
CAMES, 28(3): 243–261, 2021, doi: 10.24423/cames.345
Copyright © 2021 by Institute of Fundamental Technological Research
Polish Academy of Sciences

Guide to Domain Specific Language Graphical
Editor Prototyping

Anass RABII1)∗, Saliha ASSOUL2), Ounsa ROUDIÈS1)

1) Ecole Mohammadia d’Ingénieurs, Siweb, E3S, Mohammed V University in Rabat
Rabat, Morocco
∗Corresponding Author e-mail: anassrabii@gmail.com

2) Ecole Nationale Supérieure des Mines de Rabat,
Siweb, E3S, Mohammed V University in Rabat
Rabat, Morocco

Model-based systems engineering (MBSE) is a methodology that supports the use of
models to better analyze and understand complex systems and create quality and cost-
efficient products. The analysis is facilitated by platforms that support formal graphical
modeling and provide complementary modules for testing, validation, code or documen-
tation generation. Thus in specialized fields, researchers create domain-specific languages
(DSLs) for their niche purposes. In systems engineering, these DSLs can be created through
the extension of the standard modeling language SysML. However, these DSLs do not pos-
sess modelers unless they are renowned. Therefore, they cannot benefit from advances in
the MBSE tools. Our study aims to provide a graphical editor prototype for all DSLs
to allow access to the MBSE tools. Using the analytic hierarchy process (AHP) method
we establish that Eclipse Papyrus is the best plugin to use due to its extensibility, the
richness of the Eclipse modeling platform and ease of use. Next, we provide a step-by-
step guide to incorporate any profile in SysML Papyrus as an extension allowing to model
any DSL. This guide is illustrated by an example taken from the domain of urban planning.

Keywords: DSL, SysML Profile, AHP, Graphical Editor, Eclipse Papyrus, MBSE.

1. Introduction

Model-based engineering (MBE) is a formal approach centered on models
as a foundation of requirement specification, analysis, design, implementation
and verification of a specific ability and/or product all along its lifecycle [1].
MBSE reiterates the same philosophy as the one applied to systems engineering.
In addition, MBSE addresses system-specific aspects such as system architec-
ture, constraints, flow or requirement traceability [2]. In fact, its central con-
cept, modeling, is defined as simple graphical or mathematical representation of



244 A. Rabii et al.

a phenomenon or a system including its structure and relationships [3]. Models
are created with the goal of simplifying the understanding and study of com-
plex concepts. In turn, models simplify decision-making and analysis. In that
respect, MBSE seeks to formalize system design through the use of models to
increase quality and identify and treat risks that might arise during development
by detecting defects early. This results in better in-depth design using iterative
or parallel development cycles, and a better understanding of each component’s
structures, roles and relationships without increasing costs [4].

The formalism provided in the MBSE approach relies on standard languages
with well-defined graphical notations, syntax and semantics. Some of the promi-
nent modeling languages include UML [5] for software engineering, SysML [6] for
systems engineering, MCAD and ECAD for mechanical and electronic computer-
aided design [7] and other niche DSLs [3]. These languages have various graphical
editors such as the CAD series and Hopex [8], Enterprise Architect [9], Sirius [10]
and Eclipse Papyrus [11] for UML and SysML. The main benefit of these tools
is the ability to create models that comply with the syntax and semantics of the
language and the domain rules. The crucial functionality of graphical editors is
providing supportive features all along the engineering life cycle such as testing,
validation or artifact generation. Thus, creating DSLs to model concepts and
test them thereafter would shorten the experimentation and prototyping loop
used in iterative development cycles.

In fact, the UML standard [5] is a prime example in the MBE. UML was
designed to support creating, efficiently and effectively, software systems that
would have required exorbitant costs [12]. It provides a holistic set of concepts
in the form of diagrams that describe how software systems are structured and
how they behave. Thus, UML has revolutionized software engineering and has
enabled to create many previously impossible projects [13]. Essentially, UML is
extendable, allowing the creation of new modeling languages. It is possible to
add newer concepts to the UML meta-model through associations called “stereo-
types”. Thus a new Domain Specific Modeling Language (DSML) could be de-
fined through a set of stereotypes called a profile. This extension feature was
a catalyst of progress within MBSE. A notable UML extension is SysML [6],
which adapts UML to the systems engineering paradigm. SysML was created to
deal with the increase of system complexity and heterogeneous nature of system
components as well as to provide a core base of concepts to model all sub-fields of
systems engineering. In 2017, SysML was published by the International Organi-
zation for Standardization (ISO), making it a standard modeling language in its
own rights. As a result, it became a solid basis for creating systems engineering’s
new modeling languages.

Moreover, a modeling language’s maturity and popularity are also reflected
in its modeling tools. In fact, UML modeling platforms gained in functionalities



Guide to domain specific language graphical editor prototyping 245

such as constraint verification modules (object constraint language – OCL) [14],
documentation generators (JavaDoc, Sphinx) [15, 16], version control modules
(CVS, Git) [17, 18], modeling frameworks (GMF, EMF) [19], and code generators
of different languages (Acceleo) [20]. This further enriches users’ toolbox and
facilitates the creation of higher quality products in a shorter time. On the other
hand, SysML is relatively new compared to its predecessor. It possesses its own
graphical editors (Papyprus 4 SysML, Cameo Systems, IBM Rhapsody, Modelio
etc.) and benefits from the same frameworks and some but not all complementary
modules available for UML (EMF, GMF, OCL, Xtext, etc.) [21]. One of the
discrepancies is the creation of graphical editors for SysML-based DSLs. For
example, the Eclipse IDE provides the necessary structure in GMF and EMF
to describe how modeling languages are defined graphically and semantically.
Thus, plugins such as Sirius or Obeo have enabled the creation of graphical edi-
tors for UML profiles, given UML’s popularity. Although open source SysML
modelers are extendable and pave the way for adapting them for DSLs, still
technical knowledge is required when annotated Ecore meta-models are used in
the case of Eugenia [22]. Moreover, promising projects for automatic graphical
editor generation such as AMIGO [23] are discontinued. In the case of smaller-
scale projects, as in most DSLs, creating graphical editors or a prototype should
not be costly or time-consuming for the modeling language to develop.

This paper presents a guide to create an accessible modeler prototype for
SysML-based DSLs. This modeler prototype would also be applicable in the
case of alteration to the SysML profile or for single-time use. First, we present
the SysML language and its extension mechanism for DSL creation. Then, we
choose an adequate existing SysML modeler to extend using the analytic hi-
erarchy process (AHP) technique. AHP allows rigorous pairwise comparisons
between alternatives and criteria. Next, we detail the necessary steps required
to adapt the chosen modeler to any defined SysML-based DSL applied to the
urban planning domain. This field deals with the management of space to pro-
vide a good living to all citizens while reflecting their culture and adequately
using and preserving resources of the land [24]. However, the different nuances
of each aspect of the urban area such as ecological, economic, cultural, sustaina-
bility or functional considerations introduce complexity into the urban planning
process. These nuances translate into requirements that the urban planner must
satisfy, such as providing enough facilities and good mobility for citizens, impos-
ing building height limits to have enough sunlight, and using local and recyclable
resources. The challenge in the urban planning process is, beside respecting lo-
cally mandated regulation, to design in accordance with one or many theories,
visions, movements or styles. In fact, the urban planning field offers a variety
of approaches to deal with each nuance, such as Friedman’s spatial urbanism
for modular building [25], Petruccioli’s Islamic and Mediterranean influence on



246 A. Rabii et al.

urbanism [26] or Le Corbusier’s functional city in the Athens Charter [27] on
post-war rebuilding. Each urban planning theory proposes a different vision that
handles different concepts. According to Berardi [28], each study of the urban
fabric can lead to the discovery of previously unconsidered concepts that are
important to the urban space. Thus, the usage of a modeling tool, in which the
meta-model can continuously be altered, would benefit urban planning using
SysML as the basis for behavioral, structural and requirements modeling. Our
paper does not aim to provide a thorough or complete meta-model for urban
planning but to provide a platform where urban planners can model urban com-
position and behavior according to their vision and analyze their designs with
respect to their requirements.

The SysML fundamentals , including diagrams and profiling, are presented
in Sec. 2. Next, for the AHP method, the relevant criteria to select the adequate
platform for extension are presented in Sec. 3. Lastly, the steps of our guide,
illustrated with an example about urban planning modeling to showcase the
role of models in solving problems such as the impact of climate change or
overpopulation on urban area design, are detailed in Sec. 4.

2. SysML fundamentals

SysML is considered the standard modeling language in the systems engi-
neering paradigm [6]. This is in part due to the richness of its models allowing
formal representation of both system structure and system behavior, as shown
in Fig. 1. First, system composition can be defined through the block definition

Fig. 1. SysML diagrams.



Guide to domain specific language graphical editor prototyping 247

diagram, where a block is a generically defined system component. Blocks have
a similar semantic to that of a class and interact through the same associations
(composition, inheritance, etc.) but possess more compartments such as con-
straints and references. Each block can also be deconstructed and modeled by
nested blocks to express block composition and relationships between properties.
The nested block notation can also be used on its own in an internal block dia-
gram. For example, a car can be represented through interacting blocks such as
the engine, the wheels, the drive shaft, etc. However, breaking down the engine
and detailing its parts is done with an internal block diagram.

The package diagram remains unchanged from UML, allowing the modeling
of complex structures where a package can stand for the collection of design
elements it contains. On the other hand, the parametric diagram models the
principles and laws that bind block properties in the form of constrains such as
the laws of physics (torque, friction, etc.) or performance expectations (energy
consumption). Secondly, behavior diagrams model the dynamism of a system.
The use case diagram describes the system’s functionalities and the interac-
tions with the prescribed actors outside of the system. State machine diagrams
describe a structure’s change depending on a given event. It models the neces-
sary sequencing of conditions that must be met to reach the desired state. The
activity diagram represents flows of actions and operations. It has the ability
to describe actions and the interchanged information that occurs from step to
step. Using conditions and timers It can even represent the continuous flow of
physical elements using conditions and timers. Returning to the car example,
the activity diagram can model the steps starting from ignition until the car’s
movement while detailing the energy flow. The sequence diagram describes the
timing and nature of interactions between different system components. Lastly,
the requirement diagram is an entirely new addition to model non-functional re-
quirements, where functional requirements are modeled through use cases. The
need for requirement modeling in UML arose in practice, but only the require-
ment diagram implemented in SysML is considered a standard. Requirements
possess the same semantics as classes while they also possess inter-requirement
relationships such as duplication, derivation and composition. This diagram also
models what design elements aim to satisfy the requirements and test cases that
verify them.

As previously mentioned, SysML is a standardized UML extension. In fact,
UML 2.0 has expanded further outside its expected application field in software
engineering into fields such as business process modeling. By taking a closer
look on the systems engineering paradigm, it became clear that this field needs
a unified modeling language of its own, later expressed as a request for proposal
(RFP) called UML for systems engineering [29]. In order to create the first mod-
eling language suitable for SE, its concepts needed to be independent of specific



248 A. Rabii et al.

fields, reuse UML concepts and use the profile and extension mechanisms. These
extension mechanisms are contained in the profiles package allowing the UML
meta-model to be tailored to different circumstances and purposes. The profile
extension mechanism is consistent with the object management group’s (OMG)
meta-modeling architecture called meta-object-facility (MOF) [30] and guaran-
tees that all modeling languages resulting from the UML profiles are consistent
with this architecture as well. Profile diagrams provide the capability of adding
elements in the MOF layers, thus defining new models through stereotyping. The
definition of stereotypes adds semantics to an existing UML model element. This
newly defined element is linked to the meta-class of the original model element
using the extension association. For example, the new central concept within
SysML is the block. It is an extension of the model element class (Fig. 2). In
order to use these stereotypes, they should be grouped in a package called pro-
file and linked to a model. These new sets of stereotypes related to blocks are
what transforms the class diagram into the block definition diagram. As a result,
the extension mechanisms allow to create new tailored modeling languages that
reuse the existing UML and SysML concepts. The genericity of the base concepts
fully enables adaptation, further facilitating the design of niche higher quality
products for specific domains. For example, its semantics can be extended to
cover engine parts and characteristics instead of using a generic block.

Fig. 2. Block stereotype.

3. Graphical editor comparison

As of now, we have come across a large variety of solutions that support
model-based engineering. Yet only the prominent modeling languages have a di-
versity of choice between solutions, access to supporting tools and modules on
their platform and possess sufficient documentation for support. Our objective
is to guide the creation of a customizable prototype of a graphical editor that:

• adequately models SysML profiles with respect to the existing syntax and
semantics of the language,

• possesses a modular platform that is rich in complementary tools,



Guide to domain specific language graphical editor prototyping 249

• possesses a reasonable learning curve,
• provides an adequate documentation and support for users with limited

expertise.

3.1. Modeler selection criteria

Since the functionality of creating graphical editors for SysML profiles is not
provided, it has to be created as an extension of an existing SysML modeler.
To that end, we use the AHP [31] method to rigorously find an adequate choice
amongst different alternative modelers depending on a set of criteria. First, we
define the selection criteria; the choice of an appropriate modeling tool to extend
is made based on: extensibility, modularity, support and documentation
and learning curve. Our objective is to spread the use of models to all sys-
tems engineering subsets that are not necessarily related to software engineering.
Therefore, these criteria will help to evaluate the usability of the modeler.

3.1.1. Extensibility. In fact, we ascertain the different modeling alternatives
for the convenience of their extension mechanisms by judging the requirements
needed beforehand to create a working graphical editor. The appraisal reflects the
degree of effort and technical skillset required to extend the existing tools. This
differentiates tools that provide extension mechanisms from those that require
source code modification or even the need for independent third-party projects.

3.1.2. Modularity. We also evaluate the capacity of the modeling platforms
to append additional modules that support MBSE and the amount of exist-
ing complementary tools and plugins. The appraisal reflects the number of ex-
ternal functionalities from which the modeling tool can benefit. An open and
modular platform would allow for the creation and addition of novel and diverse
services. This ensures that the prototype creates benefits fully from the progress
made within the MBSE paradigm.

3.1.3. The support and documentation. This criterion is crucial for the suc-
cess of the prototyping guide. In fact, the lack of expertise in plugin development
and software engineering, in general, might hinder the usage of models by more
fringe subcategories within systems engineering. The appraisal reflects the ma-
turity of the modeling tool and its usage by the community.

3.1.4. Learning curve. We believe the usability of the modeler also rests on
the skills required to pilot it. In fact, the definition of the profile to create a new
modeling language requires an understanding of what the SysML diagrams pro-
vide. We do not anticipate that the modeler requires complex computer science



250 A. Rabii et al.

skills such as coding. A modeler for any language can be created from scratch or
by adapting the source code of an open-source modeler. Therefore, this appraisal
reflects the amount of skills required to make and use a functional modeler to
be adapted.

3.2. Preliminary step: modeler selection

First, we must decide which modelers will be taken into consideration for an
extension. We opted for the open-source and free modeling tools such as Eclipse
Sirius, Eclipse Papyrus and Modelio, excluding prominent commercial tools such
as Magic Draw [32], Enterprise Architect and IBM Rhapsody [33]. This first
choice is motivated by the availability of these tools for all users which also
reflects extensibility. Our preliminary selection, Eclipse Sirius, is an open-source
Eclipse project designed to create graphical modelers for generic use. Leveraging
EMF and GMF, the created modelers can define models, trees or graphs from
declarative configuration projects. These modelers can then be easily deployed
as Eclipse plugins for reuse.

On the other hand, Modelio is a modeling environment that provides a plat-
form for a wide range of models (UML, SysML, and BPMN). It also features
a plethora of existing modules that support model transformations (into Java or
WSDL code) or support architectures and frameworks (SOA, TOGAF). More-
over, users can also define their own model extensions using Java API. The
last choice is Eclipse Papyrus, an environment dedicated to UML and SysML
modeling. It acts as the interface between diagram editors and model-driven
engineering tools as well as support for profiling.

3.3. The analytical hierarchy process

The AHP method relies on pairwise comparisons between criteria, and next
between each alternative relative to those criteria. These comparisons are de-
scribed through judgment matrices expressed in (1):

A = (aij) =



a11 · · · a1j · · · a1n

... · · ·
... · · ·

...

ai1
... aij

... ain

... · · ·
... · · ·

...

an1 · · · anj · · · ann


, (1)



Guide to domain specific language graphical editor prototyping 251

where

aij > 0; i, j = 1, 2, ..., n,

aii = 1; i = 1, 2, ..., n,

aij = 1/aij (i 6= j); i, j = 1, 2, ..., n.

Each entry in the matrix represents the priority score the element i has over
the element j, taking values from 1 to 9 from the Saaty point scale. Each matrix
yields the relative weights of decision elements by calculating the eigenvalue and
eigenvector. Moreover, every matrix has a consistency ratio (CR) that should be
under 10% that is calculated from the eigenvalue and the matrix size.

Step 1: Identifying the weights of each criterion

The first matrix, depicted in Table 1, represents the results of criteria pairwise
comparisons. The last column contains the weights of each criterion. For example,
the modularity criterion is much more valuable than support & documentation,
which is highlighted by the value (7). This results in a bigger gap between the
weight given to modularity compared to support (0.569� 0.061), which means
it will be more influential in the choices.

Table 1. Pairwise criteria modeler comparison matrix.

Extensibility Modularity Support
& documentation

Learning
curve

Weights

Extensibility 1 1/3 5 3 0.264
Modularity 3 1 7 5 0.569

Support
& documentation

1/5 1/7 1 1/2 0.061

Learning curve 1/3 1/5 2 1 0.106
Consistency ratio = 2.5%

Step 2: Tool pairwise comparison for each criterion

Table 2 shows the modelers’ ranking regarding extensibility. We observe that
Eclipse Papyrus is clearly distinguished with its 0.731 priority. This is because
has the most practical way of creating these extension through the functionalities
of adding profiles to the diagrams on hand as well as configuring the palette to
allow the addition of the stereotypes for common usage. On the other hand, the
creation of the entire configuration file for SysML and then adding the DSL’s
stereotype is feasible but impractical because of the sheer size of the SysML



252 A. Rabii et al.

Table 2. Pairwise extensibility modeler comparison matrix.

Eclipse Papyrus Eclipse Sirius Modelio Priority
Eclipse Papyrus 1 5 7 0.731
Eclipse Sirius 1/5 1 3 0.188

Modelio 1/7 1/3 1 0.081
Consistency ratio = 6.8%

profile. Lastly, Modelio remains the most constraining choice of the three in
terms of requirements to add modules.

As shown in Table 3, we observe that Eclipse Papyrus and Eclipse Sirius
are almost similar in terms of modularity since they are on the same platform.
A slight edge was given to Eclipse Papyrus since it interfaces with non-GMF-
based tools. Modelio, on the other hand, is quite limited by its own platform.

Table 3. Pairwise modularity modeler comparison matrix.

Eclipse Papyrus Eclipse Sirius Modelio Priority
Eclipse Papyrus 1 2 6 0.577
Eclipse Sirius 1/2 1 5 0.342

Modelio 1/6 1/5 1 0.081
Consistency ratio = 3%

In terms of a learning curve, we find graphical modeling of the profile to
be easier than creating a configuration file that represents SysML and the de-
sired profile, or completely programming the desired module. Thus, as shown in
Table 4, the highest priority is given to Eclipse Papyrus.

Table 4. Pairwise learning curve modeler comparison matrix.

Eclipse Papyrus Eclipse Sirius Modelio Priority
Eclipse Papyrus 1 4 6 0.691
Eclipse Sirius 1/4 1 3 0.218

Modelio 1/6 1/3 1 0.091
Consistency ratio = 5.6%

Lastly, the comparison shown in Table 5, between available documentation
and online support shows that both Eclipse plugins are heavily used and that
help via online forums is abundant, coming from users and developers. In com-
parison, the creation of modules in Modelio is only described by the “Hello World”
tutorial.

The final result of this comparison yields that Eclipse Papyrus is inherently
the adequate choice depending on our criteria. The following section will detail



Guide to domain specific language graphical editor prototyping 253

Table 5. Pairwise support and documentation modeler comparison matrix.

Eclipse Papyrus Eclipse Sirius Modelio Priority
Eclipse Papyrus 1 1 4 0.444
Eclipse Sirius 1 1 4 0.444

Modelio 1/4 1/4 1 0.111
Consistency ratio = 0%

our guide through a practical example showing how a prototype for a SysML
profile modeler can be achieved.

4. DSL prototyping guide

In order to have access to the extension feature through the use of graphical
models, we use Eclipse Mars [34] for modeling as it is the last version with the
“configure palette” option. The aim is to create a graphical editor to model
the diagrams of DSLs. In our case, the domain is urban planning. The targeted
diagrams are the requirements’ diagram and the block diagram. So instead of
using regular blocks, we introduce concepts such as housing, equipment and
roadways.

4.1. Phase one: environment and profile setup

First, to set up the environment, download Papyrus SysML 1.6 from the
Eclipse Market.

Fig. 3. Papyrus SysML link.

Next, create a Papyrus modeling project to create the profile diagram that
defines DSL. The palette has the option “Import Metaclass” that opens a window
containing all the UML meta-model elements. In order to add an element from
the SysML meta-model, the user can right-click the root element in the model
explorer and “Import the registered profile”, as shown in Fig. 4.

The SysML stereotype needed to be extended can be dragged and dropped
from the model explorer, for example, the stereotype Requirement. For this



254 A. Rabii et al.

Fig. 4. Registered profiles interface.

guide, we define a simple profile (Figs 5 and 6) to represent some concepts used in
the field of urban planning. This profile diagram is a simplified representation of
urban area composition used solely to highlight the capabilities of the language
to represent both abstract and concrete concepts. On the one hand, this profile
models the basic components of an area that make up a country in terms of build-
ings (housing, hospitals, theatres, transportation, solar panels, etc.), void (parks,
places, etc.) as well as sanitation networks and roadways. For each territory, we
can capture information such as population, elevation and location in the form
of properties added to an area to evaluate the possible developments paths.

Fig. 5. Urban planning composition profile diagram.



Guide to domain specific language graphical editor prototyping 255

Fig. 6. Urban planning requirements profile diagram.

Similarly, each component of the area can be supplemented with properties
depending on the needs. On the other hand, each area possesses its own cul-
tural context defined by culture and customs that dictate the identity of the
area, which urban planners must preserve in their plan. These factors incorpo-
rate how the population used the space over the years, therefore creating an
identity that must be considered in any alteration in the urban space. The envi-
ronmental context, determined by climate, geography (tropical weather, seismic
activity), dictates ecological and sustainability requirements for the area. For
our example, this is reflected as preservation and reclamation of land because
it is scarce. Lastly, the example includes legal requirements, found in the local
layout plan, that dictate proper sanitation, sufficient facilities for citizens and
height limitations. In Fig. 5, all of the modeled concepts are an extension of the
basic composition model element “Block”. Once the composition concepts were
defined, we added the “Requirement” model elements they must satisfy (Fig. 6).
This profile diagram is only an example and should be supplemented with more
composition-related model elements or other profiles for behavioral diagrams to
encompass the urban planning process’s needs fully.

Next, the Papyrus project that contains the profile diagram should be con-
verted into a plugin to become a registered profile. This can be done by right-
clicking the profile project in the project explorer view, choosing “configure” in
the drop-down menu, and then converting to plugin project. Next, still in the
project explorer view, open the “MANIFEST.MF” in the “META-INF” file of the
project in order to configure the profile as a recognizable extension point to any
other project. This can be done through the Extensions Points view by clicking
the “add” button and inputting “org.eclipse.papyrus.uml.extensionpoints.UML.
Profile” in the Extension Point ID and Name text zones (Fig. 7a). Then, in the
Extension view, we add the extension point created to create the new exten-
sion (Fig. 7b), either to be added from the workspace (Fig. 8) or the registered
profiles since it was transformed into an extension.



256 A. Rabii et al.

a) b)

Fig. 7. a) Manifest.mf File Extension Points view, b) add an extension via the extension point.

Fig. 8. Applying the profile to the requirement diagram.



Guide to domain specific language graphical editor prototyping 257

4.2. Phase two: modeler configuration

Now, the new modeling project using the SysML profile can be created. In the
project creation wizard, choose to create a new SysML diagram and name the
new project. During the wizard’s next step , add the defined profile and apply
it to the requirement diagram. This is because the profile we created extends
the semantics of the block diagram. The profile can either be added from the
workspace (Fig. 8) or the registered profiles since it was transformed into an
extension.

As the profile is properly added to the project, the palette needs to be con-
figured to show the new stereotypes. First, right-click anywhere in the palette
and choose “Customize” in the drop-down menu. Then, click the “Plus” button
to start the wizard for the creation of a new palette (Fig. 9a). Under “Available
Tools”, the user can find the profile they created and add the stereotypes to the
“Palette Preview”. Each stereotype selected has a set of information to be confi-
gured, such as name, description and an icon for its display in the palette. Under
“Aspect Actions”, the appearance and attributes of the different stereotypes can
be customized as well. The resulting palette is shown in (Fig. 9b).

a) b)

Fig. 9. a) Palette configuration interface, b) resulting palette.

The example chosen to highlight modeling urban planning components is
the country of the Netherlands. One-third of the country is below sea level hav-



258 A. Rabii et al.

ing to deal constantly with flooding from the sea. With the advent of climate
change, we stand to learn how this country deals with rising sea levels while
also reclaiming drowned land for agriculture. In fact, 17% of the country was
reclaimed from the sea [35]. This context and implemented solutions can be
modeled, as shown in Fig. 10. First, the requirements are defined and decom-
posed into sub-requirements that can be satisfied with a model element. Then,
we add the solutions that satisfy those requirements. The Beemster Polder [36]
is a land reclaimed by building a network of windmill-powered waterwheels to
extract water from the land to canals and evacuate it. Then, moats and dikes
were added to secure the plots of land reclaimed from future flooding threats.
Lastly, bridges and roads were built to connect all of these sections. Additional
information can be added to each element in the model to allow testing. For
example, each facility’s functional capacities and limitations can be used in con-
trast with each region’s geological and climate characteristics, either for testing
or to guide future design. Moreover, further requirements can be added to abide
by the regional or national urban plan in the future.

Fig. 10. Instances of the urban planning stereotypes.

5. Conclusion

In this article, we showcased the importance of graphical editors for DSLs in
the improvement of designs in systems engineering. In fact, the modus operandi
in MBSE is to address complexity through formal modeling languages. This
results in a design that abides by the defined restrictions such as engine per-
formance requirements or urban architecture plans. Moreover, limitations and
constraints of any design element can be modeled through the parametric or
requirement diagrams to make sure said design is kept in check. This results
in higher quality designs without increased costs and facilitates risk and defect



Guide to domain specific language graphical editor prototyping 259

analysis. This has been proven through the success of modeling languages such
as UML and SysML. Since these two standards support the creation of new
DSLs through extension, it allows niche subcategories in systems engineering to
create their customized modeling languages. However, these profiles do not have
access to the rich platforms and tools that support MBSE since they do not
have dedicated modelers. This paper enables easy access to graphical editors for
SysML-based DSLs by adapting an existing modeler to the defined profiles. We
also illustrate the necessary steps to create the modeler.

Firstly, we presented an overview of the SysML language and the diagrams it
proposes. Such an approach can model behavior, composition and their require-
ments. Thus, we can extend these diagrams to create a new language that also
models the same aspects but uses the domain’s concepts. Secondly, we showed
how this new language could obtain its own modeling tool. There are many ways
of creating this modeler, but we opted for extending an existing rich modeling
platform for ease of use and benefit from its functionalities. We determined that
the adequate environment must be extensible to allow the addition of the new
stereotypes. The environment must also be modular to provide access to existing
plugins and tools and facilitate the addition of new ones. It must also provide
the necessary support for non-experienced users and have difficult programming
hurdles. Using the formal AHP method, we identified that Eclipse Papyrus is
the best choice on all fronts. This procedure can be redone for different mod-
eling tools in the future using different criteria. Then, we presented the guide
that allows the adjustment of Eclipse Papyrus into a graphical modeler for any
SysML profile. However, this guide only provides a prototype for a modeler for
single-use purposes or experimentation. We provided a guide for the adaptation
of the modeler illustrated by an urban planning example. Areas of improvement
include the creation of a plugin for DSL modeling based on graphical SysML pro-
files hosted on a newer and more stable IDE. This would allow the development
of more DSLs and amplify progress within MBSE.

References

1. NDIA Systems Engineering Division, Final Report of the Model Based Engineering (MBE)
Subcommittee, February, pp. 60, 2011, http://www.ndia.org/-/media/sites/ndia/meetings-
and-events/divisions/systems-engineering/modeling-and-simulation/reports/model-based-
engineering.ashx.

2. P. Micouin, Model-Based Systems Engineering, John Wiley & Sons, Inc., Hoboken, NJ,
USA, 2014.

3. M. Fowler, R. Parsons, Domain Specific Languages, Addison-Wesley Professional, 2010.

4. N. Shevchenko, An Introduction to Model-Based Systems Engineering (MBSE), 2021,
https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/.

http://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/modeling-and-simulation/reports/model-based-engineering.ashx
http://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/modeling-and-simulation/reports/model-based-engineering.ashx
http://www.ndia.org/-/media/sites/ndia/meetings-and-events/divisions/systems-engineering/modeling-and-simulation/reports/model-based-engineering.ashx
https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/


260 A. Rabii et al.

5. ISO, Unified modeling language specification version 1.4.2, ISO/IEC 19501:2005(E),
vol. 4, no. 1, pp. 25–59, 2005, https://www.iso.org/standard/32620.html.

6. O. Casse, SysML Action with Cameo System Modeler, Chapter 1: SysML: Object Manage-
ment Group (OMG) Systems Modeling Language, pp. 1–63, ISTE Press Ltd and Elsevier
Ltd, 2017, doi: 10.1016/B978-1-78548-171-0.50001-3.

7. Autodesk, ECAD and MCAD software, https://www.autodesk.com/solutions/ecad-and-
mcad-software.

8. MEGA, Hopex Platform, https://www.mega.com/en/hopex-platform.

9. SparxSystems, Full Lifecycle Modeling for business, software and systems, https://sparx
systems.com/products/ea/index.html.

10. Eclipse, Sirius, https://www.eclipse.org/sirius/.

11. Eclipse, Papyrus, https://www.eclipse.org/papyrus/.

12. O. Badreddin, K. Rahad, The impact of design and UML dodeling on codebase quality and
sustainability, [in:] CASCON ’18: Proceedings of the 28th Annual International Conference
on Computer Science and Software Engineering, October 2018, pp. 236–244, 2018.

13. A. Nugroho, M.R.V. Chaudron, Evaluating the impact of UML modeling on software
quality: an industrial case study, [in:] A. Schürr, B. Selic [Eds], Model Driven Engineering
Languages and Systems. MODELS 2009. Lecture Notes in Computer Science, vol 5795,
pp. 181–195, Springer, Berlin, Heidelberg, 2009, doi: 10.1007/978-3-642-04425-0_14.

14. Object Management Group, D. Number, M.C. Files, Object Constraint Language, Febru-
ary, 2014, http://www.omg.org/spec/OCL/2.4.

15. Sun Microsystems, JavaDoc – The Java API documentation Generator, 2011,
https://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/javadoc.html.

16. Sphinx Python documentation generator overview, https://www.sphinx-doc.org/en/master/.

17. D.R. Price, Concurrent Versions System – Overview, 2012, https://savannah.nongnu.org/
projects/cvs.

18. L. Torvalds, Git – About, https://git-scm.com/about.

19. Eclipse Foundation, Graphical Modeling Framework/Tutorial/Part 1, http://wiki.eclipse.org/
Graphical_Modeling_Framework/Tutorial/Part_1.

20. Eclipse, Acceleo – Home, https://www.eclipse.org/acceleo/.

21. Eclipse, Xtext – Language Engineering Made Easy, https://www.eclipse.org/Xtext/.

22. D.S. Kolovos, A. Garcıa-Domınguez, L.M. Rose, R.F. Paige, Eugenia: towards disciplined
and automated development of GMF-based graphical model editors, Software & Systems
Modeling, 16: 229–255, 2015, doi: 10.1007/s10270-015-0455-3.

23. A. Zolotas, R. Wei, S. Gerasimou, H. Hoyos Rodriguez, D.S. Kolovos, R.F. Paige, Towards
automatic generation of UML profile graphical editors for Papyrus, [in:] A. Pierantonio,
S. Trujillo [Eds], Modelling Foundations and Applications. ECMFA 2018, Lecture Notes in
Computer Science, vol. 10890, Springer, Cham, 2018, doi: 10.1007/978-3-319-92997-2_2.

24. N. Taylor, Urban Planning Theory Since 1945, Sage Publications, London, Thousand
Oaks, New Delhi, 1998.

https://www.iso.org/standard/32620.html
https://doi.org/10.1016/B978-1-78548-171-0.50001-3
https://www.autodesk.com/solutions/ecad-and-mcad-software
https://www.autodesk.com/solutions/ecad-and-mcad-software
https://www.mega.com/en/hopex-platform
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html
https://www.eclipse.org/sirius/
https://www.eclipse.org/papyrus/
https://doi.org/10.1007/978-3-642-04425-0_14
http://www.omg.org/spec/OCL/2.4
https://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/javadoc.html
https://www.sphinx-doc.org/en/master/
https://savannah.nongnu.org/projects/cvs
https://savannah.nongnu.org/projects/cvs
https://git-scm.com/about
http://wiki.eclipse.org/Graphical_Modeling_ Framework/Tutorial/Part_1
http://wiki.eclipse.org/Graphical_Modeling_ Framework/Tutorial/Part_1
https://www.eclipse.org/acceleo/
https://www.eclipse.org/Xtext/
https:/doi.org/10.1007/s10270-015-0455-3
https://doi.org/10.1007/978-3-319-92997-2_2


Guide to domain specific language graphical editor prototyping 261

25. C. Loisel, F. Le Roux, Yona Friedman: Architecture mobile =Architecture vivante, Press
Release, Cité de l’Architecture & du Patrimoine, Paris, France, 11 May 2016.

26. A. Petruccioli, After Amnesia: Learning from the Islamic Mediterranean Urban Fabric,
ICAR, University of Virginia, 2007.

27. Le Corbusier, The Athens Charter, Grossman Publishers, New York, 1973.

28. R. Berardi, The spatial organization of Tunis Medina and other Arab-Muslim cities in
North Africa and the Near East, [in:] The City in the Islamic World (2 vols.), pp. 269–
293, 2008, doi: 10.1163/ej.9789004162402.i-1500.70.

29. Object Management Group, UML for Systems Engineering Request for Proposal, pp. 49–
68, https://sysml.org/.res/docs/refs/UML-for-SE-RFP.pdf.

30. Object Management Group, OMGMeta Object Facility (MOF) Core Specification, pp. 76,
2003, https://www.omg.org/spec/MOF/2.5.1/PDF.

31. T. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation,
McGraw-Hill, 1980.

32. Catia No Magic – Dassault Systèmes, MagicDraw, https://www.nomagic.com/products/
magicdraw.

33. IBM, IBM Engineering Systems Design Rhapsody, https://www.ibm.com/products/
systems-design-rhapsody.

34. Eclipse, Eclipse IDEMars 2 Packages, https://www.eclipse.org/downloads/packages/release/
mars/2/eclipse-modeling-tools.

35. E.F.J. De Mulder, B.C. De Pater, J.C. Droogleever Fortuijn, The Netherlands and the
Dutch: A Physical and Human Geography, Springer International Publishing, 2018.

36. Droogmakerij de Beemster (Beemster Polder), UNESCO World Heritage Center,
https://whc.unesco.org/en/list/899/.

Received May 29, 2021; revised version December 19, 2021.

https://doi.org/10.1163/ej.9789004162402.i-1500.70
https://sysml.org/.res/docs/refs/UML-for-SE-RFP.pdf
https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.nomagic.com/products/magicdraw
https://www.nomagic.com/products/magicdraw
https://www.ibm.com/products/systems-design-rhapsody
https://www.ibm.com/products/systems-design-rhapsody
https://www.eclipse.org/downloads/packages/release/mars/2/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/mars/2/eclipse-modeling-tools
https://whc.unesco.org/en/list/899/

