Computer Assisted Methods in Engineering and Science, 22: 141-151, 2015.
Copyright (© 2015 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Some methods of pre-processing input data
for neural networks

Krystyna Kuzniar, Maciej Zajac

Pedagogical University of Cracow, Institute of Technology
Podchorgzych 2, 30-084 Krakow, Poland

e-mail: kkuzniar@up.krakow.pl, mjzajac@up.krakow.pl

Two techniques of data pre-processing for neural networks are considered in this paper: (i) data com-
pression with the application of the principal component analysis method, and (ii) various forms of data
scaling. The novelty of this paper is associated with compressed input data scaling by the rotation (by
the “stretching”) in neural network. This approach can be treated as the new proposition for data pre-
processing techniques. The influence of various types of input data pre-processing on the accuracy of neural
network results is discussed by using numerical examples for the cases of natural frequency predictions
of horizontal vibrations of load-bearing walls. It is concluded that a significant reduction in the neural
network prediction errors is possible by conducting the appropriate input data transformation.
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1. INTRODUCTION

Various explanations could be given to the role of data pre-processing and its need, especially in the
case of neural network input data [1, 3, 11, 12, 17]. Although in a lot of cases, the pre-processing
of neural network input data is not needed from the mathematical point of view, it can improve
the neural network training process. Moreover, the form of pre-processing applied to the data is a
very important factor in determining the success of a practical application of neural networks [1, 3,
7, 11]. The primary purpose of data pre-processing is to modify the input variables so they can
better match the predicted output. The main purpose of neural network data transformation is to
modify the distribution of the network input or output parameters.

The data transformations that are the most commonly applied in neural networks can be cate-
gorized into three groups:

e linear transformation (mostly scaling to the ranges of (0,1) or (-1,1)),
e statistical standardization (using deviation from the mean),
e various other mathematical functions.

Neural network error differences between two cases of transformations (linear transformation and
distribution transformation) of data are presented, e.g., in [16] for two problems. A lot of papers
discuss the results of using different pre-processing methods of neural network data in the cases of
various fields of practical engineering problems, e.g., [2, 5, 6, 8, 15, 18].

Two techniques of neural network data pre-processing are analysed in this paper. The first one
is associated with data compression (reduction of the dimensionality) with the application of the
principal component analysis method [1, 4, 19]. The other methods of pre-processing are focused
on various forms of data scaling [11, 17]. The novelty of this paper is associated with scaling by
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the rotation (by the “stretching”) of compressed neural network input data. This approach can be
treated as a new proposition for data pre-processing techniques.

As an illustration, the numerical results of the investigations on the influence of the above
mentioned data pre-processing on the accuracy of the neural network prediction of the natural
frequencies of horizontal vibrations of load-bearing walls are presented.

2. APPLIED TECHNIQUES OF DATA PRE-PROCESSING
2.1. Principal component analysis

The compression of neural network input data (as well as output data) makes it possible to design
“smaller” neural networks than those without data compression, i.e., a reduction in the number of
network parameters.

The principal component analysis (PCA) is one of the methods applied to reduce the neural
network input space dimension [4]. The reduction is achieved by transforming the data into a new
set of variables, called principal components. In addition, it is possible by means of eigenanalysis to
select only those principal components which preserve the most important features of the original
space [4].

The PCA method relates to the linear transformation of process description in the form of
N-elements vector x into K — elements vector y, using matrix W € R¥ x RV:

y = Wx. (1)

Matrix W could be defined using eigenvectors w; (w; — successive eigenvectors, i = 1,2,..., K;
K < N) of the autocorrelation matrix for vectors x (vector x could be the neural network input
vector, for instance):

WZ[Wl,WQ,...,WK]T. (2)

Since K < N, the size of vector y is reduced as compared to x. Thus, the PCA transformation
changes the large number of input data into a set of components according to their importance.

The principal components are the projections of original input vectors x on principal directions
related to eigenvectors. For example, the case of 2D output space is illustratively shown in Fig. 1.
The principal directions 1 and 2 are associated with the eigenvectors of maximal and minimal
variances of data, respectively.
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Fig. 1. Ilustration of the principal components for data from two-dimensional space (based on [9]).

Two variants of PCA method application were considered: (i) input data transformation into
principal components using “local compression” (LC), and (ii) input data transformation into
principal components using “global compression” (GC). In the first one, for each of the neural
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network input vectors, the autocorrelation matrix was set up and the linear eigenvalue problem
was analysed separately. In the second variant, only one autocorrelation matrix associated with all
of the input vectors was computed.

2.2. Scaling of data

The main goal of data scaling is the transformation of the actual (experimental or obtained from
calculations) data into dimensionless data or into required space (range). Sometimes, the necessity
of neural network data scaling is caused by the choice of activation function. Such a situation takes
place, e.g., in the case of output data from the neural network with sigmoid activation functions
adopted in the output layer.

A number of input variable transformations by scaling are proposed in this paper. The following
formulae are discussed:

a) scaling to the interval (0.1 -0.9)

0.9 (z - 2min) 0.1 (2 — Tmax)

Tmax ~ Tmin

S1: T

b) dividing by the maximum value in the real range of data (or another value)

S2: Tg = z , (4)

xmax

¢) using polynomial functions

S3: xs =212, (5)

d) using exponential functions

S4: Ts = e, (6)

where x; — scaled value, x — real value, Ty, and x. — minimal and maximal values in the real
range respectively, a — adopted constant.

3. ILLUSTRATIVE EXAMPLES
3.1. Analysed problem

The analysed problem is related to the neural prediction of the first natural frequencies of horizontal
vibrations of modified load-bearing walls [10].

A problem with modernisation of structures, a result of contemporary occupants’ expectations
when it comes to living standards, appears in many older, existing apartment buildings (e.g.,
prefabricated buildings). New door openings and the widening of existing door openings in the load-
bearing walls are some examples of wall modifications. Naturally, wall geometrical modifications
cause changes in wall dynamic properties, including natural frequencies of vibrations, among other
things. Computation of the natural frequencies of the modified structures is usually necessary in
engineering practice in the cases of dynamic influences, as can be seen especially, for instance, in
building design in seismic areas.

Typical medium-height reinforced concrete (Young’s modulus — 29 GPa, Poisson’s ratio — 0.17,
density — 2500 kg/m?3) load-bearing walls were considered with a 2.7 m, 5.4 m, 11.7 m width,
a 14 m (five storeys x 2.8 m) height, and a 0.14 m thickness. The small and large changes in the
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wall stiffness and mass, resulting from the size and position of new door openings, were taken into
account. A series of door openings, one above the other on all of the storeys (system door openings)
were considered. They were “shifted” from the edge of the wall with a step of 0.3 m. The widths
of door openings were taken from the range of 0.9 m — 4.8 m with a step of 0.3 m. The example of
one of the analysed walls (with finite element mesh) is schematically shown in Fig. 2a.
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Fig. 2. a) The example of the wall with a modification in the form of system door openings — a series of door
openings, one above the other on all of the storeys; b) the parameters considered in the neural network input
vectors.

The influence of the type of data pre-processing technique on the accuracy of the neural predic-
tion of frequencies was investigated.

3.2. Computations using neural networks

Back-propagation neural networks (BPNNs) were applied for the computation of the first natural
frequencies (f1 [Hz|) of horizontal vibrations of the walls. All the neural networks were trained
using the Levenberg-Marquadt learning algorithm [13], sigmoid activation function in the input and
hidden layers, and linear activation function in the output layer. One hidden layer was proposed
for each of the networks.

Neural network input vectors were composed of the following parameters (Fig. 2b): p — the
coordinate of the door opening position, by — the door opening width, by — the wall width, fig,
fos — the first and second natural frequencies of the wall without door openings. The first natural
frequencies (f1) were the outputs of the neural networks.

The finite element method [14] was applied to generate patterns of neural networks according
to the cases of modifications. The factor of symmetry in the cases of door opening positions was
taken into consideration and a total number of 215 patterns were prepared. They were divided into
three sets: training (about 60% — L = 129 patterns), validating (about 20% — V' = 44 patterns) and
testing (about 20% — T' = 42 patterns).

The accuracy of neural networks with various input data pre-processing routines was estimated
by mean square error (MSE) and relative errors (ep):

Q
MSE = 1 3 (2(P) = y(P))2. (7)
Q p=1
ep=1-y®/2P)|.100%, (8)
epmax = maxpep, (9)
1 @
epaverage = — > ep, (10)
Q p=1
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where z(P), y(P)— target and neurally computed outputs for p-th pattern, and Q = L, V, T' — number
of the learning (L), validating (V') and testing (7") patterns, respectively.

The numerical efficiency of the networks was also evaluated by the coefficient of linear correlation
for the testing (r7) and the success ratio (SR). The SR function enabled to estimate what percentage
of patterns SR (%) gives the neural prediction with the error not greater than ep (%)

3.3. Results

The influence of the neural network input data scaling S1 and S2 on the accuracy of the neural
prediction of the modified wall frequencies could be significant, which is visible by comparing the
errors of neural networks collected in Table 1, as well as the curves of the SR in Fig. 3.

Table 1. Neural network errors in the identification of natural wall frequencies with the application of S1
and S2 data scaling.

Steps of the input BPNN MSE ep max [%) ep average [%] .
data pre-processing structure L Vv T L 1% T L Vv T T
Without. 5-5-1 0.00098 | 0.00795| 0.01122 | 1.38 | 3.26 | 4.40 | 0.29 | 0.56 | 0.58 | 0.9993
pre-processing
S1 5-5-1 0.0003910.00162 | 0.00107 | 1.08 | 2.25 | 1.63 | 0.16 | 0.31 | 0.25 | 0.9999
S2 5-5-1 0.00146 | 0.00571 | 0.00330 | 2.07 | 3.29 | 1.70 | 0.32 | 0.58 | 0.38 | 0.9998
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Fig. 3. A comparison of the success ratio (SR) for the approximations of neural networks
with the application of S1 and S2 data scaling (testing patterns).

Looking at the columns in Table 1 with relative errors, it is clear that the values of the maximum
as well as the average relative testing errors were reduced by over 50% using data scaling. In turn,
the reduction of MSFE for testing is even greater than for relative errors.

It is also visible (Fig. 3) that 100% of the testing patterns were obtained with relative errors
less than 2%, in the cases of neural networks with scaled input vectors.

From the results of the data pre-processing using PCA method with GC as well as with LC,
it is clear that the first principal component reaches more than 99% of the total variance of data
in all the considered cases. Then, the first principal component is predominant. Therefore, the
five parameters (p, b1, b2, fis, fas) from the network input vector could be compressed to the first
principal component only. As a result, a very small network (1-3-1) could be designed. But there are
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some “difficulties” for neural prediction of the ambiguous relationship between the first principal
components of the modified wall parameters and the corresponding wall frequencies, see Fig. 4.

15
. LC 14

1 1 _ b GC
N
= 10 1
7 ‘

3 ' r 6 .
20 35 50 48.2 48.5 48.8
The first principal component The first principal component

Fig. 4. The first principal components of the wall parameters vs. the wall frequencies (f1).

This difficulty is confirmed by the results obtained from networks with the application of LC
and GC data pre-processing (input vectors are compressed), see Table 2 and Fig. 5. Therefore,
the rise in values of neural network errors, in the cases of compressed input application, could be
produced not only by the effect of lossy compression (using the PCA method) but first of all by
the above-mentioned ambiguous relationship.

Table 2. Neural networks errors in the identification of natural wall frequencies with the application
of LC and GC data pre-processing.

Steps of the input BPNN MSE ep max [%)] ep average (%] .
data pre-processing | structure L Vv T L \%4 T L |V | T g
WithOUt, 5-5-1 0.00098|0.00795|0.01122| 1.38 | 3.26 | 4.40 {0.29|0.56|0.58|0.9993
pre-processing
LC 1-3-1 3.481803.89550 [4.59810 | 58.26 | 33.54 | 59.70|16.9 | 14.6 | 18.6 | 0.6514
GC 1-3-1 0.40886 | 0.87529 [ 0.90390 | 27.05 | 25.69 | 28.58 | 5.51 | 6.42 | 6.32|0.9429
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Fig. 5. A comparison of the success ratio (SR) for the approximations of neural networks
with the application of LC and GC data pre-processing.
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Although input data after LC and GC are very similar (Fig. 4), the differences between the
results of the neural prediction for the two kinds of pre-processing methods are significant. For
example, the relative average testing errors differ about 66% (Table 2).

Looking at the SR graphs in Fig. 5, it is visible that in the case of the neural network with
LC of input vectors, as much as 40% of the patterns are computed with the relative errors greater
than 20%. The main reason for such poor results in the case of LC could be connected with the
calculations of the autocorrelation matrix. In the case of GC there is only one autocorrelation
matrix, thus different input vectors are compressed to different principal components; whereas, in
the case of LC, for every input vector its own autocorrelation matrix is constructed. Therefore,
two input vectors, representing different information but having the same elements of vector, will
compress to the same value as principal component, which makes neural prediction more difficult.
The example of such a situation is shown in Fig. 6.

p=12m p=3.6m
by=3.6m by=12m
b,=11.7m b,=11.7m
1s = 14.46 Hz fis=14.46 Hz
fos =44.57 Hz frs=44.57THz

\ \

PCA local compression (LC)

W

48.45

(the first principal component)

Fig. 6. The example of local compression (LC) of two different neural network input vectors
to the same value of the first principal component.

The next proposed step in the data pre-processing concerns the various types of scaling of
compressed input vectors. The main goal of this operation is the rotation and “stretching” of the
input data to make the relation input-output more unambiguous and, as the result, to improve the
accuracy of neural network prediction.

Figure 7 shows, as the example, the influence of the sequence of various types of scaling methods
(S1, S3, S4), together with GC of input data on the relationship: the scaled first principal component
of input data — the first natural frequency, in the case of the 11.7 m wall. The black dots represent
GC data without scaling, the red and green dots — scaling while using a polynomial function with
different alpha parameters, and the blue dots — scaling while using an exponential function.

The results presented in Table 3 and in Fig. 8 confirm that the input data compression supported
by the application of even such simple proposed scaling methods (S3 — polynomial function, S4 —
exponential function) can improve neural network prediction.
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Fig. 7. The relationship: the scaled first principal component of input data — the first natural frequency,
in the case of the 11.7 m wall.

Table 3. Neural networks errors in the identification of natural wall frequencies with the application of GC
and scaling data pre-processing.

Steps of the input BPNN MSE ep max [%] ep average [%] -
data pre-processing | structure L 1% T L \%4 T L |V | T

GC 1-3-1 0.40886 | 0.87529 [ 0.90390 | 27.05 | 25.69 | 28.58 | 5.51 | 6.42 | 6.32 | 0.9429
S1-GC-S3 (o =4) 1-3-1 0.20809|0.54944 | 0.55494 | 18.86 | 19.94 | 22.55|3.73 | 5.25|4.89 | 0.9653
S1-GC-S4 (e =1) 1-3-1 0.30217]0.58572|0.57076 | 29.73 | 21.12|22.32|4.73 | 5.70| 5.08 | 0.9641
52-GC-S3 (a =3) 1-3-1 0.24310]0.50120 [ 0.51222|27.02 | 19.26 | 21.57 | 4.09 | 5.07 | 4.68 | 0.9686
52-GC-54 (a=1) 1-3-1 0.31102]0.58046 | 0.55122 | 30.55 | 23.33 | 21.63 | 4.79 | 5.88 | 4.99 | 0.9650

100
80 -
=, 60 o
g 40
—S1-GC-S3, a=4
20 |
—S$2-GC-S3, a=3
0 I T T
0 6 12 18
ep [%o]

Fig. 8. A comparison of the success ratio (SR) for the approximations of neural networks
with the application of GC and scaling data pre-processing (testing).

This effect is also clearly visible in a comparison of the values of the first natural frequencies
computed by BPNNs with the target values presented in Fig. 9. It is concluded that in the cases
of neural networks in which compressed input vectors are additionally scaling, the accuracy of the
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Fig. 9. A comparison of the values of the first natural frequencies computed by BPNNs with target values.

obtained results is better (the positions of points are closer to diagonal, Fig. 9). In Fig. 9, the sets
of learning, validation and testing patterns are shown separately.

Additionally, in Fig. 10, the actual outputs (the target values) and predicted values of the first
natural frequencies, only for the testing patterns, are compared in the cases of some discussed
neural networks. It is visible that in the cases of scaling of the data, predicted frequencies are closer
to actual outputs, especially for the higher values of frequencies.

——GC —o—Target values —4—S1-GC-S3, a=4

—*=S51-GC-S4, a=1 —*=82-GC-S3, a=3

14 +
12
E 10
< 8
6
4 T T T T T 1
1 8 15 22 29 36 43
Patterns

Fig. 10. A comparison of the actual outputs (target values) and predicted values of the first natural
frequencies (only for the testing patterns).

Thus, in all the proposed and discussed cases of neural network data pre-processing, an improve-
ment in the accuracy of the computed values of the first natural frequencies of the walls is observed,
most importantly, for the testing patterns. For instance, pre-processing by scaling of input vectors
with the full information of data (without the compression) produces the improvement in the test-
ing error MSE up to 91%, see Table 4. Also, in the cases of compressions using PCA together with
the additional pre-processing of data by scaling, the obtained results confirm an improvement in
accuracy. For example, in the case of the neural network with S1-GC-S3 (« = 3) data pre-processing,
the reduction in the relative testing error reaches up to 26%, see Table 4.
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Table 4. A reduction of the prediction errors in the cases of selected neural networks
with data pre-processing.

Neural network error reduction (%)
Error NN with scaling S1 NN with S1-GC-S3 (« = 3) data pre-processing
vs. vs.
NN without data pre-processing NN with PCA GC
L 60.2 40.5
MSE 1% 79.6 42.7
T 90.5 43.3
L 21.7 0.10
ep max [%] |V 31.0 25.0
T 63.0 24.5
L 44.8 25.8
ep average [%] | v/ 44.6 21.0
T 56.9 26.0

4. CONCLUSIONS

The influence of neural network input data scaling on the accuracy of the neural prediction of the
modified wall frequencies could be significant.

The PCA pre-processing method enables us to map the input data into a space of lower dimen-
sionality (compression of data). It is worth mentioning that GC gives much better results than LC.

In the case of the special relationship between the compressed data and the neural network
output (as it is visible, for example, in the case of the first principal components of the modified
wall parameters and the wall frequencies), scaling by the rotation (by the “stretching”) of the
compressed neural network input data is advisable.
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