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This study examines the influence of thermal radiation on biomagnetic fluid, namely
blood that passes through a two-dimensional stretching sheet in the presence of magnetic
dipole. This analysis is conducted to observe the behavior of blood flow for an unsteady
case, which will help in developing new solutions to treat diseases and disorders related to
human body. Our model is namely biomagnetic fluid dynamics (BFD), which is consistent
with two principles: ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD), where
blood is treated as electrically conductive. It is assumed that the implemented magnetic
field is sufficiently strong to saturate the ferrofluid, and the variation of magnetization with
temperature may be approximated with the aid of a function of temperature distinction.
The governing partial differential equations (PDEs) converted into ordinary differential
equations (ODEs) using similarity transformation and numerical results are thus obtained
by using the bvp4c function technique in MATLAB software with considering applicable
boundary conditions. With the help of graphs, we discuss the impact of various param-
eters, namely radiation parameter, unsteady parameter, permeability parameter, suction
parameter, magnetic field parameter, ferromagnetic parameter, Prandtl number, velocity
and thermal slip parameter on fluid (blood) flow and heat transfer in the boundary layer.
The rate of heat transfer and skin friction coefficient is also computationally obtained for
the requirement of this study. The fluid velocity decreases with increasing values of the
magnetic parameter, ferromagnetic interaction parameter, radiation parameter whereas
temperature profile increases for the unsteady parameter, Prandtl number, and perme-
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ability parameter. From the analysis, it is also observed that the skin friction coefficient
decreases and the rate of heat transfer increases respectively with increasing values of
the ferromagnetic interaction parameter. The most important part of the present analy-
sis is that we neither neglect the magnetization nor electrical conductivity of the blood
throughout this study. To make the results more feasible, they are compared with the
data previously published in the literature and found to be in good accuracy.

Keywords: biomagnetic fluid, magnetohydrodynamic, ferrohydrodynamic, magnetic
dipole, thermal radiation, stretching sheet.

Notation
a, b, c – constants,

x – horizontal coordinate [m],
y – vertical coordinate [m],
u – horizontal velocity [m/s],
v – vertical velocity [m/s],
t – time [s],
T – fluid temperature inside boundary layer [K],
Tw – temperature of the sheet [K],
T∞ – fluid temperature far away from the sheet [K],
M1 – magnetization [A/m],
H – magnetic field of intensity [A/m],
N – velocity slip factor,
K – thermal slip factor,
Cp – specific heat at constant pressure [J/(kg ·K)],
Uw – stretching velocity,
Vw – suction/injection velocity,
Nu – local Nusselt number,
Cf – skin friction coefficient,
qw – wall heat flux,
qr – radiative heat flux,
Re – local Reynolds number,

B(t) – time-dependent magnetic field intensity,
k1(t) – time-dependent magnetic permeability,
k2 – constant permeability of the medium,
k3 – non-dimensional permeability parameter,
k∗ – mean absorption coefficient,
d – distance between magnetic dipole to sheet,
A – unsteady parameter,
Pr – Prandtl number,
M – magnetic field parameter,
S – suction parameter,
Nr – radiation parameter,
Sf – velocity y-slip parameter,
St – thermal l-slip parameter,
f ′ – dimensionless velocity components along x direction,

f ′′(0) – skin friction.
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Greek symbols:

η – similarity variable,
θ – dimensionless temperature,

θ′(0) – wall heat transfer gradient,
ψ – stream function [m2/s],
ρ – density of the fluid [kg/m3],
µ – dynamic viscosity [kg/ms],
ϑ – kinematic viscosity [m2/s],
µ0 – magnetic permeability [kg ·m/A2s2],
σ – electrical conductivity of the fluid [S/m],
κ – thermal conductivity [J/m · s ·K],
σ∗ – Stefan–Boltzman constant,
λ – viscous dissipation parameter,
ε – dimensionless Curie temperature,
β – ferromagnetic interaction parameter,
α – dimensionless distance,
τw – wall shear stress.

List of abbreviations:

BFD – biomagnetic fluid dynamic,
FHD – ferrohydrodynamic,
MHD – magnetohydrodynamic,
PDE – partial differential equation,
ODE – ordinary differential equation.

1. Introduction

Biological fluids (who are also a part of BFD) exist in living creatures within
the presence of magnetic field generated from the action of a magnetic dipole. The
most prominent biomagnetic fluid is blood. It behaves as a magnetic fluid be-
cause of the sophisticated interaction of the inter-cellular protein, cell membrane
and hemoglobin that is a structure of iron oxides. In recent years, the study of
BFD has attracted considerable attention from theoretical as well as experi-
mental researchers because of its increasing usefulness and practical relevance
in biomedical engineering and medical sciences, which include magnetic devices
for cell separation, decreasing bleeding during surgeries, targeted transport of
drugs using magnetic particles to trigger drug release,treatment of most cancer
tumors causing magnetic hyperthermia, and magnetic resonance imaging (MRI)
of specific parts of the human body [1–5].

Haik et al. [1] developed a biomagnetic fluid model based on the principle
of FHD. Their study was additionally extended by another author in [6] by
adopting principles of MHD and FHD and applying the developed model to in-
vestigate the flow of blood under the influence of a magnetic field. In that study,
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the author stated that the blood flow may be reduced up to 40% under a strong
magnetic field effect. Within the influence of magnetic dipole, a biomagnetic
mathematical model through a stretching sheet was studied in [7]. The incom-
pressible three-dimensional biomagnetic fluid that is electrically nonconducting
was studied numerically in [8]. The authors assumed that the fluid magnetiza-
tion varies with temperature and magnetic field strength. The significance of
FHD and MHD was studied and both principles were adopted to examine bio-
magnetic blood flow model in [9]. The authors concluded that FHD and MHD
(interaction parameters) both make significant impact on the flow field. Dual
solutions on biomagnetic flow model that passes through a nonlinear stretch-
ing/shrinking sheet were presented in [10]. The flow of biomagnetic fluid with
viscoelastic property over stretching sheet was studied numerically in [11]. The
study of biomagnetic fluid flow and heat transfer over a stretching sheet was
conducted by several researchers [12–16] with different conditions in presence of
external magnetic field.

Ali et al. [17] examined the analytical solution of MHD blood flow through
parallel plates when the lower plate exponentially expands. The impact of the
magnetic dipole on ferrofluid over a stretched surface, taking into account the ther-
mal radiation, was analyzed in [18]. Blood considered as electrical conductive
phenomena under the influence of magnetic field was investigated in [19]. The
unsteady blood flow over a permeable stretching sheet was investigated numeri-
cally in [20, 21] in the presence of a non-uniform heat source and sink. The
impact of radiation and viscous dissipation on unsteady MHD free convective
flow was analyzed in [22]. Convective flow over a porous stretch surface in the
porous medium, in the presence of a heat source or sink, was studied in [23].
Thermal radiation impact on boundary layer flow under different flow condi-
tions has been reported by several investigators in [24–28]. Newtonian fluid with
the slip condition taken into consideration was studied in [29]. In [30], fluid flow
and heat transfer on a stretched sheet were studied and variable viscosity with
slip conditions was considered.

Moreover, an incompressible electrified Maxwell ferromagnetic liquid flow
through a two-dimensional stretching sheet in the presence of a rotating mag-
netic field along with heat generation/absorption was investigated in [31]. The
authors found that velocity and temperature profile decreases and increases with
increasing values of the ferromagnetic parameter, respectively. The behavior of
ferrofluid over a cylindrical rotating disk with temperature-dependent viscosity
was investigated in [32]. The flow and heat transfer of ferrofluid over a perme-
able stretching sheet with the effects of suction/injection have been examined in
[33]. The viscoelastic property of the fluid in MHD flow and heat transfer over
a two-dimensional stretching sheet under slip velocity was studied in [34]. The
flow and convective heat transfer analysis of dusty ferrofluid over a stretching
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surface have been presented in [35]. The authors noted that temperature profile
increases with enhanced values of the ferromagnetic parameter in both the fer-
rofluid phase and dusty phase. It is also clear from that study that the ferrofluid
phase is significantly more comprising than a dusty phase. The effects of thermal
radiation on the ferrofluid flow and heat transfer over a stretching sheet were
discussed in [36].

The goal of the present analysis is to investigate the BFD flow and heat
transfer of blood along a stretched sheet under the influence of thermal radiation.
For the mathematical formulation, we adopt the version of BFD consistent with
FHD and MHD principles. A similarity transformation is used to convert the
nonlinear PDEs into nonlinear ODEs. The effects of various relevant parameters
on the momentum and heat transfer have been investigated and the numerical
results are presented graphically and in tabular form. The aim is that the present
study will be used in the biotechnology and medical sciences.

2. Model descriptions

Consider an unsteady, two-dimensional boundary layer flow of an incom-
pressible electrically conducting biomagnetic fluid, namely blood passing through
a stretched sheet with velocity Uw(x, t) = ax

1−ct , where a and c are constant such
that a > 0, c ≥ 0 and ct < 1 (Fig. 1). X – axes are taken along the sheet
and Y – axes are chosen normal to it. It is assumed that the sheet is kept at
constant temperature Tw, and T∞ is the temperature of the ambient fluid where

Fig. 1. Schematic diagram of the flow problem.
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Tw < T∞. A transverse magnetic field of strength B(t) = B0

(1−ct)1/2 is applied in
the Y – direction and at t = 0, B0 corresponds to the constant magnetic field
strength. A magnetic dipole generates a magnetic field of strength H, which is
supposed to be located some distance d from the sheet. Under these assumptions,
continuity, momentum and energy equations are taken in the following form [12].

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0. (1)

Momentum equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ϑ

∂2u

∂y2
− σB2(t)

ρ
u− ϑ

k1 (t)
u+

µ0
ρ
M1

∂H

∂x
. (2)

Energy (Heat) equation:

ρCp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
+µ0T

∂M1

∂T

(
u
∂H

∂x
+ v

∂H

∂y

)
= κ

∂2T

∂y2
− ∂qr
∂y

, (3)

where u and v represents the velocity component along x- and y-direction, ρ and
B(t) represents the biomagnetic fluid density and time-dependent magnetic field
intensity, respectively, k1(t) = k2(1 − ct) is the time-dependent permeability
parameter, k2 is initial permeability, κ and Cp denotes the thermal conductiv-
ity and specific heat, respectively, ϑ is the kinematic coefficient, σ is electrical
conductivity, qr implies radiative heat flux, M indicates magnetization, H is
magnetic field of strength, T is the temperature of field, and µ0 is magnetic
permeability.

The associated boundary conditions for the given mathematical problem are
in the following form [37, 38]:

y = 0 : u = Uw +Nµ
∂u

∂y
, v = Vw, T = Tw +K

∂T

∂y
,

y →∞ : u→ 0, T → T∞,

(4)

where Vw specifies the injection/suction velocity and it is in the following form:

Vw = −
√
ϑUw
x

f(0). (5)

Equation (5) expresses that mass transfer occurs with velocity Vw from the
surface of the wall, where Vw > 0 and Vw < 0 describe injection and suction,
respectively. In Eq. (4), N = N0(1 − ct)1/2 and K = K0(1 − ct)1/2 are velocity
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and thermal slip factor, respectively. The no-slip conditions can be recovered
instead of putting N = K = 0. The temperature of the stretched sheet Tw(x, t)
is assumed in the following form:

Tw(x, t) = T∞ +
bx

1− ct
, (6)

where b and c are positive constants such that b, c ≥ 0 having a dimension
“time−1” and ct < 1.

The radiation heat flux qr is simulated according to the Rossel and approxi-
mation [39] such that

qr =
4σ∗

3k∗
∂T 4

∂y
, (7)

where σ∗ and k∗ are the Stefan–Boltzman constant and the mean absorption co-
efficient. Following [39], we assumed that the temperature differences within the
flow are such that the term T 4 may be expressed as a linear function of the tem-
perature, we expand T 4 in a Taylor series about T∞ and neglecting the higher-
order terms beyond the first degree in (T − T∞) we get

T 4 ∼= 4TT 3
∞ − 3T 4

∞. (8)

Employing Eqs (7) and (8) in (3), the energy equation reduces to

ρCp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
+ µ0T

∂M1

∂T

(
u
∂H

∂x
+ v

∂H

∂y

)
= κ

∂2T

∂y2
+

16 σ∗ T 3
∞

3k∗
∂2T

∂y2
. (9)

The partial part of µ0ρ M1
∂H
∂x in Eq. (2) denotes the ferromagnetic body force per

unit volume, while the term µ0T
∂M1
∂T

(
u∂H∂x + v ∂H∂y

)
in Eq. (3) indicates heating

due to adiabatic magnetization. According to the [40], we assumed that the
component Hx and Hy of the magnetic field H = (Hx, Hy) due to a magnetic
dipole that is located at a distance d below the sheet can be written in the
following form:

Hx(x, y) = −∂V
∂x

=
γ

2π

x2 − (y + d)2

[x2 + (y + d)2]2
, (10)

Hy(x, y) = −∂V
∂y

=
γ

2π

2x(y + d)

[x2 + (y + d)2]2
, (11)
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where

V =
α

2π

x

x2 + (y + d)2

depict the magnetic scalar potential in the region of a magnetic dipole, γ = α
and α is a dimensionless distance defined as

α =

√
Uw
ϑx

d.

Due to the magnetic body forces corresponding to the gradients of magnitude
‖H‖ = H, we obtain

H(x, y) =
[
H2
x +H2

y

]1/2
=

γ

2π

[
1

(y + d)2
− x2

(y + d)4

]
. (12)

Thus the corresponding horizontal and vertical components of the magnetic field
are expressed in the form

∂H

∂x
=

γ

2π

−2x

(y + d)4
,

∂H

∂y
=

γ

2π

[
−2

(y + d)3
+

4x2

(y + d)5

]
.

(13)

Following [41], we assume that the impact of magnetization M varies with tem-
perature T defined by the expression in the following form:

M1 = K(T − T∞), (14)

where K is a pyromagnetic coefficient.

3. Transformation to non-dimensionalize

Equations (2) and (9) are made dimensionless with considering the following
transformation [12]:

η =

√
Uw
ϑx

y, ψ =
√
ϑxUwf(η), θ(η) =

T − T∞
Tw − T∞

, (15)

where ψ, θ(η) and η are a stream function, dimensionless temperature function,
and dimensionless similarity variable, respectively.

Continuity Eq. (1) is satisfied automatically by expressing the stream func-
tion in the following form:

u =
∂ψ

∂y
and v = −∂ψ

∂x
.



Effect of thermal radiation on biomagnetic fluid flow. . . 89

Using Eqs (10) to (15), we convert (2) and (7) into a set of following ODEs and
boundary conditions:

f ′′′ − f ′2 + ff ′′ −A
[
f ′ +

1

2
η f ′′

]
−M2f ′ − 1

k3
f ′ − 2βθ

(η + α)4
= 0, (16)

(1 +Nr)

Pr
θ′′ −A

(
θ +

1

2
ηθ′
)
− f ′θ + fθ′ − 2βλ

(ε+ θ)

Pr (η + α)3
f = 0, (17)

η = 0 : f = S, f ′ = 1 + Sff
′′, θ = 1 + Stθ

′′, (18)

η →∞ : f ′ → θ → . (19)

In Eq. (18), S symbolizes suction and injection parameter if S > 0 and if
S < 0 respectively, which is used to control the strength of direction of flow
at the boundary. In equations written above, primes denote derivatives with
respect to η.

Here the parameters that appears in Eqs (16)–(19) are expressed and de-
fined as:

Pr =
µCp
κ

– Prandtl number,

A =
c

a
– unsteady parameter,

k3 =
ak2
ϑ

– permeability parameter,

Nr =
16σ∗T 3

∞
3κk∗

– radiation parameter,

λ =
aµ2

ρk(1− ct)(Tw − T∞)
– viscous dissipation parameter,

β =
γ

2π

µ0K(Tw − T∞)ρ

µ2
– ferromagnetic interaction parameter,

M = B0

√
σ

ρa
– magnetic field parameter,

ε =
T∞

Tw − T∞
– dimensionless Curie temperature,

α =

√
Uw
ϑx

d – dimensionless distance,

Sf = N0ρ
√
aϑ – velocity-slip parameter,

St = K0

√
a

ϑ
– thermal-slip parameter.
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The skin friction and local Nusselt number are interesting physical quantities
which mathematically are defined as:

Cf =
2τw
ρU2

w

and Nu =
xqw

κ(Tw − T∞)
.

The wall shear stress τw and the heat flux qw are determined in the following
way:

τw = µ

(
∂u

∂y

)
y=0

and qw = −κ
(
∂T

∂y

)
y=0

.

Finally, the skin friction coefficient and Nusselt number are made dimensionless
and take the following form:

Cf = 2Re− 1/2f ′′(0), Nu = −Re1/2θ′(0),

where the local Reynolds number is defined as

Re =
xUw
ϑ

.

4. Numerical method

In this section, we discuss the numerical method of the studied problem given
in (16) and (17) subject to the boundary conditions (18) and (19) that are built
in MATLAB software by using the bvp4c function technique. For this purpose,
we convert the boundary conditions and the higher-order PDEs into a set of first-
order differential equations by considering new variables. Let us define some new
variables as: f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ′ = y5.

Then the system of first-order differential equations is given as follows:

f ′ = y2,

f ′′ = y
′
2 = y3,

f ′′′ = y
′
3 = A(y2 +

η

2
y3) + y22 − y1y3 +

2βy4
(η + α)4

+M2y2 + y2
κ3
,

θ′ = y5,

θ′′ = y
′
5 =

Pr

(1+Nr)

{
A
(
y4+

η

2
y5

)
+ y2y4−y1y5

}
+

1

(1+Nr)

2βλy1(ε+y4)

(η+α)3
,

(20)

and the initial boundary conditions:

y1(0) = S, y2(0) = 1 + Sfy3(0), y4(0) = 1 + Sty5(0),

y2(∞) = 0, y4(∞) = 0.
(21)
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The initial boundary conditions (21) and Eq. (20) are integrated numerically
as an initial value problem to a given terminal point. All these simplifications
have been done using the MATLAB package.

5. Parameter estimated

In this work, we examine the influence of radiation on the blood flow that
passes through the stretched sheet. To obtain the numerical answer, it is neces-
sary to determine some unique values for the dimensionless parameters such as
unsteadiness parameters, suction parameters, permeability parameters, velocity
slip parameters, thermal slip parameter, Prandtl number, radiation parameter,
magnetic field parameter, and ferromagnetic parameter, which all make a signi-
ficant impact on the biomagnetic flow. Many scientists have been documented
in the scientific literature using different values of dimensionless parameters in
handling the flow problem. We assume that the fluid is blood, and take the
following values into account:

µ = 3.2× 10−3 kg/m · s, ρ = 1050 kg/m3, (22)

Cp = 14.65 J/kg ·K, κ = 2.2× 10−3 J/m · s ·K. (23)

Using these values, we have Pr =
µCp

κ = 21.
We assume that the human body temperature is Tw = 37◦C [43] and the

body Curie temperature is T∞ = 41◦C, hence the dimensionless temperature is
ε = 78.5◦C.

We use the value of the following parameters in Figs 2–27.
The ferromagnetic interaction parameter β = 0 to 10 as in [9, 10]. Note

that β = 0 corresponds to the hydrodynamatic flow, unsteadiness parameter
A = 0, 0.5, 1 as in [12], permeability parameter k3 = 0.2, 0.3, 0.4, 1 as in [12],
radiation parameter Nr = 1, 2, 3 as in [12], Prandtl number Pr = 21, 23, 25
as in [10, 12], values of dimensionless distance α = 1 as in [7], magnetic field
parameter M = 1, 2, 3 as in [9, 12], velocity slip parameter Sf = 1, 1.5, 2.5
as in [12], thermal slip parameter St = 0.5, 1, 1.5 as in [12], viscous dissipation
parameter λ = 1.6× 10−14, and suction parameter S = 0.5, 1, 1.5 as in [12].

6. Results and discussion

We compare the values of the local Nusselt number −θ′(0) with the work
presented in [44–47] to determine the validity of the numerical analysis by way
of replacing S = 0, Sf = 0, St = 0, β = 0, λ = 0, A = 0, k3 → ∞. The
comparison shown in Table 1 suggests a very good agreement.
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Table 1. Comparison of Nusselt number −θ′(0) for different values Nr, M , Pr.

Nr M Pr Magyari
and Keller [44]

El-Aziz [45] Bidin
and Nazar [46]

Ishak [47] Present
results

0 0 1 −0.954782 −0.954785 −0.9548 −0.9548 −0.95481
– – 2 – – −1.4714 −1.4715 −1.471443
– – 3 −1.869075 −1.869074 −1.8691 −1.8691 −1.869059
– – 5 −2.500135 −2.500132 – −2.5001 −2.500119
– – 10 −3.660379 −3.660372 – −3.6604 −3.660360
– 1 1 – – – −0.8611 −0.861221
1 0 – – – −0.5315 −0.5312 −0.531158
1 – – – – – −0.4505 −0.450536

The effect of the magnetic field parameters on the distributions of velocity
and temperature can be found in Figs 2 and 3, respectively. We see that the fluid
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Fig. 2. The behavior of f ′(η) against M .
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Fig. 3. The behavior of θ(η) against M .
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velocity decreased with an improvement in the magnetic field parameter, and the
boundary layer temperature increased with the same improvement. This shows
specifically that the transverse magnetic field opposes transport phenomena.
We see that the fluid velocity decreased with an improvement in the magnetic
field parameter, and the boundary layer temperature increased in the same case.
Consequently, there is a tendency for the transverse magnetic field to create
a drag force called the Lorentz force.

The influence of radiation parameter on velocity and temperature profiles
is illustrated in Figs 4 and 5. Figures 4 and 5 demonstrate that fluid velocity
decreases with rising values of radiation parameter while in this case temperature
profile enhanced. Temperature profiles increase because the conduction impact
of the fluid increases in the presence of radiation.

3/12 

Fig.4. The behavior of )(' f  against Nr . 

Fig.5. The behavior of θ(η) against Nr. 
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Figures 6 and 7, respectively, depict the effect of the Prandtl number (Pr) on
velocity and temperature distributions. Figure 6 demonstrates that the velocity



94 Md.J. Alam et al.

4/12 

Fig.6. The behavior of f’(η)against Pr. 

Fig.7. The behavior of θ(η)against Pr. 
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Fig. 7. The behavior of θ(η) against Pr.

profile increases with increasing the value of the Prandtl number and Fig. 7 shows
that the temperature decreases with increasing value of the Prandtl number due
to the increase of fluid heat capacity or the decrease of the thermal diffusivity.
Hence, this causes a decrease of the thermal expansion influence on the flow.

The effect of unsteadiness parameters on velocity and temperature profiles
is illustrated in Figs 8 and 9. In Fig. 8 it is observed that the boundary layer
increases as the values of the unsteadiness parameter (A) increase. The steady
case occurs for A = 0. Figure 9 shows that the temperature is found to decrease
with an increase at a particular stage. It is also observed that the transferred
heat from the sheet to the fluid also decreases with the parameter of unsteadiness
increasing as a consequence of the gradual decrease in the heat transferred from
the sheet to the fluid.

Figures 10 and 11 show the effect of ferromagnetic interaction parameter (β)
on dimensionless velocity and temperature profiles. It can be observed in Fig. 10
that the velocity of the fluid decreases with an increase of ferromagnetic number,
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Fig.8 The behavior of f’(η) against A. 
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Fig. 10. The behavior of f ′(η) against β.

whereas Fig. 11 shows that the temperature profile increases in this case. This
is because the ferromagnetic number is directly related to Kelvin force, which is
also known as drug force and it is the same as in Figs 2 and 3.
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Fig. 11. The behavior of θ(η) against β.

Variations of velocity and temperature profiles are displayed in Figs 12 and 13
for various values of permeability parameter. It can be seen in Fig. 12 that
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Fig. 13. The behavior of θ(η) against k3.
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the velocity profile increases with increasing permeability parameter (k3). The
important fact is that the fluid flow increases in the sheet as the permeability
parameter (k3) increases. The resistance of the sheet may be neglected when
the hole becomes larger in the sheet. This is the reason behind that the velocity
at the bottom is observed to be zero and it reaches the maximum when it reaches
the free surface. Figure 13 shows that the temperature distribution decreases
with increasing values of permeability parameter (k3).

The effect of slip parameter on the distribution of velocity and temperature
can be found in Figs 14 and 15, respectively. The fluid velocity profile is shown
to decrease in Fig. 14 as the velocity slip factor increases. The reason behind it
is that under slip conditions, the drag of the sheet is partly transmitted to the
fluid. Figure 15 indicates that the temperature profile at every point in the flow
sheet increases with increasing values of the velocity slip factor.
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Fig.14. The behavior of f’(η)against Sf. 

Fig.15. The behavior of θ(η)against Sf. 
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Fig. 15. The behavior of θ(η) against Sf .

The impact of the thermal slip parameter (St) on velocity and temperature
profiles can be found in Figs 16 and 17. As the thermal slip factor steadily
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Fig. 17. The behavior of θ(η) against St.

increases, Fig. 16 shows that the velocity profile increases. In Fig. 17, it is found
that temperature decreases as the thermal slip factor (St) increases. The heat
transmitted from the stretched sheet to the fluid increases due to the thermal
slip factor.

Figures 18 and 19 display the velocity and temperature profiles for various
values of the suction parameter (S). With increasing values of the suction, it is
seen in Fig. 18 that the velocity decreases. The reason behind that the suction
moves the fluid away from the sheet surface, and as a result, the boundary layer
decreases. The temperature profile in the flow region decreases with increasing
values of the suction parameter (S), which is clearly seen in Fig. 19. Since the
suction parameter increases, more fluid is taken away from the fluid area, thus
causing thermal boundary layer thickness to decrease.

Figures 20–27 portray the influence of various parameters such as ferromag-
netic number β, unsteadiness parameter A, suction parameter S, Prandtl num-
ber Pr with regard to magnetic field parameter on skin friction coefficient and
rate of heat transfer. This clearly indicates that skin friction decreases with in-
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Fig.18. The behavior of f’(η) against S. 

Fig.19. The behavior of θ(η) against S. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

S = 0.5, 1, 1.5

S = 0.5, 1, 1.5

𝑓
′ ( 𝜂

)
𝜃

 ( 𝜂
)

𝜂

𝜂

Sf = 1.5, St = 1.5, Pr = 23, λ = 1.6 × 10-14,
α = 1, β = 5, A = 0.5, ε = 78.5, M = 1, Nr = 1, k3 = 0.2

Sf = 1.5, St = 1.5, Pr = 23, λ = 1.6 × 10-14,
α = 1, β = 5, A = 0.5, ε = 78.5, M = 1, Nr = 1, k3 = 0.2

Fig. 18. The behavior of f ′(η) against S.

10/12 

η
Fig.18. The behavior of f’(η) against S. 

Fig.19. The behavior of θ(η) against S. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

S = 0.5, 1, 1.5

S = 0.5, 1, 1.5

𝑓
′ ( 𝜂

)
𝜃

 ( 𝜂
)

𝜂

𝜂

Sf = 1.5, St = 1.5, Pr = 23, λ = 1.6 × 10-14,
α = 1, β = 5, A = 0.5, ε = 78.5, M = 1, Nr = 1, k3 = 0.2

Sf = 1.5, St = 1.5, Pr = 23, λ = 1.6 × 10-14,
α = 1, β = 5, A = 0.5, ε = 78.5, M = 1, Nr = 1, k3 = 0.2

Fig. 19. The behavior of θ(η) against S.

11/12 

1.0 1.5 2.0 2.5 3.0

-0.576

-0.560

-0.544

-0.528

1.0 1.5 2.0 2.5 3.0

-0.95010

-0.95005

-0.95000

-0.94995

Fig.20. f''(0) against  . Fig.21. –θ'(0) against β. 

1.0 1.5 2.0 2.5 3.0

-0.370

-0.365

-0.360

-0.355
 Pr=23

 Pr=24

 Pr=25

1.0 1.5 2.0 2.5 3.0

-0.64405

-0.64350

-0.64295

-0.64240
 Pr=23

 Pr=24

 Pr=25

Fig.22. f''(0) against Pr. Fig.23 –θ'(0) against Pr. 

1.0 1.5 2.0 2.5 3.0

-0.57

-0.56

-0.55

-0.54

-0.53

 A=0

 A=.5

 A=1

1.0 1.5 2.0 2.5 3.0

-0.9505

-0.9500

-0.9495

-0.9490

 A=0

 A=.5

 A=1

M
Fig.24. f''(0) against A.

Fig.25.  –θ'(0) against A. 

𝑓
′′(
0)

𝑓
′′ (
0 )

𝑓
′′(
0) –𝜃
′ (
0)

–𝜃
 ( 0

)
–𝜃
′ (
0)

M 

M 

M 

M 

M 

M 

 S = 0.5, Sf  = 1.5, St = 1, Pr = 25, λ� = 1.6 × 10-14,
α�  = 1, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3

 S = 0.5, Sf  = 1.5, St = 1, Pr = 25, λ� = 1.6 × 10-14,
α�  = 1, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3

 S = 0.5, Sf  = 2.5, St = 1.5, λ� = 1.6 × 10-14, α  = 1, 

β = 5, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3
 S = 0.5, Sf  = 2.5, St = 1.5, λ� = 1.6 × 10-14,

α  = 1, β = 5, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3

 S = 0.5, Sf  = 1.5, St = 1, Pr = 25, λ� = 1.6 × 10-14, 
α = 1, β = 1, ε = 78.5, Nr = 1, k3 = 0.3

α = 1, β = 1, ε = 78.5, Nr = 1, k3 = 0.3
 S = 0.5, Sf  = 1.5, St = 1, Pr = 1, λ� = 1.6 × 10-14, 

 A = 0
 A = 0.5
 A = 1

 A = 0
A = 0.5
A = 1

 Pr = 23
 Pr = 24
 Pr = 25

 Pr = 23
 Pr = 24
 Pr = 25

β = 0
β = 2
β = 5

β = 0, 2, 5� 

β = 0
β = 2
β = 5

β = 0, 2, 5� 

A = 0, 0.5, 1 A = 0, 0.5, 1

Pr = 23, 24, 25
Pr = 23, 24, 25

11/12 

1.0 1.5 2.0 2.5 3.0

-0.576

-0.560

-0.544

-0.528

1.0 1.5 2.0 2.5 3.0

-0.95010

-0.95005

-0.95000

-0.94995

Fig.20. f''(0) against  . Fig.21. –θ'(0) against β. 

1.0 1.5 2.0 2.5 3.0

-0.370

-0.365

-0.360

-0.355
 Pr=23

 Pr=24

 Pr=25

1.0 1.5 2.0 2.5 3.0

-0.64405

-0.64350

-0.64295

-0.64240
 Pr=23

 Pr=24

 Pr=25

Fig.22. f''(0) against Pr. Fig.23 –θ'(0) against Pr. 

1.0 1.5 2.0 2.5 3.0

-0.57

-0.56

-0.55

-0.54

-0.53

 A=0

 A=.5

 A=1

1.0 1.5 2.0 2.5 3.0

-0.9505

-0.9500

-0.9495

-0.9490

 A=0

 A=.5

 A=1

M
Fig.24. f''(0) against A.

Fig.25.  –θ'(0) against A. 

𝑓
′′(
0)

𝑓
′′ (
0 )

𝑓
′′(
0) –𝜃
′ (
0)

–𝜃
 ( 0

)
–𝜃
′ (
0)

M 

M 

M 

M 

M 

M 

 S = 0.5, Sf  = 1.5, St = 1, Pr = 25, λ� = 1.6 × 10-14,
α�  = 1, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3

 S = 0.5, Sf  = 1.5, St = 1, Pr = 25, λ� = 1.6 × 10-14,
α�  = 1, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3

 S = 0.5, Sf  = 2.5, St = 1.5, λ� = 1.6 × 10-14, α  = 1, 

β = 5, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3
 S = 0.5, Sf  = 2.5, St = 1.5, λ� = 1.6 × 10-14,

α  = 1, β = 5, A = 0.3, ε = 78.5, Nr = 1, k3 = 0.3

 S = 0.5, Sf  = 1.5, St = 1, Pr = 25, λ� = 1.6 × 10-14, 
α = 1, β = 1, ε = 78.5, Nr = 1, k3 = 0.3

α = 1, β = 1, ε = 78.5, Nr = 1, k3 = 0.3
 S = 0.5, Sf  = 1.5, St = 1, Pr = 1, λ� = 1.6 × 10-14, 

 A = 0
 A = 0.5
 A = 1

 A = 0
A = 0.5
A = 1

 Pr = 23
 Pr = 24
 Pr = 25

 Pr = 23
 Pr = 24
 Pr = 25

β = 0
β = 2
β = 5

β = 0, 2, 5� 

β = 0
β = 2
β = 5

β = 0, 2, 5� 

A = 0, 0.5, 1 A = 0, 0.5, 1

Pr = 23, 24, 25
Pr = 23, 24, 25

Fig. 20. f ′′(0) against β. Fig. 21. −θ′(0) against β.

creasing values of the ferromagnetic number, whereas the rate of the wall heat
transfer increases in this case. The skin friction is also observed to increase with
increasing Prandtl number values, while, in this case, the rate of the wall heat
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transfer decreases. But with the unsteadiness parameter and suction parameter
increased values, both the skin friction and rate of wall heat transfer decrease.
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7. Conclusion

In this article, we examined the influence of thermal radiation on the BFD
flow under the applied magnetic field action. The main findings are as follows:

1) The magnetic field parameter, radiation parameter, ferromagnetic interac-
tion parameter, and velocity slip parameter lead to alleviated/lessened the
fluid velocity, whereas temperature increased in all cases.

2) The fluid velocity increased with increasing values of the Prandtl num-
ber, unsteadiness parameter, permeability parameter, and non-dimensional
thermal slip factor, while the temperature decreased in all cases.

3) An increase in the suction parameter reduced both fluid velocity and tem-
perature.

4) With increasing values of ferromagnetic interaction parameters, the skin
friction decreased, while the rate of heat transfer increased.

5) The Prandtl number reduced the local Nusselt number where as the
skin friction coefficient increased in this case.

6) The unsteadiness parameter and suction parameter reduced both the skin
friction coefficient and rate of heat transfer.
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