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A reference domain is chosen to formulate numerical model using the discontinuous Galerkin with finite
difference (DGFD) method. The differential problem, which is defined for the real domain, is transformed
in a weak form to the reference domain. The shape of the real domain results from a considered problem
which can be complex. On the other hand, a reference domain can be chosen to be, for example, cube or
square, which is convenient for meshing and calculations. Transformation from the reference domain into
the real one has to be defined. In this paper, the algorithm for such a transformation is proposed, which
is based on second-order differential equations. The paper presents a series of benchmark examples that
show both the correctness and flexibility of the proposed algorithms. In the majority of the examples,
the reference domain is square when the real domains are, for example, quarter of annulus, circle or full
annulus.
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1. INTRODUCTION

This paper concerns the discontinuous Galerkin (DG) method in which all the calculations are
performed not on a problem domain, but a reference domain. It means that in the approach
presented in this work two domains are considered: the real domain in which the problem is defined
and the reference domain in which the discretization and DG method are carried out. The real
domain V comes from the problem definition and very often its shape is quite complicated and
thus problematic to discretize and to obtain good approximate solution. In standard approach, the
finite element (FE) mesh is constructed on the real domain. In that case, with the real domain
having curved boundaries, the FE mesh has to adjusted to the boundary so that the domain
geometry is represented by the mesh accurate as possible. The strict domain reconstructing using
an FE mesh is not always possible even when high-order finite elements are used. In such cases,
the domain is only approximated by the mesh.
In the standard finite element (FE) or standard DG methods, the considered domain is dis-

cretized by finite elements. Integrations over each finite element are calculated for the reference
finite element and the results are transformed back to the real finite element. In consequence, the
algebraic system of equations is defined on the mesh constructed for the real domain. It is important
for the mesh that each element cell is well defined, i.e., a cell is not elongated, and it does not have
very acute or too obtuse angles. In some situations, it is hard to meet these requirements due to
a complex domain shape or in the case of analysis of large deformations due to the mesh being de-
formed within the domain. Mesh distortions can be handled by the arbitrary Lagrangian-Eulerian
(ALE) descriptions [5–7, 9, 20]. However, the ALE analysis produces some complications since the
domain and the mesh deformations are analyzed separately.
In the proposed approach the reference domain is introduced on which all the calculations are

performed. The shape of the reference domain is at user, choice, and usually it has nothing to
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do with the real domain. The shape of the reference domain should be as simple as possible to
ensure easy mesh generation. For example, in case of three-dimensional problem the reference
domain can be cubic or parallelepiped. In two-dimensional case, the reference domain should be
square or rectangular. The results of calculations are obtained for the reference domain and the
transformation to the real domain is therefore necessary.

In this paper, it is proposed how to generate a transformation from a reference domain to a real
domain. The method for generating this transformation is based on a set of second-order partial
differential equations defined on the reference domain with Dirichlet boundary conditions on the
outer boundary. In this approach, the boundary conditions come from the position of points that
belong to the outer boundary in the real domain. Then, the differential equations are transformed
into weak forms and solved using a set of basis functions. The basis functions can be, for example,
high-degree polynomials or other functions if necessary. For instance, the trigonometrical basis
functions are used in some examples presented in this paper. The presented equations are formulated
for three-dimensional domains. However, the examples in this paper refer to two-dimensional cases.
In this work, among others things it is shown how to transform a square domain into circle, quarter
of annulus or L-shaped domains. In some cases, the choice of reference domain has to take into
account the shape of the real domain. For example, the square reference domain with a square hole
inside is transformed into a circular annulus.
The discontinuous Galerkin (DG) method is chosen as a computational method to find approx-

imate solution in the reference domain. However, other methods can be used, such as the finite
element method or one of the meshless methods. For the reference domain, the polygonal mesh is
used, and for such a mesh the DG method, in which a high-ordered approximation can be applied,
is appropriate. The DG method was developed in the early 1970s [18] and since then it has been
constantly refined/evolving, see, e.g., [2, 4, 8, 19]. The type of DG method called the DG finite
difference (DGFD) method presented in [11] is applied in this paper. In the examples, the polygonal
finite element meshes are used [11]. For the sake of clarity, the scalar elliptic problem is considered
in order to present the approach. However, it can be directly extended to other kinds of problems.
A typical example of the scalar elliptic problem is a problem involving heat transfer Fourier’s law.
The proposed approach is quite similar to analysis involving large deformations [13–15, 17, 20].

However, in the presented method the shape of the reference domain is at user’s choice. The
DGFD method requires the finite difference (FD) rules for compatibility conditions between the
neighboring elements and to satisfy the Dirichlet boundary conditions. A special attention has to
be paid to the FD rules on the reference domain since the transformation from the real into the
reference domain has to be taken into account. A detailed description of the algorithm is described
in the subsequent sections.
On the other hand, some similarities with the isogeometric analysis (IGA) can be noticed.

In the IGA, the shape functions are constructed on the basis of NURBS and a set of control
points. In effect, almost the exact geometry representation can be obtained [1, 3, 10]. In this work,
the DGFD method also deals with exact geometry representation. However, in contrary to the
IGA, no complicated shape functions or control points are needed. The geometry representation is
constructed by using a set of basis functions which can consist of high-degree polynomials or some
special functions.
The methodology presented in this work can be summarized as follows: i) the elliptic problem is

defined on the real domain, ii) the shape of the reference domain is chosen, iii) the transformation
from the reference domain into real one is generated, iv) the polygonal finite element mesh is
generated on the reference domain, v) the approximate solution on the reference domain is obtained
using the DGFD method, vi) the approximate solution is transformed into the real domain.

In section, the DGFD method is derived on the reference domain. Subsequently, in Sec. 3 the
approximation technique is described. Section 4 presents the details connected with transformation
from the reference into the real domain. The DGFD method used on the reference domain is
illustrated with a series of examples which are discussed in Sec. 5. Finally, in last, Sec. 6, some
conclusions are presented.
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2. DGFD METHOD ON REFERENCE DOMAIN

The domain V with outer boundary S is considered. For the sake of clarity, the domain is referred
to, in this paper, as the real domain. The following, boundary problem that can be understood as
a conductivity heat transport problem is formulated for this domain:

divq − r = 0, on V,

q = −λ∇Θ, on V,

Θ = Θ̂, on SΘ,

q ⋅ n = ĥ, on Sq,

(1)

where Θ is the temperature, q is the heat flux vector, r the heat source density, λ is the heat
conductivity parameter for a thermally isotropic material, Θ̂ and ĥ are prescribed values of tem-
perature and heat flux, respectively, SΘ is the part of S where the temperature Θ̂ is prescribed, Sq
is the part of S where the heat flux ĥ is prescribed, and n is the unit vector normal to the outer
boundary. The heat flux vector is related to the temperature field by using Fourier’s law included
in (1)2.
The formulation of the DGFD method starts with the weak form of the analyzed problem (1),

with the test function v

∫
V

vdivqdV −∫
V

vr dV = 0, ∀v. (2)

The considered problem is going to be solved on finite element mesh, in which the approximations
on finite elements are not continuous when going from one element to another. Thus, the mesh
skeleton Ss need to be distinguished in the mesh that is defined as the inter-element border. In
consequence, the approximation field is not continuous on Ss. The discontinuity of mesh skeleton
needs to be taken into account in the subsequent analysis. When integration by parts is performed
on the first component from Eq. (2), it results in

∫
Sq

vq ⋅ ndS + ∫
SΘ

vq ⋅ ndS − ∫
V

∇v ⋅ qdV + ∫
Ss

[[vq]] ⋅ ndS −∫
V

vr dV = 0, (3)

in which the fourth integral appears due to the discontinuity on Ss.
The definitions of the jump and mid-value operators [[●]], ⟨●⟩ on Ss are defined in this work as

follows:

[[f]] = lim
ǫ→0
[[f]]ǫ, ⟨f⟩ (x) = lim

ǫ→0
⟨f⟩ǫ , (4)

where the jump and mean values at distance ǫ are defined as follows:

[[f]]ǫ = f(x + ǫn) − f(x − ǫn), ⟨f⟩ǫ = 0.5 (f(x + ǫn) + f(x − ǫn)). (5)

It is a well-known property that a jump of two functions’ superposition can be expressed as
follows:

[[fg]] = [[f]] ⟨g⟩ + ⟨f⟩ [[g]]. (6)

The domain V represents the real configuration domain described in global coordinates x. It may
happen that the domain V has a quite complicated shape so that the finite element discretization
can be quite complicated and finite element mesh can not represent its geometry exactly. It is
possible to ’shift’ the calculation to the other, so-called, reference domain Ω whose shape can be,
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for example, cubic (in 3D) or square (in 2D). In the Ω domain, the discretization and further
calculations can be performed in a quite easy way. The results of these calculation can be then
transformed back to the V domain. In the reference domain, the other coordinate system ξ is used.
The transformation between these two coordinate systems can be derived, i.e., x = x(ξ) and the
reverse is ξ = ξ(x), see Fig. 1. The coordinates’ vectors x and ξ are defined in three-dimensional
spaces

x =
⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
, ξ =

⎡⎢⎢⎢⎢⎢⎣
ξ

η

θ

⎤⎥⎥⎥⎥⎥⎦
. (7)

Fig. 1. Transformation from the reference domain Ω to the real domain V .

The infinitely small increments are transformed between the domains by the so-called transfor-
mation tensors F and G

dx = Fdξ, dξ =Gdx, (8)

where

F = ∂x
∂ξ
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G = ∂ξ
∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

The determinants of these tensors are called the Jacobians of the transformations

JF = det(F), JG = det(G). (10)

It can be easily noticed that

F−1 =G, 1

JF
= JG. (11)

The transformation tensors can be used to transform gradients between these two coordinates.
Let us assume that there is a function a defined for V and the adequate function for Ω is A so that

a(x) = a (x(ξ)) = A (ξ). (12)
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In this paper of the convention is adapted from the analysis of large deformations in which the
functions in the real domain are denoted by small letters and the corresponding functions in the
reference domain are written in capital letters.
The relationships between gradients of a and A in x and ξ coordinates, respectively, are as

follows:

∇xa (x(ξ)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂a

∂x

∂a

∂y

∂a

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂a

∂ξ

∂ξ

∂x
+
∂a
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+
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∂ξ
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∂θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= GT∇ξa (x(ξ)) = GT∇ξA (ξ), (13)

where ∇x and ∇ξ are the gradient operators in the x and ξ coordinates, respectively.
Five integrals in Eq. (3) are written in the real configuration V . However, they can be rewritten

in the reference configuration Ω, which is presented below successively for each of the integrals.
The fifth integral in Eq. (3) is over the whole real domain and its transformation to the reference

domain is direct since there are no differential operators

I5 = ∫
V

vr dV = ∫
V

v(x)r(x)dV = ∫
Ω

v (x(ξ)) r (x(ξ))JF (ξ)dΩ
= ∫

Ω

V (ξ)R (ξ)JF (ξ)dΩ = ∫
Ω

V RJFdΩ. (14)

The third integral is also over V but its transformation to the reference domain is more com-
plicated due to gradients in the integrand. In this case, the relationship from Eq. (13) has to be
taken into account

I3 = ∫
V

∇v ⋅ qdV = ∫
V

(∇v)T qdV = ∫
V

(∇xv(x))T q(x)dV
= ∫

Ω

(∇xv (x(ξ)))T q (x(ξ))JF (ξ) dΩ = ∫
Ω

(∇ξV )TGqJF dΩ = ∫
Ω

(∇ξV )TQdΩ, (15)
where Q = JFGq is the heat flux vector in the reference domain. The heat flux on the V domain is
related to temperature gradient by the Fourier’s law, i.e., (1)2. In the reference domain, Fourier’s
law has the following form:

Q = JFGq = JFG (−λ∇xΘ) = −λJFGGT∇ξΘ = −Λ∇ξΘ, (16)

where Λ = λJFGGT is the conductivity matrix in the reference domain. Now, the integral I3
holds as

I3 = −∫
Ω

(∇ξV )TΛ∇ξΘdΩ. (17)
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The first integral I1 in Eq. (3) is over Sq where the outer heat flux ĥ is prescribed. The integral
is over a surface thus the transformation to the reference configuration requires a transformation
Jacobian based on the Nanson’s formula [16], which describes the relationship of infinitesimally
small areas in the real and reference configurations

Jn
F (n) = JF ∥GTn∥ = dSdΓ . (18)

The transformation of I1 from real to reference configuration is then as follows:

I1 = ∫
Sq

vq ⋅ ndS = ∫
Sq

v ĥdS = ∫
Sq

v(x)ĥ(x)dS = ∫
Γq

v (x(ξ)) ĥ (x(ξ))Jn
F (n)dΓ

= ∫
Γq

V (ξ) Ĥ (ξ)Jn
F (n)dΓ = ∫

Γq

V ĤJn
F (n)dΓ. (19)

The second integral I2 in Eq. (3) is calculated over the part of the outer surface where the
Dirichlet conditions are defined. If the standard shape functions were used the Dirichlet conditions
could be applied directly to the degrees of freedom on the nodes belonging to the boundary. However,
in this work the DGFD method is used, in which there are no nodes or shape functions. In the DGFD
method, essential boundary conditions are defined with the help of a fourth-degree finite difference
rule. The Dirichlet boundary conditions are applied directly to the reference configuration. That is
why, in the reference configuration, the integral I2 does not have a Jacobian transformation. After
these clarifications, the integral can be expressed as

I2 = ∫
SΘ

vq ⋅ ndS = ∫
SΘ

vhdS = ∫
ΓΘ

V H dΓ. (20)

The heat flux H on ΓΘ is equivalent to the heat flux vector in the reference domain Q, defined
in Eq. (16), projected normal to the boundary in the reference domain, i.e.,

H =Q ⋅N = −Λ∇ξΘ ⋅N = −NTΛ∇ξΘ. (21)

Every vector in the reference coordinates ξ can be expressed by the coefficients in the boundary
local coordinates which are defined by a set of mutually perpendicular unit vectors (N, S, R):

V =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Vξ

Vη

Vθ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=NVN + SVS +RVR = T

⎡⎢⎢⎢⎢⎢⎢⎢⎣

VN

VS

VR

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= TVN, (22)

where Vξ, Vη and Vθ are the vector coefficients in the ξ coordinates, VN , VS and VR are the vector

coefficients in the boundary local coordinates. The matrix T = [N S R] is the transformation
matrix in the reference domain that is used for transformation from the boundary local coordinates
to the global ones.

It can be easily noticed that

N = T
⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
(23)



Discontinuous Galerkin method on reference domain 183

and

∇ξΘ = T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Θ

∂N

∂Θ

∂S

∂Θ

∂R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= T∇NΘ, (24)

where
∂Θ

∂N
,
∂Θ

∂S
and

∂Θ

∂R
are the partial derivatives in the directions defined by the unit vectors N,

S and R, respectively and ∇N denotes the gradient operator in the boundary local coordinates.
Equations (23) and (24) can now be substituted into Eq. (21). The boundary heat flux is then

H = − [1 0 0]TTΛT∇NsΘ = − [1 0 0]ΛN∇NsΘ

= − (ΛN)
11

∂Θ

∂N
− (ΛN)

12

∂Θ

∂S
− (ΛN)

13

∂Θ

∂R
, on SΘ, (25)

where ΛN is conductivity matrix in local boundary coordinates in the reference domain.
In order to apply the Dirichlet boundary conditions on ΓΘ the derivative in the boundary normal

direction is expressed by the fourth-degree finite difference rule [11]:

∂Θ

∂N
= 6 ⋅ Θ̂ −Θ(ξ2d)

2d
− 4∇NΘ(ξd) −∇NΘ(ξ2d), on ΓΘ, (26)

where d is a scalar value that is small in relation to the characteristic size of finite elements,
Θ(ξd) = ξ − dN, Θ(ξ2d) = ξ − 2dN, ∇N = ∇ξ ⋅N. The derivatives in S and R directions can be
expressed by the gradients in the global coordinates:

∂Θ

∂S
= ∇ξΘ ⋅ S,

∂Θ

∂R
= ∇ξΘ ⋅R. (27)

When Eqs. (25) to (27) are taken into account, the integral I2 changes to the following form:

I2 = −∫
ΓΘ

V (ΛN)
11
(6 ⋅ Θ̂ −Θ(ξ2d)

2d
− 4∇NΘ(ξd) −∇NΘ(ξ2d))dΓ

− ∫
ΓΘ

V ((ΛN)
12
∇ξΘ ⋅ S + (ΛN)13∇ξΘ ⋅R)dΓ. (28)

The fourth integral in Eq. (3) I4 is defined over the mesh skeleton Ss. On the basis of [11] it is
known that

[[q]] ⋅ n = 0. (29)

Then, the integral I4 is expressed as

I4 = ∫
Ss

[[vq]] ⋅ ns dS = ∫
Ss

[[v]]q ⋅ ns dS = ∫
Ss

[[v]]hs dS, (30)

where hs is the heat flux that ’goes’ through the mesh skeleton.
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The integral I4 has to be rewritten also in the reference configuration. In such a case, the
heat flux that goes’ through the skeleton in the reference domain Ss is written directly in the
reference configuration on the basis of Fourier’s law in Eq. (21). Therefore, the integral I4 can be
rewritten as

I4 = ∫
Γs

[[V ]]Hs dΓ. (31)

The skeleton heat flux can be stated in the same way as shown in Eq. (25), but now it is expressed
in the skeleton local coordinates, i.e.,

Hs = − (ΛN)11 ∂Θ∂N − (ΛN)12 ∂Θ∂S − (ΛN)13 ∂Θ∂R on Γs. (32)

The derivatives in the S and R directions are now computed using the mid-value operator

∂Θ

∂S
= ⟨∇ξΘ⟩ ⋅ S, ∂Θ

∂R
= ⟨∇ξΘ⟩ ⋅R on Γs. (33)

The fourth-degree finite difference rule is applied to calculate the derivative in the normal di-
rection [11]:

∂Θ

∂N
= 3

2
⋅
[[Θ]]d
2d

−
1

2
⋅ ⟨∇ξΘ⟩d ⋅N, on Γs. (34)

After taking into account Eqs. (32) to (34) the integral I4 changes to

I4 = −∫
Γs

[[V ]] (ΛN)
11
(3
2
⋅
[[Θ]]d
2d

−
1

2
⋅ ⟨∇ξΘ⟩d ⋅N) dΓ

− ∫
Γs

[[V ]] ((ΛN)
12
⟨∇ξ⟩Θ ⋅ S + (ΛN)13 ⟨∇ξ⟩Θ ⋅R) dΓ. (35)

Finally, Eq. (3) has the following form

∫
Γq

V ĤJn
F (n)dΓ − ∫

ΓΘ

V (ΛN)
11
(6 ⋅ Θ̂ −Θ(ξ2d)

2d
− 4∇NΘ(ξd) −∇NΘ(ξ2d)) dΓ

− ∫
ΓΘ

V ((ΛN)
12
∇ξΘ ⋅ S + (ΛN)13∇ξΘ ⋅R) dΓ + ∫

Ω

(∇ξV )TΛ∇ξΘdΩ

− ∫
Γs

[[V ]] (ΛN)
11
(3
2
⋅
[[Θ]]d
2d

−
1

2
⋅ ⟨∇ξΘ⟩d ⋅N) dΓ

− ∫
Γs

[[V ]] ((ΛN)
12
⟨∇ξ⟩Θ ⋅ S + (ΛN)13 ⟨∇ξ⟩Θ ⋅R) dΓ − ∫

Ω

V RJF dΩ = 0. (36)

It is convenient to present Eq. (36) using bilinear and linear forms:

A(V,Θ) = P (V ), (37)
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where

A(V,Θ) = ∫
ΓΘ

V (ΛN)
11
(6 ⋅ Θ(ξ2d)

2d
+ 4∇NΘ(ξd) +∇NΘ(ξ2d)) dΓ

− ∫
ΓΘ

V ((ΛN)
12
∇ξΘ ⋅ S + (ΛN)13∇ξΘ ⋅R) dΓ + ∫

Ω

(∇ξV )TΛ∇ξΘdΩ

− ∫
Γs

[[V ]] (ΛN)
11
(3
2
⋅
[[Θ]]d
2d

−
1

2
⋅ ⟨∇ξΘ⟩d ⋅N) dΓ

− ∫
Γs

[[V ]] ((ΛN)
12
⟨∇ξ⟩Θ ⋅ S + (ΛN)13 ⟨∇ξ⟩Θ ⋅R) dΓ, (38)

P (V ) = ∫
Ω

V RJF dΩ − ∫
Γq

V ĤJn
F (n)dΓ + 6∫

ΓΘ

V (ΛN)
11
⋅
Θ̂

2d
dΓ. (39)

3. APPROXIMATION

As previously stated, the DGFD method is applied to the reference domain. It means that the
discretization, approximation and all calculations are performed for the reference domain Ω. The
reference domain is discretized with polyhedral (in 3D) or polygonal (in 2D) mesh. After discretiza-
tion, Ω is covered by a set of non-overlapping finite elements Ωe

Ω = ⋃
e

Ωe. (40)

The approximation in the e-th single finite element is obtained using local basis functions and
local degrees of freedom

Θe (ξ) = ne

∑
i=1
bei (ξ) Θ̌e

i = be Θ̌e, for ξ ∈ Ωe, (41)

where be is the vector of local basis functions and Θ̌e is the vector of local degrees of freedom. The
‘local degrees of freedom’ indicate degrees of freedom connected with a single finite element and
‘local basis functions’ mean that the basis functions are defined in the local coordinates connected
with the element and their support is limited to the element.
The choice of the local basis functions for each cell is quite arbitrary and depends on the consid-

ered problem. However, the polynomial basis functions are widely used since they generally provide
correct results for a wide class of problems. During the research associated with this work, various
types of basis functions have been tested. Nevertheless, in the presented examples polynomials are
used.
In Eq. (41), the approximation for one element cell is shown. It can be rewritten as an approxi-

mation for the whole domain

Θ =ΦΘ̌, for ξ ∈ Ω, (42)

where

Φ = [s1b1 s2b2 . . . sNebNe] , Θ̌ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̌1

Θ̌2

⋮

Θ̌Ne

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(43)
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and Ne is the number of finite element cells and se is the e-th element support, i.e.,

se =
⎧⎪⎪⎨⎪⎪⎩
1 for ξ ∈ Ωe,

0 for ξ ∉ Ωe.
(44)

The jumps and mid-values are approximated using the same vector of degrees of freedom, i.e.,

[[Θ]] = [[Φ]]Θ̌, ⟨Θ⟩ = ⟨Φ⟩ Θ̌ on Γs. (45)

In the same way, the approximation of the jump and mean values at distance ǫ from Γs is defined

[[Θ]]ǫ = [[Φ]]ǫΘ̌, ⟨Θ⟩ǫ = ⟨Φ⟩ǫ Θ̌. (46)

In this paper, the Galerkin formulation is regarded thus, in which the same approximations as in
Eqs. (42), (45) and (46) are applied to the test function V .
In this work the polynomial basis functions are obtained from the Taylor series expansion. Each

polynomial is defined in e-th cell using local coordinates. In 2D case, the local coordinates (xe, ye)
are defined in the following way:

ξe = ξ − ξ
e
m

he
ξ

, ηe = η − η
e
m

heη
, (47)

where the point (ξem, η
e
m) is a center of gravity of the e-th element cell and h

e
ξ, h

e
η are the charac-

teristic lengths of the e-th cell in the x and y directions, respectively. The vectors of basis functions
of various degrees of p, which are used in this paper, are as follows:

for p = 1∶ be = be1 = [1 ξe ηe] ,
for p = 2∶ be = be2 = [be1 ξeηe ξe2 ηe2] ,
for p = 3∶ be = be3 = [be2 ξe3 ξe2ηe ξeηe2 ηe3] ,
for p = 4∶ be = be4 = [be3 ξe4 ξe3ηe ξe2ηe2 ξeηe3 ηe4] ,
and so on ...

(48)

When the approximations from Eqs. (42), (45) and (46) are substituted into the weak form
Eq. (37), the following linear system of equations is obtained:

KΘ̌ = F , (49)

where

K = ∫
Ω

BTΛBdΩ −
3

4
∫
Γs

(ΛN)
11

d
[[Φ]]T[[Φ]]d dΓ + 1

2
∫
Γs

(ΛN)
11
[[Φ]]TNT ⟨B⟩d dΓ

− ∫
Γs

(ΛN)
12
[[Φ]]TST ⟨B⟩ dΓ − ∫

Γs

(ΛN)
13
[[Φ]]TRT ⟨B⟩ dΓ

+ 3∫
ΓΘ

(ΛN)
11

d
ΦTΦ(ξ2d)dΓ + 4∫

ΓΘ

(ΛN)
11
ΦTNTB(ξd)dΓ

+∫
ΓΘ

(ΛN)
11
ΦTNTB(ξ2d)dΓ − ∫

ΓΘ

(ΛN)
12
ΦTSTBdΓ − ∫

ΓΘ

(ΛN)
13
ΦTRTBdΓ,

F = ∫
Ω

ΦTRJF dΩ − ∫
Γq

ΦTĤJn
F (n)dΓ + 3∫

ΓΘ

(ΛN)
11

d
ΦTΘ̂dΓ

(50)

and where B = ∇ξΦ.
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4. DOMAIN TRANSFORMATION

The method presented in this paper is based on the transformation x = x(ξ) which has to be known
prior to the analysis. The shape of the real domain results from the considered problem, while the
shape of the reference domain should be chosen to be as simple as possible. Afterwards, the trans-
formation between these two domains has to be adjusted. In this paper, such a transformation is
constructed for each coefficient as a linear combination of a set of basis functions. The parame-
ters of the linear combinations are found by numerical solution of second-order partial differential
equations.
In order to describe the transformation between the real domain V and the reference domain

Ω the points x and ξ belonging to the same domains are regarded. Additionally, a set of points x̂
and ξ̂ is considered, which belongs to the outer boundaries in these domains, i.e.,

x ∈ V, x̂ ∈ S,
ξ ∈ Ω, ξ̂ ∈ Γ. (51)

For the sake of clarity, the coordinates of the point x are additionally defined by index

x =
⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
. (52)

The problem that has to be solved is as follows: find point x ∈ V that is the projection of
point ξ ∈ Ω and x̂ = x̂(ξ̂). There is no unique solution of the problem, since there are no possible
transformations. However, we want to find a transformation that is smooth and can be expressed
as a linear combination of a set of basis functions. This can be obtained by numerical solution of
a series of differential boundary problems defined for each coefficient of point x, i.e.,

∇
T
ξ (∇ξxi) = 0 on Ω

xi = x̂i on Γ
for i = 1,2,3, (53)

where x̂i = x̂i(ξ̂) is the transformation of the outer boundary in the reference configuration Γ
into the outer boundary in the real boundary S for the i-th coefficient. This transformation is
incorporated into the problem in Eq. (53).
The weak form of the problem presented in Eq. (53) with a test function W is

−∫
Ω

∇ξW
T
∇ξxi dΩ + ∫

Γ

WNT∇ξ xi dΓ = 0 ∀W for i = 1,2,3. (54)

The Dirichlet boundary conditions are applied with the help of fourth-degree finite difference
rule, in the same way as in the DGFD method

NT∇ξ xi = 6 ⋅ x̂i − xi(ξ2d)
2d

− 4NT∇ξ xi(ξd) −NT∇ξ xi(ξ2d). (55)

The coefficients xi are going to be found using a linear combination of basis functions

xi (ξ) = b (ξ) x̌i =Φx̌i. (56)

When Eqs. (55) and (56) are substituted in to a weak form in Eq. (54) the following linear
system of equations is obtained:

M x̌i = P i, i = 1,2,3, (57)
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where

M = ∫
Ω

BTBdΩ +∫
Γ

3

d
ΦTΦ(ξ2d)dΓ + 4∫

Γ

ΦTNTB(ξd)dΓ + ∫
Γ

ΦTNTB(ξ2d)dΓ,
P i = ∫

Γ

3

d
ΦTx̂i dΓ.

(58)

The matrix on the left side of Eq. (56) is the same for each i. There are three different right-side
vectors in 3D or two vectors in 2D. The matrix M in Eq. (57) can be factorized just once to find
three vectors of degrees of freedom for each of the coefficients.
The numerical illustration of the transformation is presented in Appendix where a quarter of

annulus disc is considered.

5. EXAMPLES

In this section, the examples that illustrate the calculations in the reference domain are discussed.
In order to show the correctness of the approach, a set of benchmark tests is presented. The
benchmark tests are based on the following boundary problem:

−∆Θ = f(x, y). (59)

The boundary conditions and the right-hand side function f(x, y) are derived from the exact
solution Θ(x, y) that is

Θ(x, y) = x2 y + sin(2π x) sin(2π y) (60)

and the right-hand side function is:

f(x, y) = 2y − 8π2 sin(2π x) sin(2π y). (61)

The exact solution of the problem is depicted in Fig. 2 in the square domain of [−1, 1]× [−1, 1].
It can be noticed that the function strongly fluctuates and has large gradients.

Fig. 2. Exact solution for the considered example in [−1, 1] × [−1, 1] domain.

The problem in Eq. (59) is examined for a set of domains with various shapes. Types of domains
are shown in Fig. 3. In the following subsections, all the details concerning the subdomains and the
calculation results are discussed.
Each domain considered in this section is transformed into [−1, 1] × [−1, 1] domain. On the

reference quadrilateral domain the Dirichlet boundary conditions are set on the left and right sides,
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a) Domain A b) Domain B c) Domain C

d) Domain D e) Domain E

Fig. 3. Three kinds of domains considered in the benchmark tests.

and Neumann boundary conditions are set on the upper and lower sides. The polygonal mesh is
generated on the reference domain. For the sake of clarity, the same mesh is used for each of the
reference domain. The reference domain with boundary conditions and the mesh are presented in
Fig. 4. The Dirichlet boundary conditions Θ̂ and the heat flux for the Neumann boundary conditions
Ĥ are taken from the exact solution of problem (59).

a) b)

Fig. 4. a) Reference domain with Dirichlet and Neumann boundary conditions, b) the polygonal mesh in
the [−1, 1] × [−1, 1] reference domain (80 cells).

The mesh consists of 80 polygonal cells. In each cell seventh-degree polynomial approximation
is applied (36 basis functions). The number of degrees is 2880 in each case.
In the discussed examples, the error of the approximate solutions is measured. The definition of

the error at an arbitrary point in V is defined as

e = ∣Θ −Θ∣ in V, (62)
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where e is the error of the approximate solution, Θ is the exact solution, and Θ is the approximate
solution. In order to measure the global error of the approximate solution the L2 norm and H1

semi-norm are used, which are respectively defined as follows

∥e∥L2
=
¿ÁÁÀ∫

V

(Θ −Θ)2 dV ,

∣e∣H1
=
¿ÁÁÀ∫

V

(∇Θ −∇Θ)T (∇Θ −∇Θ) dV .
(63)

5.1. Domain A

In this section, a domain of triangular shape is considered. In order to show the correctness of the
presented approach the domain shown in Fig. 5 is in fact quadrangle, but one of its sides is very
short (2 ⋅ 10−6 times smaller in comparison to other sides).

Fig. 5. Domain A.

The transformations for the considered domain are

x = ξ,
y = −0.25 − 0.25 ξ + 0.5η − 0.5 ξ η.

(64)

The results are presented in Fig. 6 where the approximate solution in reference and real domain
are shown and the error distribution in the real domain proves the correctness of the method.

In the example, the right side has been extended 2 ⋅106 times in the transformation to the square
reference domain. At the same time, the left side is not extended at all. In spite of such a level
of extension between the real and reference domains the obtained approximate solution is quite
accurate. It indicates that in a case of great ‘deformations’ the calculations are not disturbed, and
even the error is not concentrated in the place with great ‘deformation’.

For comparison, the same problem was additionally solved by the DGFD method on the real
domain. It means that Domain A was discretized by finite element mesh, Fig. 7a, which also consists
of 80 polygonal cells. Also, in this case the seventh-degree polynomial approximation is applied to
each cell. The approximate solution in this case is also very close to the exact solution and the error
distribution of the approximate solution is presented in Fig. 7b. It can be noticed that the errors
for the results obtained on the reference domain, Fig. 6d, are on similar level as those obtained on
real domain, Fig. 7b. However, in the case of Fig. 6d the errors are concentrated close to upper
vertex and in the case of results in Fig. 7b the error is uniformly distributed in the domain.
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a) b)

c) d)

Fig. 6. Results for Domain A: a) approximate solution in reference domain, b) solution error in reference
domain, c) approximate solution in real domain, d) solution error in real domain.

a) b)

Fig. 7. Mesh and solution error for Domain A obtained on the real domain: a) mesh on the real domain
with 80 cells, b) solution error obtained in real domain.

5.2. Domain B

This time, a domain of a quite arbitrary shape presented in Fig. 8 is considered. It can be seen that
the left side is strongly concave and the lower side is convex, in opposite. At two upper vertices the
domain constricts so that the domain is very thin there.
The transformations from the reference domain to the real one, in this case, are as follows:

x = 0 + 0.65 ξ + 0.35η + 0.15 ξη + 0.15 ξ2 − 0.15η2 − 0.1 ξ2η + 0.45 ξη2,
y = −0.35 − 0.1 ξ + 0.85η + 0.1 ξη + 0.45 ξ2 + 0η2 − 0.2 ξ2η − 0.25 ξη2.

(65)

Once again the problem from Eq. (59) has been solved on the reference domain with the trans-
formations described in Eq. (65). The results of the calculations are presented in Fig. 9 including
the approximate solution on the reference and real domains and the error distribution in the real
domain.
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Fig. 8. Domain B with vertices coordinates.

a) b)

c) d)

Fig. 9. Results for Domain B: a) approximate solution in reference domain, b) solution error in reference
domain, c) approximate solution in real domain, d) solution error in real domain.

In spite of the fact that Domain B has a very thin part and one of its sides is strongly concave,
the obtained results are quite satisfactory. The error is concentrated on the left upper corner with
the level of 1 ⋅ 10−4. However, in the rest of the domain the error is lower than 1 ⋅ 10−5.

5.3. Domain C

In this section, a domain that has a shape of quarter of annulus is examined, see Fig. 10. The do-
main is defined by the outer R and inner r radii. The transformation from the square reference
domain to the real one is described in details in Appendix. In this example, three versions of the do-
main are studied in which r = 1, 1.8, 1.98 and R = 2 for each case. In the situation when r = 1.98
the domain is very thin, but this fact does not cause any changes in the presented algorithm.
It can be noticed that the algorithm can cope with wide variety of domains with quite arbitrary
shapes.
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Fig. 10. Domain C with inner and outer radius.

Each of the three cases requires transformations from the square reference domain into the real
one. The transformations are as follows:

1. The transformations for the first case, R = 2 and r = 1, are as follows:
x = 1.635η + 0.25555ξη − 0.104ξ2η − 0.1281η3

+ 1.0607 sin (π
4
ξ) + 1.0607cos (π

4
ξ) − 1.6318 sin (π

4
η),

y = 1.635η − 0.25555ξη − 0.104ξ2η − 0.1281η3

− 1.0607 sin (π
4
ξ) + 1.0607cos (π

4
ξ) − 1.6318 sin (π

4
η).

(66)

2. In the second case, the transformations for R = 2 and r = 1.8 are
x = 0.327η + 0.0511ξη − 0.0208ξ2η − 0.0256η3

+ 1.3435 sin (π
4
ξ) + 1.3435cos (π

4
ξ) − 0.3264 sin (π

4
η),

y = 0.327η − 0.0511ξη − 0.0208ξ2η − 0.0256η3

− 1.3435 sin (π
4
ξ) + 1.3435cos (π

4
ξ) − 0.3264 sin (π

4
η).

(67)

3. The last, third case is for with R = 2 and r = 1.98 and the transformations are expressed as
x = 0.0327η + 0.00511ξη − 0.00208ξ2η − 0.00256η3

+ 1.4071 sin (π
4
ξ) + 1.4071cos (π

4
ξ) − 0.03264 sin (π

4
η),

y = 0.0327η − 0.00511ξη − 0.00208ξ2η − 0.00256η3

− 1.4071 sin (π
4
ξ) + 1.4071cos (π

4
ξ) − 0.03264 sin (π

4
η).

(68)
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The results for the three cases are presented in Figs. 11–13, where the approximate solution
and the error map on the reference and real domains are shown. The results in each case are

a) b)

c) d)

Fig. 11. Results for Domain C, R = 2 and r = 1: a) approximate solution in reference domain, b) solution
error in reference domain, c) approximate solution in real domain, d) solution error in real domain.

a) b)

c) d)

Fig. 12. Results for Domain C, R = 2 and r = 1.8: a) approximate solution in reference domain, b) solution
error in reference domain, c) approximate solution in real domain, d) solution error in real domain.
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a) b)

c) d)

Fig. 13. Results for Domain C, R = 2 and r = 1.98: a) approximate solution in reference domain, b) solution
error in reference domain, c) approximate solution in real domain, d) solution error in real domain.

satisfactorily good. However, it can be noticed that in the third case the error level is much higher
in comparison to the two other cases, see Figs. 11b, 12b and 13b. It can be concluded that in the
last case the domain is strongly ‘squeezed’ after the transformations. In this case, the domain width
is 0.02 and is transformed from the reference domain of size 2.

It seems that in the last case, another reference domain should be chosen to reduce the discrep-
ancy between the dimensions of reference and real domain. Therefore, the longitudinal rectangular
reference domain with the polygonal mesh of 80 finite elements is considered, see Fig. 14. All three
cases of Domain C are recalculated on the rectangular reference domain. The results can be then
easily compared with those obtained on the square reference domain. Thereby, it is also shown that
the algorithm derived in this paper is independent of the choice of the reference domain.

a) b)

Fig. 14. a) Rectangular reference domain with Dirichlet and Neumann boundary conditions, b) polygonal
mesh in the [−0.0625, 0.0625] × [−1, 1] reference domain (80 cells).

The transformations from the reference domain to the real domains are calculated using the
algorithm described in Sec. 4 and also in this case the trigonometric basis functions are used. For
the sake of the paper’s clarity these transformations are not included. The same seventh-degree
approximation is used for finite elements, as for the square reference domain. The results of the
calculations are presented in Figs. 15–17.
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a) b)

c) d)

Fig. 15. Results for Domain C, R = 2 and r = 1, and rectangular reference domain: a) approximate so-
lution in reference domain, b) solution error in reference domain, c) approximate solution in real domain,

d) solution error in real domain.

a) b)

c) d)

Fig. 16. Results for Domain C, R = 2 and r = 1.8, and rectangular reference domain: a) approximate
solution in reference domain, b) solution error in reference domain, c) approximate solution in real domain,

d) solution error in real domain.

It can be seen that all the results calculated on the rectangular domain are correct. However, for
the first case (r = 1) the results are slightly worse in comparison to the square domain. However,
in two other cases (r = 1.8 and r = 1.98) the error levels are much lower now. It can be concluded
here that, in spite of the fact that the presented algorithm works in general arbitrary reference
domain, better results can be obtained if the shape of the reference domain matches that of the
real one. Thereby, the transformation does not generate large gradients that may lead to severe
numerical truncation errors.
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a) b)

c) d)

Fig. 17. Results for Domain C, R = 2 and r = 1.98, and rectangular reference domain: a) approximate
solution in reference domain, b) solution error in reference domain, c) approximate solution in real domain,

d) solution error in real domain.

5.4. Domain D

Now, a circular domain with radius R = 1 is regarded. The reference domain is the square domain
as shown in Fig. 4. In order to set the outer boundary transformation, the external boundary circle
is divided into four equal segments. Then, each side from the reference domain is transformed into
the boundary segment in the real domain, as shown in Fig. 18.

Fig. 18. Transformations of the outer boundary of Domain D with radius R = 1.

The transformations of the outer boundary segment from the reference domain to the outer
boundary segment in the real domain are as follows:
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1∶ x̂ = R cos(3
4
π −

η̂

4
π), ŷ = R sin(3

4
π −

η̂

4
π),

2∶ x̂ = R cos(1
4
π −

ξ̂

4
π), ŷ = R sin(1

4
π −

ξ̂

4
π),

3∶ x̂ = R cos(−1
4
π +

η̂

4
π), ŷ = R sin(−1

4
π +

η̂

4
π),

4∶ x̂ = R cos(−3
4
π +

ξ̂

4
π), ŷ = R sin(−3

4
π +

ξ̂

4
π).

(69)

Finally, the transformations from the reference into real domain in this case has been calcu-
lated as

x = 2.77ξ + 2.77η − 0.2562ξ3 − 0.208ξ2η − 0.208ξη2 − 0.2562η3

− 2.5564 sin (π
4
ξ) − 2.5564 sin (π

4
η),

y = −2.77ξ + 2.77η + 0.2562ξ3 − 0.208ξ2η + 0.208ξη2 − 0.2562η3

+ 2.5564 sin (π
4
ξ) − 2.5564 sin (π

4
η).

(70)

The results are presented in Fig. 19. Once again the obtained results are quite satisfactory.
In spite of the fact that the real domain does not have vertexes, the computations can be done on
the square reference domain.

a) b)

c) d)

Fig. 19. Results for Domain D: a) approximate solution in reference domain, b) solution error in reference
domain, c) approximate solution in real domain, d) solution error in real domain.
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5.5. Domain E

In this example, an annulus domain with outer radius R = 1 and inner radius r = 0.4 is studied.
The real domain has a central circular hole; therefore, the reference domain also has to have a hole
inside. Thus, the reference domain is a square with a square hole in the middle, as shown in Fig. 20.

Fig. 20. Transformation of the outer boundary of Domain E with outer radius R = 1
and inner radius r = 0.4.

In the transformation the outer and inner boundaries have to be considered. In this case, the
10th-degree vector of basis functions is used to obtain the transformation x (ξ). The reference
domain has been discretized by three meshes: by a 12th-degree non-simply-connected finite element,
Fig. 21a, by four 10th-degree non-simply-connected finite elements, Fig. 21b and by polygonal mesh
with 80 elements, Fig. 21c. For details on non-simply-connected finite elements see [12].

a) b)

c)

Fig. 21. Three meshes in the reference domain with a hole inside: a) mesh with one non-simply-connected
element, b) mesh with four non-simply-connected elements, c) polygonal mesh with 80 elements.
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The results for the three meshes are presented in the same manner as in the cases of other
examples. Figure 22 shows the results for the one-element mesh (Fig. 21a). The results for the
four-element mesh (Fig. 21b) are presented in Fig. 23. Finally, the results for the polygonal mesh

a) b)

c) d)

Fig. 22. Results for Domain E for one-element mesh from Fig. 21a and 12th-degree approximation: a) ap-
proximate solution in reference domain, b) solution error in reference domain, c) approximate solution in real

domain, d) solution error in real domain.

a) b)

c) d)

Fig. 23. Results for Domain E for four-element mesh from Fig. 21b and 10th-degree approximation: a) ap-
proximate solution in reference domain, b) solution error in reference domain, c) approximate solution in real

domain, d) solution error in real domain.
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(Fig. 21c) are included in Fig. 24. As can be noticed, the obtained results are quite accurate even
for meshes with one or four elements. It is shown, in the example, that the domain with an inside
hole can be transformed to an appropriate reference domain.

a) b)

c) d)

Fig. 24. Results for Domain E for mesh from Fig. 21 and seventh-degree approximation: a) approximate
solution in reference domain, b) solution error in reference domain, c) approximate solution in real domain,

d) solution error in real domain.

6. CONCLUSIONS

The DGFG method on the reference domain has been presented. In the proposed approach, the
problem defined on the real domain is numerically analyzed in the reference domain. It is shown in
a series of benchmark examples that the proposed approach is correct and effective. In the approach,
the considered problem is transformed into the reference domain which has a simple shape and is
easy to mesh. The transformation from the reference domain into the real one has to be obtained
first, and then the transformation is incorporated into the analysis on the reference domain. Such
a procedure helps to cope with domains with complicated shapes and with curved boundaries.
In this work, the method for the transformation generation is proposed. This method is based

on the second-order partial differential equation that has to be solved on the reference domain for
each coefficient. In order to get domain transformation, first we need to set the outer boundary
transformation. On the other hand, on outer boundary of the real domain the boundary conditions
are defined which also need to be transformed onto the reference domain. The equations, written
in weak forms, are solved using the DGFD method with one element. The special basis functions
or high-degree polynomials can be used to obtain the transformation. In the presented examples,
the trigonometric function or 10th-degree polynomials are used. As a result, exact geometry is
maintained or at least approximated with high accuracy.
As it is shown in the examples, the DGFD method in the reference domain gives a great and

new opportunity in solving boundary problems on arbitrary domains. The effects obtained in this
work are quite similar to the ones given by isogeometric analysis (IGA). However, no control points
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or complicated shape functions are needed. Both the transformation and solution of the boundary
problems are constructed on basis functions which can be chosen adequately for the considered
problem.
The continuation of this research will concern the three-dimensional analysis and adoption of the

description to elasticity and thermo-elasticity problems. The future research will also be focused
on the improvement of the transformation technique so that it can cope with three-dimensional
complicated domains.

APPENDIX

The transformation presented in Sec. 4 is illustrated here by the two-dimensional example, in which
a square reference domain is transformed into a quarter of annulus. The boundary problem from
Eq. (53) requires first a formulation of the boundary conditions. In this case, the outer boundary
in the reference domain has to be transformed to the outer boundary in the real domain. The
boundaries of Ω and V domains are divided into four segments. Each segment from the reference
domain is separately transformed to the boundary segment of the annulus quarter as shown in
Fig. A1. The mathematical transformation, written for each of segments, is as follows:

1∶ x̂ = 0, ŷ = r + 1

2
(R − r)(η + 1),

2∶ x̂ = R sin(π
4
+
π

4
ξ̂) , ŷ = R cos(π

4
+
π

4
ξ̂),

3∶ x̂ = R − 1

2
(R − r)(1 − η), ŷ = 0,

4∶ x̂ = r cos(π
4
−
π

4
ξ̂) , ŷ = r sin(π

4
−
π

4
ξ̂).

(A1)

Fig. A1. Illustrative example of the transformation procedure from reference to real domains.

For the considered domain, the set of basis functions for the transformation has been chosen as

b (ξ) = [b3 (ξ) sin(π
4
ξ) cos (π

4
ξ) sin(π

4
η) cos(π

4
η)] , (A2)

where b3 is the set of polynomial basis functions of third order (10 basis polynomial functions)
presented in Eq. (48).
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The boundary transformation in Eq. (A1) and the vector of basis functions in Eq. (A2) are
applied to the Eq. (57) for both the coefficients, i.e., x and y, and for R = 2 and r = 1. After
solution of these two systems of equations the vectors of degrees of freedom are obtained as

x̌ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1.6350

0.2555

0

0

0

−0.1040

0

−0.1281

1.0607

1.0607

−1.6318

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y̌ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1.6350

−0.2555

0

0

0

−0.1040

0

−0.1281

−1.0607

1.0607

−1.6318

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)
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