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Several optimization techniques are proposed both to identify the aerodynamic coefficients and to recon-
struct the trajectory of a fin-stabilized projectile from partial flight data. A reduced ballistic model is
used instead of a more general six degree of freedom (6DOF) ballistic model to represent the flight of the
projectile. Optimization techniques are proposed in order to identify the set of aerodynamic coefficients.
These techniques are compared when identifying the aerodynamic coefficients from both exact and noisy
simulated partial flight data.

Keywords: aerodynamic coefficients, identification, free flight data, regularization.

1. INTRODUCTION

A projectile’s inflight attitude is highly influenced by its geometry, which is represented in the
ballistic model by aerodynamic coefficients. Accurate knowledge of the aerodynamic coefficients of
a projectile is therefore essential in understanding, controlling and predicting the trajectory of a pro-
jectile. There are three main techniques that can be complementary in identifying the aerodynamic
coefficients of a projectile: aerodynamic numerical codes [9], wind tunnel tests [2] and free-flight
tests. The firing test, allowing real conditions to be reproduced, remains the most reliable method
to study the aerodynamic behavior of a projectile. Our aim is to develop a technique to identify the
aerodynamic coefficients using flight test measurements. Several studies on this topic have been con-
ducted and most of them consist in minimizing the difference between the measured data and the
calculated data. In the literature, one can find identification techniques of aerodynamic coefficients
for various ballistic models: the linearized six degrees of freedom model [1, 9], the point mass model,
the modified point mass model, etc. There are identification methods based on statistical approaches
using a priori information [6, 7] (the maximum likelihood method), gradient methods [1, 7, 9]
(Newton-Raphson, Levenberg-Marquardt) or measurement filtering (Kalman filters [7, 10]).
This paper is organized as follows: we first recall the forces and the moments acting on the

projectile during its flight and the general formulation of a six degrees of freedom model. We then
use a reduced model introduced by Demailly et al. [5] for the identification of the aerodynamic
coefficients of a fin-stabilized projectile. This reduced model only takes into account the state
parameters that are most representative of the motion of the fin-stabilized projectile, namely axial
velocity vi and roll rate ωc. In Sec. 3, four identification procedures are presented. Finally, in the last
section, all discussed identification techniques are compared to identify the aerodynamic coefficients
and to reconstruct the trajectory of a projectile using partial and noisy data.
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2. REDUCED SYSTEM OF EQUATIONS OF MOTION

The identification of aerodynamic coefficients from flight data requires the use of a ballistic model
which is representative of the inflight attitude.

2.1. General formulation

This study is devoted to the characterization of the aerodynamic coefficients of a fin-stabilized
projectile. Consequently, some approximations can be made. Firstly, the aerodynamic coefficients
are considered to be constant during the whole flight. Secondly, the wind velocity is assumed to be
negligible with respect to the projectile velocity. Finally, the projectile has a tight trajectory and
is considered to have a small angle of attack α (sinα ∼ α). Let us first introduce the notations
used throughout the paper to represent the ballistic frames in which forces and moments will be
written:

• (i, j, k) is a fixed frame linked to the cannon where the unit vector j is the vertical vector
directed upwards and linking the center of the earth and the cannon,

• (t, s, h) is a mobile frame linked to the trajectory where the unit vector t is the unit velocity
vector of the projectile,

• (c, a, b) is a mobile frame linked to the projectile where the unit vector c is collinear with the
longitudinal axis of the projectile.

The forces are expressed in the cannon reference frame (i, j, k). Gravity force g and the Coriolis
force Cor can be distinguished from aerodynamic forces (Fig. 1) such as the drag force D(Cx),
the lift force L(Cz) and the Magnus force K(Cy) which are induced by the air flow around the
projectile.

Fig. 1. Inventory of the forces (left), inventory of the moments (right) [5].

The drag force D acts on the projectile in the opposite direction of its velocity vector v and is
located in the resistance plane formed by the vectors t and c. The drag force is applied to the center
of aerodynamic pressure (point F in Fig. 1). The angle of attack of the projectile (angle α, formed
by t and c) increases the section of the projectile in contact with the air stream and consequently
increases the drag force D:

D = −qSCxt, (1)

where q denotes the stagnation pressure and S the frontal area.
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When the projectile is flying at a nonzero angle of attack, the distribution of pressure around
the projectile becomes asymmetric and induces a force, called lift force L:

L = qSCzα[t ∧ (c ∧ t)], (2)

which is normal for the velocity vector v. This force is applied to the center of aerodynamic pressure
(point F in Fig. 1).
When the projectile is in rotation around its longitudinal axis at a nonzero angle of attack, the

force of friction generates an asymmetrical air flow around the projectile. This asymmetric flow
induces a transverse force, called the Magnus force K that is applied at point K (Fig. 1):

K = qSD
ωc

v
Cypα(c ∧ t), (3)

where D is the projectile caliber.
The projectile is also subject to aerodynamic moments (Fig. 1):

• the rolling moment ME(Cl0):

ME = qSDCl0c; (4)

• the roll damping moment MR(Clp):

MR = −qSD2ωc

v
Clpc; (5)

• the pitching moment MA(Cm):

MA = qSDCmα(t ∧ c); (6)

• the pitch damping moment MD(Cmq):

MD =
−qSD2

v
Cmq(c ∧ ċ); (7)

• the Magnus moment MM (Cnp):

MM = −qSD2ωc

v
Cnpα[c ∧ (c ∧ t)]. (8)

The fundamental principle of dynamics leads to a system (6DOF model) of first-order nonlinear
differential equations which gives the time evolution of the position and of the angular attitude of
the projectile:




v̇i

v̇j

v̇k




(i,j,k)

=
1

m
(D + L+K) + Cor + g, (9)




I1ω̇c

I2ω̇a + ωcωb(I1 − I2)

I2ω̇b + ωcωa(I2 − I1)




(c,a,b)

=ME +MR +MA +MD +MM . (10)

For the sake of simplicity, the state parameters are denoted by U = (vi, vj , vk, ωc, ωa, ωb), the
aerodynamic coefficients are denoted by C = (Cx, Czα, Cypα, Cl0, Clp, Cmα, Cmq, Cnpα) and the dy-
namical system corresponding to the fundamental principle of dynamics is denoted in simplified
form:

U̇ = f(U,C, t). (11)
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2.2. Reduced ballistic model for a fin-stabilized projectile

For a fin-stabilized projectile, one can find in the literature several closed form solutions of the
projectile trajectory, which are based on different assumptions. In particular, it has been shown
that equations governing the evolution of vi and ωc can be decoupled from other equations [1,
5]. Demailly et al. [5] realized a sensitivity analysis with respect to each aerodynamic coefficient
showing that the axial velocity parameter vi only depends on the drag coefficient Cx and that the
roll rate parameter ωc is only influenced by the coefficients Cx, Clp and Cl0. Consequently, only the
drag force D, the rolling moment ME and the roll damping moment MR can be considered in the
reduced ballistic model of a fin-stabilized projectile. This leads to the following equations:





v̇i = −
ρS

2m
v2iCx,

ω̇c = −
ρS

2I1
[D2Clpωcvi −DCl0v

2
i ].

(12)

The simplified ballistic model for a fin-stabilized projectile (12) is then denoted in simplified form

U̇ = g(U,C, t), (13)

where the vector U = (vi, ωc) contains the state parameters and C = (Cx, Clp, Cl0) is a vector
containing the aerodynamic coefficients.
It can be noticed that the differential system (12) can be analytically solved if the aerodynamic

coefficients C are assumed to be constant. The analytical solution is given by

vi(t) =
vi0

1 +
ρSCxvi0

2m
t

, (14)1

ωc(t) = (ωc0 + vi0γ)

(
vi(t)

vi0

)β

− vi(t)γ, (14)2

where

γ =
mDCl0

I1Cx −mD2Clp

,

β =
mD2

I1

Clp

Cx
.

(15)

Thus, the solution involves five parameters which are the three aerodynamic coefficients Cx, Clp,
Cl0 and the two initial conditions vi0 , ωc0.

3. NONLINEAR IDENTIFICATION PROCEDURES OF AERODYNAMIC COEFFICIENTS

During a flight, discrete and partial measurements of the state parameters vi and ωc are recorded.
Let Ω ⊂ R

+ be the time range of the flight. We define a partition of Ω = Ωd∪Ωi, where Ωd denotes
the periods in which the measures φd of the flight are available. Let φ be the linear interpolated
extension of φd on the whole time range Ω. The principle of the identification method is to look
for the set of aerodynamic coefficients (Cx, Clp and Cl0) associated with the couple (v

∗

i , ω
∗

c ) that
are as close as possible to the measurements φd = (ṽi, ω̃c) and satisfying (as much as possible or
exactly) the flight mechanics equations:

U̇ = g(U,C, t) ∀t ∈ Ω. (16)
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3.1. Penalization method (PM)

Demailly et al. [5] proposed a nonlinear optimization problem which minimizes the distance between
the measured data and a calculated flight using the least squares method





Find Ψ = (U∗, C∗) such as

J(Ψ∗) ≤ J(Ψ) ∀ Ψ = (U,C),

J(Ψ) = ||U − φ||2Ω + η||R(Ψ)||2Ω.

(17)

A penalization term ||R(Ψ)||Ω is introduced to take into account the flight mechanics equations
(Eq. (16)). We then have to discretize the problem in order to use real or numerical data. The
penalization term, if we use, for example, the Euler explicit integration scheme becomes:

||R(Ψ)||2Ω =

N−1∑

m=1

[Um+1 − Um − f(Um, C, tm)(tm+1 − tm)]2.

The Newton-Raphson technique is then used to solve the system of non-linear optimality equations.
The disadvantage of using a penalization term is that the solution of the optimization problem
depends on the choice of the parameter η.

3.2. Constrained optimization method (COM)

To fully take into account the flight mechanics, the authors propose another method that uses
equality constraints, which leads to the following constrained minimization problem:





Find Ψ∗ = (U∗, C∗) which minimizes

J(Ψ) = ||U − φ||2Ω ∀ Ψ = (U,C),

under the equality constraints (16).

(18)

In this situation, the matrix system size (4N×4N) is greater compared to the use of a penalization
term in the functional ((2N +2)× (2N +2)). This is due to the use of Lagrange multipliers in order
to take into account the equality constraints. The calculation time is consequently increased.
We can notice that both methods do not discriminate between the measured data φd and the

interpolated data φ. In other words, these methods minimize the distance not only to the measured
data, but also to the interpolated data.

3.3. Fading regularization method (FRM)

Measurements provided by instrumentation are not available on the entire flight. We introduce
a new method, the fading regularization method (FRM), in order to simultaneously identify the
aerodynamic coefficients and reconstruct the entire flight. The method is inspired by approach
presented in [3, 4] introduced by Cimetière et al. It consists of a sequence of nonlinear constrained
optimization problems. The functional Jk contains two terms. The first term characterizes the
validity given to measurements φd and the second one characterizes the distance to the solution
obtained at the previous iteration Uk. This is a regularization term which allows the optimization
problem to be well-posed.





Find Ψk+1 = (Uk+1, Ck+1) which minimizes

Jk
c (ψ) = ||U − φd||

2
Ωd

+ c||U − Uk||2Ω with ψ = (U,C),

U0 = φ,

under the equality constraints (16).

(19)
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This sequence of optimization problems converges to Ψn = (Un, Cn) where Un is the entire recon-
structed trajectory that is the closest to the measurements φd and C

n is the identified aerodynamic
coefficients vector. It is not proven here, but the solution is supposed to be independent both of
the regularization parameter c and the initialization of the state parameters U0.

3.4. Least squares method using the analytical solution (least squares)

When the aerodynamic coefficients are constant, the reduced ballistic model has an analytic solution
and we can use the classical least squares identification method to obtain the parameters.
The identification procedure is divided into two steps. The first one is an optimization problem

that identifies C∗x and v
∗

i0
. We minimize J1, which represents the distance between the measured data

ṽi and the calculated data vi(t) taking into account the first equation of the analytical solution (14)1

{
Find (C∗x, v

∗

i0
) which minimizes

J1(Cx, vi0) = ‖vi(t)− ṽi‖
2
Ωd
.

(20)

The second step is an optimization problem that identifies C∗lp, C
∗

l0 and ω
∗

c0
, considering the solutions

C∗x, v
∗

i0
found at the first step. We minimize J2, representing the distance between the measured

data ω̃c and the calculated data ωc(t) taking into account the second equation of the analytical
solution (14)2.





Find (C∗l0, C
∗

lp, ω
∗

c0
) which minimizes

J2(Clp, Cl0, ωc0) = ‖ωc(t)− ω̃c‖
2
Ωd
,

such as Cx = C∗x and vi0 = v∗i0 .

(21)

In both cases, the optimality equations are nonlinear and the Newton-Raphson technique is then
used to solve the nonlinear system. This least squares identification method gives us a reference
and allows us to compare the efficiency and the accuracy of the different identification techniques
we proposed.

4. NUMERICAL RESULTS

The efficiency of the above identification techniques is illustrated in different test situations. Mea-
surements for axial velocity vi and roll rate ωc are numerically generated using a time integration of
the reduced ballistic model (14)1–(14)2. In real situations, the roll rate measurements are provided
by two different intrumentations: yaw cards positioned at the beginning of the flight and a radar
reflector at the end of the trajectory. There is therefore a gap where no measurements are available
between the yaw cards (beginning of the flight) and the radar (end of the flight).

4.1. First scenario: identifications using simulated non-noised data

Figure 2 gives the reconstructions of the roll rate parameter ωc using the different identification
techniques from simulated yaw cards data and radar data. For the sake of confidentiality, curves
have been normalized (ω∗c = ωc/ωcmax

and t∗ = t/tmax). In addition, Table 1 gives the relative errors
made on the identified coefficients and initial conditions for each identification technique. Figure 2
and Table 1 show that the FRM gives the best results. Indeed, this technique is able to take into
account the lack of data, to simultaneously identify with precision the aerodynamic coefficients and
the initial conditions vi0 and ωc0 and to reconstruct the whole trajectory of the projectile.
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Fig. 2. Reconstruction of the roll rate parameter ωc using simulated non-noised yaw cards and radar data.

Table 1. Relative errors using simulated non-noised yaw cards and radar data.

Relative error (%) CPU

Cx Clp Cl0 vi0 ωc0 Time [s]

PM 0.15 11.02 10.75 X X 0.6

COM 3.72 9.18 8.93 0.12 29.44 6

FRM 1.7.10−3 5.10−3 4.9.10−3 5.10−4 2.22 6

4.2. Second scenario: identifications using simulated noisy data

Figure 3 gives the reconstructions of the roll rate parameter ωc using the different identification
techniques from simulated noisy data. The noise level on the axial velocity parameter is set to 0.1%
and the noise level on the roll rate parameter is set to 5%. Table 2 gives the relative errors made
on the identified coefficients and initial conditions for each identification procedure. Figure 3 and
Table 2 prove the robustness of the FRM when dealing with noisy data. Indeed, Fig. 3 shows that
the solution given by the FRM is denoised. In addition, this identification technique gives results
that are almost as accurate as the ones obtained by the classical least squares identification method
using an analytical solution.
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Fig. 3. Reconstruction of the roll rate parameter ωc using simulated noisy yaw cards data and radar data.

Table 2. Relative errors using simulated noisy yaw cards data and radar data.

Relative error (%) CPU

Cx Clp Cl0 vi0 ωc0 Time [s]

PM 5.1 6.03 5.33 X X 1

COM 3.89 6 5.43 0.13 28.4 9

FRM 1.82 2.43 2.33 0.05 20.48 10

Least Squares 1.78 2.43 2.33 0.05 18.17 2

4.3. Third scenario: identifications with only radar data

In this scenario we want to know if we are able to reconstruct the beginning of the trajectory from
radar data that is only available at the end of the trajectory. Figure 4 gives some reconstructions at
different steps of the iterative process using the FRM. The corresponding identified aerodynamic
coefficients are presented in Table 3. In order to make comparisons, the other identification tech-
niques are used with the available data on the measured part of the trajectory Ωd. The obtained
results are given in Table 3.

FRM allows not only the aerodynamic coefficients to be identified with better accuracy than the
other methods, but also allows the initial conditions to be precisely identified. It also shows that it
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Fig. 4. Reconstruction of the roll rate parameter ωc using only radar data.

Table 3. Relative errors using only radar data.

Relative error (%) CPU

Cx Clp Cl0 vi0 ωc0 Time [s]

PM on Ωd 0.03 4.79 4.69 X X 1

COM on Ωd 1.3 1 1 X X 8

FRM on Ω 0.01 0.19 0.19 4.10−4 9 30

is possible to identify the aerodynamic coefficients and initial conditions of the flight without yaw
cards data at the beginning of the trajectory.

5. CONCLUSION

Different identification techniques of the aerodynamic coefficients of a fin-stabilized projectile from
inflight data were proposed. A reduced ballistic model proposed by Demailly et al. [5] was used to
represent the flight. Some numerical simulations using simulated data have shown that the fading
regularization method gives the best identification results. Moreover, when there is a lack of flight
data on one part of the trajectory, FRM enables to simultaneously and accurately identify the
aerodynamic coefficients and the initial conditions and to reconstruct the whole trajectory of the
projectile. The proposed technique will be used in further works with real flight data and with
ballistic models where no analytical solution is available.
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