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In recent years, solar energy forecasting has been increasingly embraced as a sustainable
low-energy solution to environmental awareness. It is a subject of interest to the scientific
community, and machine learning techniques have proven to be a powerful means to
construct an automatic learning model for an accurate prediction. Along with the various
machine learning and data mining utilities applied to solar energy prediction, the process
of feature selection is becoming an ultimate requirement for improving model building
efficiency. In this paper, we consider the feature selection (FS) approach potential. We
provide a detailed taxonomy of various feature selection techniques and examine their
usability and ability to deal with a solar energy forecasting problem, given meteorological
and geographical data. We focus on filter-based, wrapper-based, and embedded-based
feature selection methods. We use the reduced number of selected features, stability, and
regression accuracy and compare feature selection techniques. Moreover, the experimental
results demonstrate how the feature selection methods studied can considerably improve
the prediction process and how the selected features vary by method, depending on the
given data constraints.

Keywords: feature selection, filter method, wrapper method, embedded method, solar
energy forecasting, regression performance, smart environment.
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1. Introduction

Photovoltaic systems have proven to be increasingly prominent sources of
energy in power grids. Nevertheless, utilities are expected to ensure electrical
supply under certain constraints for the forthcoming periods, which is a chal-
lenge due to the varying aspects of the weather. Accordingly, it is important
to accurately predict solar energy patterns with respect to alternative renew-
able energy sources. On the other hand, the energy produced by concentrating
solar power and photovoltaic systems is among the most difficult variables to
predict [1]. Topography, clouds, and aerosols all have an impact on solar en-
ergy forecasts. Thus, statistical and machine learning techniques that rely on
historical solar production data have become of paramount interest.

In recent years, the data obtainable from real-world applications has in-
creased significantly. Such applications can be distinguished by their quantifiable
characteristics called features (attributes), which are, in their turn, exploited for
knowledge extraction by machine learning techniques. Specifically, for regression
tasks, a wide range of features can cause several concerns, including the loss
of accuracy, higher computational load, and bias occurrence. Feature selection
(FS) consists of finding a small set of characteristics that describe a given process
more effectively [2].

FS involves the selection of a smaller subset from a large set of features
that are relevant to a given problem. FS is a crucial phase of knowledge dis-
covery and processing that makes data mining and machine learning tools more
insightful and accurate. However, various features that are not relevant, mislead-
ing, or overlapping may arise in high-dimensional data. In addition, a number
of learning algorithms typically underperform over a broad selection of features.
Practitioners and scientists have accordingly chosen the FS process to preprocess
the data prior to the application of mining or learning techniques, which accele-
rates the training and testing mechanism of the model by considerably lowering
the computation time; it also improves the interpretability of the results and the
prediction reliability, as well as reduces the occurrence of over-fitting. The FS
techniques are generally divided into three broad categories outlined below:

• Filter-based FS: used to select relevant features, regardless of the applied
data mining algorithm, through statistical measures. Such approaches in-
clude univariate models that examine each feature independently and at-
tach a corresponding score to it; which is then used to develop a ranking-
based selection of the features [3, 4]. This category also includes multiva-
riate models; in this case, several possible subsets of features are investi-
gated and scored for potential discrimination [5].

• Wrapper FS: the FS method in this category depends on the output of
a predesigned data mining or machine learning algorithm used to determine
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the goodness of a certain subset of features. The predictor is considered as
a black box and the performance of the predictor is taken as an objective
function to evaluate the subset of variables, thus to select features based
on their performance [6].

• Embedded FS: this category is a combination of filtering and wrapping
approaches. The basic concept is to integrate FS into the training pro-
cess. That is, the methods are based on learning mechanisms that have
built-in methods for selecting features independent test and performance
evaluation functions [5, 7].

In this paper, we will investigate these methods. The three previously men-
tioned categories differ in the accuracy, computational performance, and suscep-
tibility to over-fitting. Filter-based methods are used as pre-processing to sort
features, whereby the highest-rated features are picked and fitted to a predictor.
Thus, they are able to efficiently adapt to a high volume of data with minimal
computational cost and reduced over-fitting risk. Nevertheless, their accuracy is
relatively restricted as compared to the wrapping approaches [6]. For the lat-
ter, the predictor’s performance is the criterion for FS, that is, the predictor is
wrapped into a search algorithm to provide a subset with the best performance
of the predictor, which allows achieving a high accuracy although they are prone
to be more computationally expensive. The introduction of embedded FS me-
thods aims to provide an appropriate compromise between the accuracy of the
wrapper approach and the usability of filter-based selection [8].

We focus on FS methods that involve a supervised learning concept. We con-
duct a comparative investigation of six different FS methods applied to solar
energy forecasting: correlation criteria (CC) and mutual information (MI) as
filter-based methods [8], stepwise algorithm [9] and sequential feature selection
(SFS) algorithm [10] as wrapper FS, and random forrest (RF) and least absolute
shrinkage and selection operator (lasso) as embedded FS approaches. Our statis-
tical analysis includes an evaluation of the accuracy, stability and performance
of each FS technique based on various statistical indices.

We organize the rest of this paper as follows: a review of some recent work
on FS methods for predicting solar energy is given in Sec. 2. In Sec. 3, the FS
methods studied in this work are described. Section 4 discusses the results of the
application of FS methods via a real-world case. Section 5 closes this work with
a brief discussion.

2. Related work

Feature selection has been a highly active field of development and research
since the 1970s. It has been a key contributor to several fields including data
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mining, machine learning, bioinformatics, environmental disaster management,
etc. [2, 11–19]. The prediction of solar energy has become one of the most re-
cent and most challenging areas of application for FS techniques. A variety of
alternative methods has been developed for this purpose. In [19], a model based
on FS algorithms including linear correlation (LC), reliefF, and logical infor-
mation analysis (LIA) has been introduced. The objective was to enhance the
forecasting process of solar energy production at multiple grid stations through
the selection of the most relevant meteorological features. Similarly, the authors
in [20] have discussed the LC and reliefF methods, and they employed these FS
methods for selecting significant features to improve numerical weather predic-
tion performance. In addition, they have implemented a novel FS method based
on the Local Information Analysis (LIA).

Likewise, D. O’Leary and J. Kubby [21] have used the correlation-based FS to
further improve the artificial neural networks (ANN) forecasting accuracy. They
demonstrated the high priority of eliminating noisy and confusing meteorologi-
cal features in improving the performance of solar energy prediction. Similarly,
a neural network coupled with an improved version of the shark smell optimiza-
tion algorithm was adopted in [22] to build a hybrid forecasting system of solar
energy. Namely, a metaheuristic approach has been conceived to adjust the neu-
ral network’s parameters. In addition, a two-phase FS algorithm using the MI
and interaction profit theoretical criteria (IPTC) was used to discard irrelevant
input features.

The authors in [23] have proposed a systematic FS scheme to develop a pre-
dictive model for building energy forecasting. They have developed a model for
coupling statistical data analysis, physical building analysis, and engineering
experiments. The system involves a preprocessing phase that applies domain
knowledge along with an FS statistical method to reject duplicate and irrelevant
features, specifically a filtering method. Additionally, the wrapping approach for
determining the optimal set of features was performed.

Similarly, authors in [24] have proposed a novel FS approach that evaluates
each feature importance via a bootstrapping of support vector machine (SVM)
classifiers. For the best solar radiation forecast, the suggested technique selects
the most applicable features. In the same vein as utilizing FS techniques to im-
prove solar forecasting, authors in [25] have shown that FS methods can greatly
improve the performance of machine learning models trained on real-world his-
torical meteorological data.

In the same vein, we propose a study that aims to compare six approaches for
predicting solar energy, which use distinct selection procedures that have never
been used before. The following are the main contributions of this work:

• We present a comprehensive investigation of multiple FS techniques for
solar energy prediction based on geographical data, including CC, M, SFS,
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stepwise, lasso, and RF. To our knowledge, no earlier research has looked
into these algorithms for determining photovoltaic predictors. Linear re-
gression (LR) and support vector regression (SVR) prediction methods
are used to assess the outcomes.

• Based on realistic settings, a comparative analysis is carried out. The used
data collection comprises several criteria, including stability and perfor-
mance with meteorological and geographic data (see Sec. 4 for more infor-
mation), enabling more comprehensive evaluation.

3. Feature selection algorithms

3.1. Filter-based FS

• Correlation criteria (CC): the Pearson correlation coefficient [8] is one
of the most basic criterion. It is defined as follows:

R(i) =
cov(xi, y)

(var(xi)× var(y))1/2
, (1)

where y = (y1, y2, ..., yn) denotes a 1×n-vector that appoints the predicted
feature (output labels), and X = (1, x1, x2, ..., xn) represents a n× (p+ 1)-
matrix of predictors. Moreover, xi denotes the i-th variable, and cov(.) and
var(.) are the covariance and variance functions, respectively.

• Mutual information (MI): it measures the dependence between random
variables. It differs from the correlation coefficient that measures only the
linear dependencies between these variables [26]. The MI has zero value
if and only if the variables are strictly independent and increases with
the dependence. A rapid and accurate method for estimating MI has been
developed in [27]. This method is based on an estimation of the entropy.
Indeed, the MI and the entropy are linked by the following formula:

MI(xi, y) = H(xi) +H(y)−H(xi, y) (2)

with H(.) being the entropy of one or more variables. This entropy is
computed by the nearest neighbor method [27]. The resulting MI between
X and y means that if the variables are independent, the MI would be null
and greater than zero if they are dependent. This implies that one variable
can yield insight into the other, which proves dependence.

3.2. Wrapper FS methods

• Sequential feature selection (SFS): the algorithm begins with an ini-
tially empty set. In the first step, the feature that provides the highest
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value for the objective function is added. Then, the remaining characte-
ristics are individually included in the subset in the second phase, and the
new subset is assessed. If an individual feature keeps the highest classifi-
cation accuracy, it is constantly involved in the subset. The approach is
continued until all of the important features are included [10].

• Stepwise algorithm: for linear regression, logistic regression, and other
classical regression models, stepwise regression is a wrapper approach that
identifies the optimal predictive elements to use in a model from a larger
collection of potentially predictive features [9]. The implementation of the
stepwise regression involves two possible pathways. The first way (called
decreasing FS) is to use a model that incorporates all the features that
are likely to impact the target variable and then gradually withdraw the
weakest features from the initial model based on a goodness-of-fit measure
that adjusts the number of features in the model. The procedure goes
on, and further attributes are eliminated in progressively decreasing levels
until the improvement metric cannot be adjusted. The second fundamental
technique (referred to as ascending FS) begins with a model that contains
only one fixed variable, and then it enlarges this model to incorporate the
features of a range of attributes that make the fit measure more meaningful.
The method is reproduced by adding more characteristics with a series of
gradual upward increments and finishes when the modified fitting measures
cannot be improved.

We use a hybrid of ascending and descending FS approaches for this
study. First, we define a selection of features that might be relevant using
a ascending method. The descending FS approach is then used to identify
features that require elimination from the formerly constructed subset. We
utilize the adjusted R-squared to monitor this process.

3.3. Embedded FS methods

• A least absolute shrinkage and selection operator (lasso): it was in-
troduced by R. Tibshirani [28], lasso is a retraction and an FS approach for
linear regression patterns. Lasso’s aim is to build a collection of predictors
in a manner that reduces the loss function on a quantitative predictor vari-
able by setting constraints to the model that pushes some coefficients down
to zero. As a result, variables with non-zero coefficients are more strongly
attached to the outcome variable, while variables with zero coefficients are
eliminated. Lasso is a multiple regression function that is estimated mathe-
matically. A penalization function K can be used to define it as follows:
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K(β) = arg min

1

2

n∑
i=1

yi − β0 − p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj |

, (3)

where β = (β0, β1, ..., βp) is a p+1-column vector that represents the related
affects per each predictor in X, and λ stands for the penalty parameter
that regulates the compromise between model complexity and accuracy
loss. By precisely setting some of the coefficients to zero, lasso reduces
the variability of the estimations, allowing for the development of easily
interpretable models.

• Random forest (RF): it is based on the principle of model aggrega-
tion, is a popular and accurate method for high and poorly structured
classification and regression problems [29]. The main principle underly-
ing the RF framework is to build several impartial decision trees using
stratified random training data with replacement, in which each tree de-
termines a class and the forest decides the value of the highest among all
trees.

In essence, we assume that the prediction of the tree tk is given by ỹk
for an input X and a number of trees equal to K:

ỹ = majority Vote {ỹk}K1 . (4)

L. Breiman [29] presented RF as the main approach to measure the re-
levance of the features involved in the prediction by scoring the out-of-bag
(OOB) value. It aims to compute the difference between the baseline mean
error and the random mean error of the OOB pattern. The approach re-
plenishes the stochastic usage of the RF model to estimate this allowance
and compute the mean error for all trees of the given feature in OOB. The
purpose of this permutation is to override the actual correlation between
the feature given and the y-values, and then to consider the implication
for the RF model of such an override. The most relevant features are those
with a large decrease in mean error.

4. Real-world application

4.1. Dataset

We use a dataset from the Open Power System Data (OPSD) framework for
this research, which provides free and public data for power system analysis [30].
This database encompasses the data of conventional power plants for various Eu-
ropean countries, including Germany. It consists of the technical characteristics
of each particular power station, e.g., geographical information, principal energy
source, etc. We process and extend the selected dataset to include weather data
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available on the same platform. Then, the dataset is processed and coupled with
a weather dataset provided by the same platform. The reader is directed to [31]
for further details. Typically, the actual solar energy production (given in MW )
is assumed to be the predicted variable, and a summary of certain geographi-
cal and meteorological features considered in this investigation is provided in
Table 1.

Table 1. The information used to estimate solar energy output, including ground,
wind, temperature, and air characteristics.

Feature Description
Lat The latitude of each geographical chunk examined [m]
Lon The longitude of each geographical chunk examined [m]
h1 Height above ground level [2 m above height of displacement]
h2 Height above ground level [10 m above height of displacement]
v1 Velocity at height h1 [m/s]
v2 Velocity at height h2 [m/s]

v_50 Velocity at height 50 m above ground level [m/s]
z0 Roughness length [m]

SWTDN Full horizontal radiation at the top of the atmosphere [W/m2]
SWGDN Full ground horizontal radiation [W/m2]

T Temperature at h1 level [K]
Rho Surface air density [kg/m3]
p Surface air pressure [Pa]

4.2. Feature selection results and discussion

Having performed the considered FS methods on the above-mentioned dataset,
we list the most relevant features to predict solar energy. We employ Python’s
Scikit-learn package, which provides a variety of machine learning packages and
built-in functions, including MI, CC, SFS, RF, and lasso models. We, however,
implement the stepwise technique since the Python package statsmodels does
not support built-in functions for ascending and descending stepwise.

Figure 1 exhibits features selected by the methods addressed in this work.
We observe that by employing the classifiers, the SWTDN, SWGDN, and T are
selected as the most relevant features by most of the algorithms used with a high
score. On the other hand, the cumulated hours characteristic (Figs 1a and 1b)
is denoted as a significant feature only by embedded approaches (lasso and RF),
which signifies that the selection results on the strategy followed. We remark,
moreover, that the sub-set of features that are selected by all FS algorithms does
not have the same importance. For example, the feature latitude (lat) is depicted
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Fig. 1. Top most important features selected by:
a) lasso, b) RF, c) stepwise, d) SFS, e) CC, and f) MI selection.

by the SFS selection with a score of about 0.73 (Fig. 1d); the same feature is
selected by stepwise method with 0.54 (Fig. 1c). We note that latitude is denoted
as a relevant feature only by the two wrapper FS techniques. Similarly, the
feature v50m is selected by different FS techniques with various scores ranging
from 0.15 with stepwise method to 0.58 with the CC selection (Fig. 1e).

4.2.1. Stability analysis. Various FS algorithms may be introduced to a spe-
cific application, and the optimal one that satisfies the appropriate criterion can
be chosen. An underestimated challenge is the stability of the function selection
algorithms. When new training samples are introduced or any training samples
are omitted, the stability of the FS algorithm can be interpreted as the algo-
rithm’s potential to generate a consistent feature subset [31]. Many measures
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exist in the literature to calculate stability. In this study, we use the Jaccard
index (Appendix).

Figure 2 exhibits the Jaccard index values as a function of the number of se-
lected features. For this test, we have used all the features included in the dataset.
From the analysis of the figure, it follows that filter-based methods generate the
most stable sets of selected features given their robust approach in terms of over-
fitting. They typically involve either univariate or multivariate statistical models
and are not influenced by any learning techniques. However, wrapper-based and
embedded-based FS do not always perform well with classifiers as they both use
their own learning process for selecting features.

Fig. 2. Typical FS stability measured by Jaccard’s index for the six FS techniques.

4.2.2. Performance analysis Having ensured that our set of FS methods is
stable to data variations, we check if the ultimate selection of features is relevant.
The universal metric for evaluating a learning system is performance, which is
typically measured in the case of classification or regression as prediction accu-
racy. To analyze the accuracy of the selected features, Fig. 3 gives the results
of applying a LR and SVR with the selected subsets of features. We can ob-
serve that the performance of regression methods is low due to the calculation
of MI and CC. In fact, by estimating the pair distribution function (PDF) of
the features and the distribution of the output class, the computation of MI and
CC might not be accurate and readily be driven by the incremental densities.
Typically, the plot of the filter-based methods demonstrates that the ranking
techniques are proven to be trivial. On the other hand, we can clearly see that
the maximum performance is achieved by the stepwise algorithm for both regres-
sion approaches, as it provides an accuracy of more than 96% with LR. Accor-
ding to the results obtained, the wrapper methods provide the best performance
among the different techniques studied.
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Fig. 3. Bar chart exhibiting the R-squared score values obtained by LR and SVR models
applied with the most relevant features selected.

In general, the LR performance achieved is acceptable using all of the selec-
tion strategies explored. Nevertheless, the regression using SVR lacks accuracy
as it does not reach 70% for any of the FS methods, especially with the features
selected using filter-based approaches.

5. Conclusion

Feature selection becomes an essential part of regression and classification
problems when dealing with high volumes of datasets containing redundant,
noisy, and misleading data. In this study, we used six different techniques to se-
lect the features that are most relevant for predicting solar energy generation as
a function of different geographical and meteorological parameters. FS methods
prove that having too much information does not always lead to effective ma-
chine learning applications. Using the basic classification performance ratings,
we select the most appropriate FS algorithm. Accordingly, we evaluate the FS al-
gorithms, in this work, following the considerations: reduced number of features,
stability, and regression performance.

From the results obtained, we conclude that filter-based approaches (CC and
MI) show significant stability compared to both embedded-based methods (RF
and lasso) and wrapper FS methods (stepwise and SFS); these latter ones are the
most likely to be unstable. However, the performance of the wrapper methods –
stepwise as an example – allows selecting a set of features that can improve the
accuracy of the regression approaches used for the evaluation.

Overall, the application of FS is always likely to provide the advantages of im-
proved data insight, enhanced learning model, increased standardization, as well
as the elimination of irrelevant features. We have used methods from different
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categories to select the most important features to predict solar energy genera-
tion in a smart grid successfully. However, an additional step was required to
improve the prediction accuracy with the SVR. It involved excluding correlated
features despite their selection as relevant. A possible explanation lies in the
type of data handled. For example, the characteristics involving the geograph-
ical pattern may be dependent, making it convenient to retain just the highly
correlated feature with the forecasted variable and discard the others. Note that
we apply the regression algorithms with hyper-parameters by default.

Appendix

Jaccard index

The Jaccard index is a metric used to measure the average similarity of all
selected pairwise feature subsets (W ) [32]. It is given by the following:

JS =
2

W × (|W − 1|)

|W |−1∑
i=1

|W |∑
i+1

J(Si, Sj), (5)

where S = (S1, S2, ..., Sn) is the set of selected features and J(Si, Sj) =
|Si∩Sj |
|Si∪Sj | .

The stability index (JS) provides an output within a range of 0 indicating that
the FS algorithm is unstable and a value close to 1 signifies that the algorithm
is stable [33].

References

1. M. Diagne, M. David, Ph. Lauret, J. Boland, N. Schmut, Review of solar irradiance fore-
casting methods and a proposition for small-scale insular grids, Renewable and Sustainable
Energy Reviews, 27: 65–76, 2013, doi: 10.1016/j.rser.2013.06.042.

2. H. Liu, L. Yu, Toward integrating feature selection algorithms or classification and clus-
tering, IEEE Trans. on Knowledge and Data Engineering, 17(4): 491–502, 2005, doi:
10.1109/TKDE.2005.66.

3. M.A. Hall, Correlation-based feature selection for discrete and numeric class machine
learning, [in:] Proceedings of the Seventeenth International Conference on Machine Learn-
ing, ICML ’00, pp. 359–366, Morgan Kaufmann Publishers Inc., 2000.

4. M. Dash et al., Feature selection for clustering – a filter solution, [in:] Proceedings of the
2002 IEEE International Conference on Data Mining, ICDM ’02, pp. 115–122, Washing-
ton, DC, USA, IEEE Computer Society, 2002.

5. Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques in bioinformatics,
Bioinformatics, 23(19): 2507–2517, 2007 doi: 10.1093/bioinformatics/btm344.

6. R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial Intelligence,
97(1–2): 273–324, 1997, doi: https://doi.org/10.1016/S0004-3702(97)00043-X.



A statistical comparison of feature selection techniques. . . 117

7. L. Rangarajan, Veerabhadrappa. Bi-level dimensionality reduction methods using feature
selection and feature extraction, International Journal of Computer Applications, 4(2):
33–38. 2010.

8. I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Journal of Ma-
chine Learning Research, 3: 1157–1182, 2003.

9. R. Mundry, C.L. Nunn, Stepwise model fitting and statistical inference: turning noise into
signal pollution, The American Naturalist, 173(1): 119–123, 2009, doi: 10.1086/593303.

10. J Reunanen, Overfitting in making comparisons between variable selection methods, Jour-
nal of Machine Learning Research, 3:1371–1382, 2003.

11. J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: A new perspective,
Neurocomputing, 300: 70–79, 2018, doi: 10.1016/j.neucom.2017.11.077.

12. J. Brownlee, Data Preparation for Machine Learning: Data Cleaning, Feature Selection,
and Data Transforms in Python, Machine Learning Mastery, 2020.

13. J. Li et al., Feature selection: A data perspective, ACM Computing Surveys, 50(6): 1–45,
2017, doi: 10.1145/3136625.

14. G. Georgiev, I. Valova, N. Gueorguieva, Feature selection for multiclass problems
based on information weights, Procedia Computer Science, 6: 189–194, 2011, doi:
10.1016/j.procs.2011.08.036.

15. L. Wang, Y. Wang, Q. Chang, Feature selection methods for big data bioinformat-
ics: A survey from the search perspective, Methods, 111: 21–31, 2016, doi: 10.1016/
j.ymeth.2016.08.014.

16. P. Drotár, J. Gazda, Z. Smékal, An experimental comparison of feature selection methods
on two-class biomedical datasets, Computers in Biology and Medicine, 66: 1–10, 2015,
doi: 10.1016/j.compbiomed.2015.08.010.

17. S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature extraction
techniques in machine learning, [in:] 2014 Science and Information Conference, pp. 372–
378, Aug. 2014, doi: 10.1109/SAI.2014.6918213.

18. W. Awada, T.M. Khoshgoftaar, D. Dittman, R. Wald, A. Napolitano, A review of the
stability of feature selection techniques for bioinformatics data, [in:] 2012 IEEE 13th
International Conference on Information Reuse & Integration (IRI), pp. 356–363, 2012,
doi: 10.1109/IRI.2012.6303031.

19. R. Martin, R. Aler, J.M. Valls, I.M. Galvan, Machine learning techniques for daily solar
energy prediction and interpolation using numerical weather models, Concurrency and
Computation: Practice and Experience, 28(4): 1261–1274, 2016, doi: 10.1002/cpe.3631.

20. R. Aler, R. Martín, J.M. Valls, I.M. Galván, A study of machine learning techniques
for daily solar energy forecasting using numerical weather models, [in:] D. Camacho,
L. Braubach, S. Venticinque, C. Badica [Eds], Intelligent Distributed Computing VIII,
Studies in Computational Intelligence, Vol. 570, pp. 269–278, Springer International Pub-
lishing, 2015, doi: 10.1007/978-3-319-10422-5_29.

21. D. O’Leary, J. Kubby, Feature selection and ANN solar power prediction, Journal of
Renewable Energy, 2017: 1–7, 2017, doi: 10.1155/2017/2437387.

22. O. Abedinia, N. Amjady, N. Ghadimi, Solar energy forecasting based on hybrid neural
network and improved metaheuristic algorithm, Computational Intelligence, 34(1): 241–
260, 2018, doi: 10.1111/coin.12145.



118 S. El Motaki, A. El Fengour

23. L. Zhang, J. Wen, A systematic feature selection procedure for short-term data-driven
building energy forecasting model development, Energy and Buildings, 183: 428–442, 2019,
doi: 10.1016/j.enbuild.2018.11.010.

24. O. Garcia-Hinde et al., Feature selection in solar radiation prediction using bootstrapped
SVRs, [in:] 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3638–3645,
2016, doi: 10.1109/CEC.2016.7744250.

25. M.R. Hossain, A.M.T. Oo, A.B.M.S. Ali, The effectiveness of feature selection method in
solar power prediction, Journal of Renewable Energy, 2013, Article ID: 952613, 9 pages,
2013, doi: 10.1155/2013/952613.

26. C. Lazar et al., A survey on filter techniques for feature selection in gene expression
microarray analysis, IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 9(4): 1106–1119, 2012, doi: 10.1109/TCBB.2012.33.

27. A. Kraskov, H. Stögbauer, P. Grassberger, Estimating mutual information, Physical Re-
view E, 69: 066138, 2004, doi: 10.1103/PhysRevE.69.066138.

28. R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society: Series B (Methodological), 58(1): 267–288, 1996, doi: 10.1111/j.2517-
6161.1996.tb02080.x.

29. L. Breiman, Random Forests, Machine Learning, 45(1): 5–32, 2001, doi: 10.1023/
A:1010933404324.

30. Open Power System Data – A platform for open data of the European power system,
https://data.open-power-system-data.org/conventional_power_plants/2018-12-20 (ac-
cessed: 2019-09-14).

31. A.-C. Haury, P. Gestraud, J.-P. Vert, The influence of feature selection methods on ac-
curacy, stability and interpretability of molecular signatures, PloS ONE, 6(12): e28210,
2011, doi: 10.1371/journal.pone.0028210.

32. P. Mohana Chelvan, K. Perumal, A survey on feature selection stability measures, Inter-
national Journal of Computer and Information Technology, 5(1): 98–103, 2016.

33. U.M. Khaire, R. Dhanalakshmi, Stability of feature selection algorithm: A review,
Journal of King Saud University – Computer and Information Sciences, 2019, doi:
10.1016/j.jksuci.2019.06.012.

Received February 6, 2021; revised version May 29, 2021.


