steel. Desu et al. [16] used ANN to predict
mechanical properties of stainless steel grades 304L and 316L. Chang et al. [17]
used ANN for the application of machine tools for manufacturing purposes.
Ciro De Filippis et al. [18] also used ANN for optimization of manufacturing
purposes.

Artificial neural network also finds its application in structural design. Hong
et al. [19] proposed an ANN-based method for obtaining preliminary designs
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for cable-stayed bridges to assist inexperienced designers. Gomes and Beck [20]
used ANN for structural designs with consequences of failure into account. Mote
and Kumar [21] trained an ANN to design steel structure subject to design
constraints. Liu [22] reviewed the application of ANN in mechanical design,
optimization, structural analysis, and fault detection.

In order to use ANN in a given application, the architecture of the neural
network must be identified. In addition, the methods for initializing and updating
the weights must also be chosen carefully. In the next section. these aspects of
ANN are explored.

3.1. Choice of number of hidden neurons

In order to implement a neural network, it is important to decide on the
number of hidden neurons NH . Panchal and Panchal [23] reviewed the methods
for selecting the number of hidden neurons. They listed five different ways to
obtain the value of NH . Apart from the usual trial and error method, there is
the rule of thumb method. In this method, the NH is a function of the number of
neurons in the input layer NI , and the number of neurons in the output layer NO.
Three possible expressions (Eq. (1)) of NH are found using this method

NH ∈ [min (NI , NO) max (NI , NO)]

or NH =
2

3
NI +NO or NH ≤ 2NI .

(1)

None of the above expressions takes the number of data sets NP into con-
sideration. Apart from these two, there are the simple method, the two-phase
method, which is a modification over the trial and error method, and the se-
quential orthogonal approach.

Kavzoglu and Reis [24] used anNH value based on the number ofNP ,NI ,NO.
The relationship is described in Eq. (2)

NH =
NP

ξ (NI +NO)
and ξ ∈ [2, 10]. (2)

The parameter ξ depends on the problem’s difficulty and typically varies
between 5 and 10 but can be as low as 2.

3.2. Choice of activation function

In a simple feedforward neural network, a neuron in a given layer receives
inputs from the neurons of the previous layer. The neuron is activated if the
weighted sum of these inputs surpasses a given threshold. There are a wide
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variety of activation functions described in the literature. Probably the most
common activation function is the logistic or the sigmoid function. This is an
S-shaped function given by Eq. (3)

σ =
1

1 + exp (−u)
and u =

∑
i

wixi + b, (3)

where xi’s are the inputs from the previous layer, wi’s are the corresponding
weights and b is the bias.

A variation of the sigmoid function is the hyperbolic tangent function, which
offers a zero mean value and a faster learning rate [25]. Neural networks with
non-smooth activation functions such as rectified linear unit (ReLU) (Eq. (4))
typically have softmax layers as their final layer [26]. A ReLU neuron with nega-
tive input encounters a zero value and a zero slope and becomes dead, i.e., does
not update any further. A leaky ReLU (Eq. (5)) fixes the dying ReLU issue. The
graphical representations of the activation functions are given in Fig. 4

f = max (u, 0) , (4)

f = max (u, 0.01u) . (5)

�
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Fig. 4. Activation functions.
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3.3. Initialization of the weights

Initialization of the weights and biases affect the convergence rate of the
backpropagation (BP) algorithm. Different methods of randomly initializing
the weights can be found in the literature. Li et al. [27] proposed a training
strategy named Delta Pre-Training (DPT). In this method, each hidden layer is
initially treated as a perceptron. Thus the weights and biases could be initialized
as zeros. Next, the hidden variables are assigned distinct binary pattern, i.e., each
hidden variable is either 1 or 0 for each training sample (i ∈ [1, NP ]). Then the
weights and biases of the hidden layer are trained to yield the assigned distinct
hidden pattern as closely as possible. Once the training converges, the method
continues to the next hidden layer. The pre-trained weights become the initial
weights in the BP training.

Glorot and Bengio [28] proposed a normalized initialization method, wherein
the weights for (j + 1)-th layer are drawn from a set of uniformly distributed
random numbers within ±

√
6√

Nj+Nj+1
, where Nj is the number of neurons in the

j-th layer.
Martens and Sutskever [29] proposed the so-called sparse initialization tech-

nique, where each neuron in a given layer is connected to 15 neurons of the
previous layer whose weights are drawn from unit Gaussian. In our study, we
used the sparse initialization method with modifications suggested by Sutskever
et al. [30].

3.4. Convergence rate of backpropagation method

The convergence rate of the BP method can be accelerated considerably
towards local minima using the momentum method [31]. Nesterov’s accelerated
gradient [32, 33] can be thought of as an improvised momentum method and can
achieve quadratic convergence towards global minima. In this study, Netsorov’s
method is used with the modifications suggested by Sutskever et al. [30].

3.5. Controlling overfitting

Overfitting is a common issue with ANN training wherein the weights and
biases get excessively customized for the training data set. As a result, the pre-
dictions closely match the training set. However, the predictions are incorrect
for input parameters outside the training set. There are multiple ways to control
the overfitting of the weights.

One of the most common ways is to do an early stopping proposed by Pre-
chelt [34] wherein a small fraction, typically 20%, of the total data set is used
as a validation set and the remaining data set is used as a training set. The
weights are trained using the training set, say through BP, while the error from
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the validating set is continuously evaluated. The goal here is to stop the training
iterations before the training process “overfits” the weights to the training set.
Initially, as the fitting process progresses, the error from both the training and
the validating sets decreases. In early stopping, the training process is terminated
once the error from the validating set reaches a minimum and increases beyond
that point. The weights corresponding to the minimum error from the validating
set are used for the ANN.

Another way of controlling the overfitting issue is by incorporating L1 or
L2 regularization as explained by Ng [35]. In this process, the loss function is
augmented with a tiny fraction (λ) of the L1 or L2 norm as a penalty function.
This prevents the weights from blowing up. In Eq. (6) the modified loss function
LF ∗ is the sum of the loss function LF and the λ× L2 norm of the weights

LF ∗ = LF + λ
∑

w2
i . (6)

The dropout technique was first introduced by Hinton et al. [26]. In this
method, during the training procedure, a certain percentage, typically 50%, of
the neurons from the hidden layers and at times also from the input layer is
randomly ignored. The network is treated as if those neurons do not exist. The
weights of the other neurons are scaled accordingly to maintain consistency.
This prevents the output of the network from being too much dependent on the
respective neuron and, in turn, helps preventing the overfitting issue.

The dropConnect method used by Lian et al. [36] and Wan et al. [37] is
a variation of the dropout method wherein instead of individual neurons, the
individual connections between any two neurons are randomly ignored.

4. Method

Here the goal is to achieve the foot-trajectories as close to the targets as
possible. The lengths of the links of the four-bar mechanism (L2, L3, L4) except
for the crank length (L1) and the foot position (r = S2

L2
, r2) are the design

variables (Fig. 3a).
The analysis is done independently of the crank length to see if a span in

a principal direction higher than twice the crank length can be achieved. For the
existing design this span is exactly equal to the twice crank length (Fig. 3b).
The shape of the foot trajectory is aligned in its centroidal principal coordinate
system. This allows the comparison of the properties of the shape, such as mo-
ments of inertia across the varied set of shapes observed through the variation
of the link lengths. The target paths for a plane walk and stair walk span are
between 15–20% more than twice the crank length (Figs 1b and 2b).

In order to train the ANNs, 10 000 input data sets are generated at ran-
dom. For each set, five input properties and five output properties are identi-
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fied. The output variables are obtained in the centroidal principal coordinate
system. The shapes are approximated as polygons and the geometric properties
such as the area (A), the perimeter (p), coordinates of the centroid (xc, yc), mo-
ments of inertia (Ixx, Iyy, Ixy) are calculated using Green’s formulae as described
by Brlek et al. [38] and shown in Eqs (7)–(13).

A =

n∑
i=1

(xiyi+1 − yixi+1) , (7)

p =

n∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2, (8)

xc =
1

6A

n∑
i=1

(xiyi+1 − yixi+1) (xi + xi+1), (9)

yc =
1

6A

n∑
i=1

(xiyi+1 − yixi+1) (yi + yi+1), (10)

Ixx =
1

12

n∑
i=1

(xiyi+1 − yixi+1)
(
y2i + yiyi+1 + y2i+1

)
, (11)

Iyy =
1

12

n∑
i=1

(xiyi+1 − yixi+1)
(
x2i + xixi+1 + x2i+1

)
, (12)

Ixy =
1

24

n∑
i=1

(xiyi+1 − yixi+1) (xi (2yi + yi+1) + xi+1 (2yi+1 + yi)) , (13)

where (xi, yi) are the coordinates of the i-th vertex of a polygon with n sides
and i ∈ [1, n]. Also, n+ 1 ≡ 1. The eccentricity e is given by Eq. (14)

e =

√
min (|x1|, |x2|)2 + min (|y1|, |y2|)2√
max (|x1|, |x2|)2 + max (|y1|, |y2|)2

, (14)

where (x1, y1), (x2, y1), (x2, y2), (x1, y2) are the four corners of the bounding box
of the shape in its centroidal principal coordinate system. The principal moments
of inertia (I1, I2) along with the area, perimeter and eccentricity represent the
output variables. The input and output variables are shown in Table 2.

Table 2. Input and output parameters.

Input parameters Output parameters
L2, r, r2, L3, L4 A, I1, I2, p, e
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The maximum variation of the parameters for the design analysis is taken
to be ±25% of the dimensions in the existing design. The parameter r2, which
represents the height of the foot position normal to the coupler as a fraction of
L2, is taken to be within ±0.25.

Only 3000 of these data sets are used for training (NP = 3000) the network
and 10 000 data sets were used for validating. A smaller training sample, say 1000
or below, showed an overfitting tendency. For the BP, Nesterov’s approach [33],
as discussed in the previous section, was followed with the changes suggested
by Sutskever et al. [30]. For the initiation of the weights, the sparse initiation
technique is used with the modifications suggested by Sutskever et al. [30]. The
hyperbolic tangent function was used as the activation function. The input and
output variables of the data sets were normalized between −0.9 to 0.9 using the
expression given in Eq. (15)

xIOj = −0.9 + 1.8×
XIO
j −XIO

j min

XIO
j max −XIO

j min

, (15)

where xIOj is the j-th normalized input or output variable and XIO
j is the ac-

tual value of the j-th input or output variable. XIO
j max, X

IO
j min are respectively

the corresponding maximum and the minimum values of the j-th input or out-
put variable. The dimensional quantities can be obtained from the normalized
quantities using the following expression (Eq. (16)):

XIO
j = XIO

j min +
(
XIO
j max −XIO

j min

)
×
xIOj + 0.9

1.8
. (16)

The neural network is a simple feedforward network with five input variables
(NI = 5) and five output variables (NO = 5) and a single hidden layer. The
choice of the number of hidden neurons is made using Eq. (2). The minimum
number of hidden neurons Nmin

H = 30. Here the goal is to minimize the total
RMS error ETOT

RMS . The expression for ETOT
RMS is given by Eq. (17)

ETOT
RMS =

√√√√ 1

NPNO

NP∑
i=1

NO∑
j=1

∆xOj
2
. (17)

5. Results and discussion

The objective of the first part was to train the ANN to accurately predict the
output variables. The trained ANN was then used in the second part to address
the inverse problem of identifying the best set of dimensions to achieve the target
foot trajectories as closely as possible.
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As a test run, NH = 5 was taken to see the convergence behavior. The ETOT
RMS

minimizes to 0.0351 as shown in Table 3. With NH = 30, ETOT
RMS = 0.0266 is

achieved. It seems that the ETOT
RMS approaches a ceiling and only slightly im-

proves by using several times higher NH . Hence no further increment is done to
the number of hidden neurons. Also, only one hidden layer is used. The use of
a deeper network does not seem to improve the ETOT

RMS significantly for the same
total number of weights and bias parameters. Figure 5 shows the variation of
the RMS error with the number of epochs (NEPOCH).

Table 3. RMS error over all normalized output variables over all data sets (ETOT
RMS ).

NH NP ETOT
RMS

Training 5 3000 0.0351
Training 30 3000 0.0266
Validating 30 10 000 0.0238

Optimizing plane walk 30 1 0.8518
Optimizing stare walk 30 1 0.7744

NEPOCH

E
TO
T

R
M
S

NH = 5
NH = 30

Fig. 5. Convergence with 5 and 30 hidden neurons during training.

Once the training was completed, an approximate functional relationship was
established between the input and the output variables. Hence, for any arbitrary
set of the input variables within limits, the values of the output variables can be
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closely predicted. This is confirmed by the validating set of 10 000 data points,
which yielded a ETOT

RMS = 0.0238, as shown in Table 3.
In the second part of the analysis, the goal is to predict the set of input

variables in Table 2 given the output variables. In this part of the analysis, the
weights and biases remain fixed. Since only the variables in a given layer have
to be optimized, a zero initialization, i.e., (xI0 = [0 0 0 0 0]) was used. This
corresponds to the dimensions of the existing design. Also, to ensure that the
normalized input parameters stay within [−1, 1], the gradient of the loss function
was modified using Eq. (18)(

∇∗xI (LF )
)
j

= (∇xI (LF ))j +K ×
(
max

(
0, xIj − 1

)
+ min

(
0, xIj + 1

))
, (18)

where K is very high penalty stiffness. In our analysis, K = 1× 106 along with
γ = 1× 10−6 seemed to get rapid convergence. Figure 6a shows the convergence
behaviors for the plane walk and stair walk problems. Although the analysis was
run to a maximum of 50 000 epoch, in both cases convergence occurred below
20 000 epoch and the analysis steps were really fast since only one data set
(NP = 1) was used in each case. The fitment error for each case is represented
in Table 3.

The ETOT
RMS is higher than that in the training phase. However, they are signif-

icantly lower than the starting error, corresponding to the existing design. This
shows that the existing design is far from either type of motion and significant
improvement could be achieved through this analysis. Moreover, this is not the
limitation of the fitting method but the limitation due to:

1) Use of exclusively four-bar mechanisms which can limit the possible shapes
that can be generated through foot motion.

2) The amount of variation allowed over the original dimensions of the link
lengths.

Table 4 lists the values of the input variables fitted through the inverse func-
tional relationship for both cases. It can be seen for both cases that each of the
parameters r2 and L4 reaches one of their limiting values. Table 4 also lists
the corresponding geometric properties of the shape produced by the foot tra-
jectory for the best-fit plane walk and the best-fit stair walk. For the best-fit plane
walk, the geometric properties are of the same orders of magnitude, and the dif-
ference in the values of the maximum and minimum principal moments of inertia
I1, I2 of the target shape is closely captured. For the best-fit stair walk, the geo-
metric properties are within 20% of the target, except for I1. In both cases, the
eccentricity e issignificantly higher than the target shapes. Apparently, this sort
of e is difficult to achieve while closely approximating the other geometric param-
eters given the above- mentioned design conditions. However, as discussed before,
the best-fit configurations seem to significantly improve the existing design.
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Fig. 6. Optimum solution: a) convergence curve; b) and c) designed motion paths for plane
and stair walk represented in centroidal principal coordinate systems, respectively.
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Table 4. Dimension and properties.

L2

[in]
r r2

L3

[in]
L4

[in]
A

[in2]
I1
[in4]

I2
[in4]

p
[in]

e

Existing
design

25.00 0.3846 0 30.00 39.60 69.51 625.14 236.83 30.89 0.9762

Target plane
walk

– – – – – 21.02 197.26 9.75 30.33 0.5475

Best fit
plane walk

23.04 0.4914 0.2777 38.31 28.59 28.63 260.18 18.41 26.45 0.8256

Target stair
walk

– – – – – 87.99 862.68 484.36 39.45 0.6728

Best fit
stair walk

22.90 0.2929 −0.2776 33.34 28.59 99.91 1308.10 484.91 37.16 0.9697

Figures 6b and 6c respectively show the generated shapes in their respective
centroidal coordinate systems. It can be seen that in both cases, the maximum
dimension is over twice the crank length, i.e., 12 inches. Also, the striking dis-
similarity of the two shapes is evident from Figs 6b and 6c.

Figures 7a and 8a show the schematics of the four-bar linkages respectively
for the best-fit plane walk and the best-fit stair walk in the sequences of 60◦

crank rotations, in the “correct” orientation. The correct orientation is obtained
by first matching the target shapes with the best-fit shapes in their centroidal
principal coordinate systems and then rotating further to match the original
orientation of the target shape.

a) b)

Fig. 7. Reoriented configuration plane walk: a) linkage mechanism; b) synthesized path
and the existing path superimposed over the target.
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a) b)

Fig. 8. Reoriented configuration stair walk: a) linkage mechanism;
b) synthesised path superimposed over the target.

Figure 7b shows the superimposition of the shapes of the foot trajectories for
the existing cross-trainer design and the new design (best fit) for the plane walk
and the target for the plane walk. Although the new design lacks the narrow
tail-like feature of the target shape, it is much closer to the target shape than
the existing shape.

Figure 8b shows the superimposition of the shapes of the foot trajectories for
the best-fit stair walk and the target stair walk. Although the shapes are different,
they have significant overlap and as in the previous case, the narrow tail-like
feature is left out. It seems that a narrow region is responsible for a smaller e.

6. Conclusion

In the first part of the analysis, through training of 3000 data sets, an ap-
proximate functional relationship was obtained between the input and output
parameters so that for any arbitrary set of the input variables within limits, the
values of the output variables could be closely predicted. This was also validated
by a verification set of 10 000 data points. In the second part of the analysis, the
inverse relationship was explored to identify the input variables for two qualita-
tively different sets of output variables. With a functional relationship established
through the first part of the analysis, multiple such design operations could be
performed quickly. The geometric properties of the foot trajectories with the
predicted input parameters showed moderate to good agreement with the target
geometric properties, with the maximum span of the shapes being above twice
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the crank length. The only exception was eccentricity. Also, the shapes of the
foot trajectories from the best fits moderately resembled the target shapes in
most aspects except the narrow tail-like features. However, in each case, they
provided a significant improvement over the existing design. The difference may
be attributed to the constraint in the choice of mechanism and the allowed vari-
ations of the input variables. However, such differences can be reduced through
fine-tuning by incorporating sub-mechanisms, similar to the approach of Nelson
et al. [8].
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