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The finite element analysis (FEA) method is indispensable in simulation technology, as it
can help engineers predict results to avoid the cost of experimental testing. However, the
finite element mesh generation process can be time-consuming, and the approximate mesh
model can lead to inaccurate stress results. Improving the accuracy of stress estimation
leads to a better assessment of damage or life of mechanical components. In this study, we
applied the isogeometric analysis (IGA) implemented in LS-DYNA software to study two
specimens subjreted to the stationary Gaussian random loads. These geometric models
were represented by non-uniform rational B-spline (NURBS) to assess the damage and
fatigue life in the frequency domain by using Dirlik’s distribution and cumulative damage.
A comparison with FEA was conducted to highlight the main differences. Experimental
fatigue tests with an electrodynamic shaker were also carried out to check if the fatigue
lives predicted by numerical models are consistent. The study showed that IGA predicts
similar results to FEA with an acceptable relative error and reduced the time for mesh
generation, requiring fewer integration points and mesh elements.

Keywords: isogeometric analysis, finite element method, random acceleration, vibration-
based bending fatigue.

Notation

CPU – central processing unit,
FEA – finite element analysis,
HCF – high-cycle fatigue,
IGA – isogeometric analysis,

NURBS – non-uniform rational B-spline,
PSD – power spectral density,
RFD – resonant frequency deviation [%],
RMS – root mean square,
S-N – diagram that relates the stress amplitude to the number of cycles to failure,
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e, cp – element and control point,
f – frequency [Hz],

√
m0 – root mean square value of stress,
mk – k-th order spectral moment,
ne – number of element,
necp – number of control points in an element e,

n, m – number of basis functions along ξ and λ parametric directions,
p, q – polynomial order along ξ and λ parametric directions,
D – total damage for deterministic loading,

E[D] – total damage for random loading,
E[N+

0 ] – expected number of zero-crossing per unit time,
E[Tf ] – fatigue life for random loading [s],
Fσ(r) – cumulative density function of stress,
Li,p(ξ) – Lagrangian basis functions for FEA,

N – applied cycle number,
Nf – number of cycles allowable at a particular stress amplitude,

Ni,p(ξ), Mj,q(λ) – i-th and j-th B-spline basis functions of orders p and q defined at ξ and λ
parametric points,

Ri,p(ξ) – i-th NURBS basis functions of order p defined at ξ parametric point,
Rp,qi,j (ξ, λ) – i-th and j-th NURBS basis functions of orders p and q defined at ξ and λ

parametric points,
Sσσ(f) – stress PSD function,
pσ(r) – probability density function of stress,

T – time duration [s],
W (ξ) – weighted linear combination of B-spline basis functions,
σa – stress amplitude,

σf , b, C, β – deterministic Basquin’s material constants,
σ(t) – stress random process,

e = (e1, e2, e3)
T – orthonormal basis,
f – deterministic volume force,
n – outward normal vector,
t – deterministic surface force,

u, ue – global and element displacement vector,
u̇, ü – velocity and acceleration vectors,

x = (x, y, z)T – global Cartesian reference system,
B – strain displacement matrix,
C – damping matrix,
C – fourth-order material constitutive tensor,

F, Fe – global and element external force vector,
|H(f)| – magnitude of the frequency response matrix,
K, Ke – global and element stiffness matrix,

Pi – i-th control point vector,
R – NURBS basis functions matrix,

SFF(f) – external force PSD matrix,
Suu(f) – displacement PSD matrix,
Sσσ(f) – stress PSD matrix,
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ε – strain tensor,
η – parametric coordinates given by ξ in one dimension, (ξ, λ) in 2 dimensions

and (ξ, λ, ζ) in 3 dimensions,
σ – Cauchy stress tensor,

Ξ, Λ – knot vectors,
E[.] – expected value operator,
δ – used for virtual quantities,
∇ – divergence operator,
⊗ – tensor product.

1. Introduction

Based on industrial data, 80% to 95% of mechanical structures fail due to
fatigue [1]. Predicting fatigue strength is essential in identifying the effective life
before a design is used in the natural working environment. In most cases, the
fatigue loads are random, and the most appropriate approach is to use a proba-
bilistic method to develop fatigue analysis. Fatigue analysis can be conducted
in the time or frequency domain for Gaussian random processes. However, time-
domain analysis is more computationally expensive compared to the method
using a power spectral density (PSD) in the frequency domain. Dirlik’s model
[1, 2] was used in this work to calculate the expected fatigue damage from spectral
moments of the PSD.

Numerical modelling of a complex structure is another time-consuming as-
pect. Nowadays, mechanical systems are an assembly of many components, lead-
ing to specific requirements on numerical analysis methods in terms of accuracy
and speed of analysis. A conventional finite element analysis (FEA) has some
weaknesses. The time spent for mesh generation process is often much longer
than the analysis time [3]. It is estimated that 80% of analysis time is devoted to
the mesh generation in some fields, e.g., automotive or shipbuilding industries [4].
On the other hand, it is often necessary to communicate with the original geom-
etry during each mesh refinement, and this process is time-consuming.

The second disadvantage lies in geometric approximation. Indeed, it is chal-
lenging to accurately represent complex geometric models based on the La-
grangian basis function in the classical FEA. Thus, the approximate models
lead to inaccurate analysis results. A possible alternative to finite elements is
the isogeometric analysis (IGA), often based on non-uniform rational B-splines
(NURBS) basis functions. In this case, a geometric model can be described ex-
actly by NURBS mesh elements. The corresponding mesh generation and mesh
refinement processes are often time-saving.

Hughes et al. [4] first proposed the concept of IGA. At present, IGA is ap-
plied in many fields, including contact mechanics [5–7], fluid mechanics [8–10],
structural optimization [11–14], shell analysis [15–19], damage and fracture me-
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chanics [20, 21], structural vibration analysis [22–26], and vibration analysis
with random material properties in which Young’s modulus and mass density
are modelled as Gaussian random variables [26]. Kiendl et al. [19] introduced
an isogeometric bending analysis of a thin shell structure comprised of multiple
patches. Gondegaon and Voruganti [25] presented a MATLAB code for differ-
ent types of structures with static and vibration analysis. Hartmann et al. [27]
presented an isogeometric convergence analysis of an underbody cross member
under the condition of increasing polynomial orders and element size. Compar-
ison with the FEA results has shown that IGA with higher polynomial order
sometimes does not give better results if the change in control point spacing is
not significant. Under the condition of comparable discretization with standard
linear finite elements, the NURBS shell elements can produce good results as
those produced by FEA with less central processing unit (CPU) time.

In the literature, numerous studies have been focused on modal and vibra-
tion modelling. However, to the authors’ knowledge, no research on random vi-
bration fatigue analysis with IGA has been reported. This work presents the
NURBS-based IGA applied to a structure subjected to random vibration fa-
tigue load. The analysis results have been verified by the classical FEA, in which
LS-DYNA software was used for the numerical analysis. The present work con-
tributes to improving the development of random vibration in LS-DYNA [28].
Furthermore, to validate the fatigue life results, experimental tests with an elec-
trodynamic shaker are carried out.

This paper is organized as follows. Section 2 briefly reviews the basic con-
cepts of IGA, formulations, and the differences between IGA and FEA. Then the
isogeometric static analysis of a plate with a hole model is conducted, and FEA
and analytical solution validate the analysis results. Section 3 presents the iso-
geometric random vibration fatigue analysis of a plate with a notch model, and
the FEA and experimental test confirm the results. Conclusions are proposed in
Sec. 4.

2. Theoretical background

A comparison of IGA with FEA is given to set the study’s theoretical frame-
work, which focuses on the application of the isogeometric analysis of a structure
subjected to fatigue induced by random vibration. Static calculations are also
considered to study the discretized model convergence.

2.1. Basic concepts of isogeometric analysis

IGA used in this research is based on NURBS basis functions. NURBS can
exactly represent a complex geometry, such as the conical, sphere, and cylindrical
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shapes. More details can be found in [4]. The basis functions are completely
determined by the knot-vector and the polynomial degree. As the concept of
IGA is relatively well known in the academic computing community, only the
basics are given next.

2.1.1. Parameter space and patch. The parameter space in a two-dimensional
IGA (R and S dimensions) is the [0, 1] × [0, 1] space where the NURBS basis
functions are defined. The patch is called a subdomain in IGA (can be seen as
a macro element), in which we can define the material properties and section
characteristics. A patch consists of numerous mesh elements. A geometric model
can be represented by several patches in which we can set different material
properties or section details, such as thickness. We use one patch model for the
first application (plate with a hole) for this study.

2.1.2. Knot vector. A knot vector is defined as a series of non-decreasing
coordinates in parameter space, denoted by Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R
is the i-th knot (coordinate), i = 1, 2, ..., n + p + 1 is the knot index, and n
and p are the number and the polynomial order of B-spline basis functions,
respectively.

We use the 2D shell elements for this study, so the discretization is conducted
in two dimensions, R and S, with two corresponding knot vectors. Each knot or
coordinate of the knot vector is used to divide the parameter space of a geometric
model to obtain elements, and the boundary of isogeometric mesh elements in
physical space is simply the image of the knot line under B-spline mapping. This
means that we can select the certain mesh elements by the corresponding knot
vectors.

2.1.3. B-splines. B-splines are defined by piecewise polynomials of a degree p.
They are completely defined by the knots such as ξ1 ≤ ξ2 ≤ ... ≤ ξn+p+1. More
specifically, the B-splines are defined by Eqs (1) and (2).

For i = 1, ..., n (p = 0), the B-splines are constructed with:

Ni,0(ξ) =

 1 if ξ ∈ dξi, ξi+1e,

0 otherwise.
(1)

To generate B-splines of arbitrary order p > 0, the following equation can be
used:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2)
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Thus, a B-spline curve is defined by the linear combination of B-spline basis
functions with the corresponding control points Pi in physical space (i = 1, ..., n)
as coefficients:

c(ξ) =
n∑
i=1

Ni,p(ξ)Pi. (3)

2.1.4. Non-uniform rational B-splines. To generate circular shapes, NURBS
is introduced. The univariate NURBS basis function is described by the rationale
of weighted B-spline basis functions:

Ri,p(ξ) =
ωiNi,p(ξ)

W (ξ)
=

ωiNi,p(ξ)
n∑
j=1

ωjNj,p (ξ)

. (4)

Here, n denotes the number of NURBS basis functions along ξ direction. ωi ∈ R
denotes the weight value of the control point Pi, and W (ξ) is the weighted
linear combination of B-spline basis functions. The NURBS curve is defined by
the linear combination of univariate NURBS basis functions Ri,p(ξ) and control
points Pi by the following expression [4]:

c(ξ) =
n∑
i=1

Ri,p(ξ)Pi. (5)

Given two knot vectors (one for each parametric direction) Ξ = {ξ1, ξ2, ...,
ξn+p+1} and Λ = {λ1, λ2, ..., λn+p+1}, the NURBS surface is defined by:

s(ξ, λ) =
n∑
i=1

m∑
j=1

Rp,qi,j (ξ, λ)Pi,j , (6)

where Rp,qi,j (ξ, λ) is bivariate NURBS basis functions defined by:

Rp,qi,j (ξ, λ) =
Ni,p(ξ)Mj,q(λ)wi,j

n∑
k=1

m∑
l=1

Nk,p(ξ)Ml,q(λ)wk,l

, (7)

where Ni,p(ξ) and Mj,q(λ) are p-th and q-th order B-spline basis functions.

2.2. Formulations

Let us consider a body and the global Cartesian reference system x =
(x, y, z)T and its associated orthonormal basis e = (e1, e2, e3)T . The body is
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subjected to the volume forces f = fiei and traction vector acting on the body
surface t = tiei. The domain of the body Ω is bounded by prescribed displace-
ment Γu and traction Γt boundaries. We can introduce the displacement field as
u = uiei and the stress σ = σijei ⊗ ej (i, j = 1, ..., 3) satisfying the equation in
the strong form:

∇σ + f = ρ
∂2u
∂t2

in Ω, (8)

σ · n = t in Γt, (9)

where ∇ represents the divergence operator, ρ is the density assumed constant,
n is the outward normal vector, and ∂2u

∂t2
= ü is the acceleration vector of the

body. This term stands for the inertial effect, which is considered negligible for
a static problem.

The displacement field is approximated using NURBS basis functions to con-
struct the CAD geometry of the structure. The discretization of the domain Ω
into a number of sub-domains Ωe = [ξi, ξi+1]⊗ [λj , λj+1] is carried out by using
the B-spline and NURBS formulations described in Subsec. 2.1, which trans-
form the parametric coordinates to physical coordinates. A mapping is intro-
duced to perform the analysis of each control point cp of any element e:

xe(η) =

necp∑
cp=1

Recp(η)Pe
cp, (10)

where η contains the parametric coordinates given by ξ in one dimension and
(ξ, λ) in two dimensions, and necp is the number of control points over element e.
Using the Galerkin method, the displacement and virtual displacement fields can
be deduced as follows:

ue(x) =

necp∑
cp=1

Recp(η)uecp, (11)

δue(x) =

necp∑
cp=1

Recp(η)δuecp, (12)

where ucp and δucp correspond to the values of the displacement and virtual
displacement fields at the control point Pcp. The momentum equation of Eq. (8)
can be used in a weak form based on the virtual work principle which can be
built for each element e to obtain the governing dynamic equilibrium of motion
for a structure:

Me üe + Ce u̇e + Ke ue = Fe, (13)
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where ue is the control point displacement, Fe is the external force vector that
represents the contribution of the total body forces, and Me, Ce and Ke are the
isogeometric element mass, damping using the damping property of an element
e denoted by κ, and stiffness matrices, respectively, given by:

Me =

ˆ

Ω

ρReT RedΩe, (14)

Ce =

ˆ

Ω

κReT RedΩe, (15)

Ke =

ˆ

Ωe

BeT CBe dΩe, (16)

where C = Cijklei⊗ej ⊗ek⊗el and ε = εijei⊗ej are the fourth-order material
elastic and the strain tensors, respectively. The components of strain tensor can
also be formulated from displacement as follows:

εij =
1

2
[ui,j + uj,i]. (17)

R is the matrix of the NURBS basis function and B is the strain displacement
matrix. It can be obtained by computing the derivatives of the basis functions
Rcp(η) for any element e. In bidimensional problem, the matrix has the following
form:

B =


R1,x 0 . . . Ri,x 0 . . . Rncp,x 0

0 R1,y . . . 0 Ri,y . . . 0 Rncp,y

R1,y R1,x . . . Ri,y Ri,x . . . Rncp,y Rncp,x

. (18)

The global matrices can be assembled by their corresponding elemental matrices
as follows:

M =
ne∑
e=1

Me, C =

ne∑
e=1

Ce, K =

ne∑
e=1

Ke, and F =

ne∑
e=1

Fe. (19)

The equations for 3D static calculations are given by Agrawal and Gautam [29].

2.3. Differences between IGA and FEA

The differences between IGA and FEA are the mesh elements formulation,
choice of basis functions, and calculation of field variables in the governing equa-
tion. As shown in Fig. 1, the mesh model obtained in FEA consists of mesh
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In IGA besides the usual physical mesh and mesh in the parent domain, the control mesh is introduced. The control

mesh is defined by control points. It defines geometry, however, it does not have to coincide with the real geometry of

a studied object. In two dimensions the control mesh is a bilinear quadrilateral element [4]. The physical mesh is a

representation of that actual geometry. It is obtained by the projection of control points with NURBS basis functions,

and the discretization is governed by knot vectors discretization in the parent domain. A physical mesh model can

consist of several patches, e.g. subdomains in which the section and material properties are the same.

FEA meshIGA mesh

ElementsControl mesh Physical mesh

Physical spaceParent domainPatchControl points

Knot spans

Parent domain Physical space

Figure 1: Meshing process in isogeometric and finite element analysis.

8

Fig. 1. Meshing process in isogeometric and finite element analysis.

elements represented in physical space or parent domain [30]. In physical space,
the mesh elements are defined by their nodal coordinates, and finite element ba-
sis functions, i.e. Lagrangian functions [29], interpolating the coordinate between
the nodes. Each element in the physical space can be mapped to the parent do-
main through coordinate transformation, in which the width and length of the
parent element are respectively 1, and the Gauss integration is performed on
the parent element.

In IGA besides the usual physical mesh and mesh in the parent domain,
the control mesh is introduced. The control mesh is defined by control points.
It defines geometry; however, it does not have to coincide with the real geometry
of a studied object. In two dimensions the control mesh is a bilinear quadrilateral
element [4]. The physical mesh is a representation of that actual geometry. It is
obtained by the projection of control points with NURBS basis functions, and the
discretization is governed by knot vectors discretization in the parent domain.
A physical mesh model can consist of several patches, e.g., subdomains in which
the section and material properties are the same.

Next, IGA usually adopts NURBS as its basis functions. Compared to Bern-
stein or B-spline basis functions, the NURBS basis functions possess more flexible
properties and can exactly represent conic, circular and sphere models due to
the effects of the B-spline basis function and weight points associations [29]. For
FEA, the Lagrangian basis functions shown in Eq. (20) are used to approximate
solutions at element nodes [30]:

Li,p(ξ) =

p+1∏
k=1,k 6=i

ξ − ξk
ξi − ξk

, 1 ≤ k ≤ p+ 1 and− 1 ≤ ξ ≤ 1. (20)
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Due to the different nature of basis functions, the description model also gives
different results. The critical properties are in variation diminishing characte-
ristics and inter-element boundary continuity. The variation diminishing pro-
perty (the number of sign changes) is used to characterize the smoothness of
a curve. For FEA, the Lagrangian basis functions can have any sign (−1 ≤
ξ ≤ 1, −1 ≤ Li,p(ξ) ≤ 1), so the oscillation of the fitting curve would be
increased with the increase in the polynomial order, resulting in a non-smooth
representation of the fitting curve (which cannot satisfy the variation diminishing
property) and leading to contact problems between different description models.
In IGA, the NURBS basis functions can satisfy non-negativity (−1 ≤ ξ ≤ 1,
0 ≤ Ri,p(ξ)). The obtained results are less sensitive to the polynomial orders
and can present a smooth representation of the geometry (possess the variation
diminishing property) and the contact surfaces. The same is observed for the
NURBS curves.

Additionally, the NURBS basis functions present cp−1−k continuity, in which
k is the number of repeating knots in a knot vector. However, the finite element
basis functions are restricted to only c0 continuity, leading to a non-smooth
representation of the physical derivative quantities like stresses or strains.

Thirdly, in IGA, the combination of control points Pi and NURBS basis
functions as shown in Eq. (4) are used to define NURBS-based elements, and
the field variables, such as displacement u in Eq. (11), are performed on control
points.

2.4. Comparison for a thin plate with a hole at the centre

The following well-known application [29, 31] is used to validate the isoge-
ometric and finite element models developed in LS-DYNA software based on
Kirsch’s solution. A rectangular plate with a hole of radius a is loaded in the
plane by a one-direction tension denoted by σ∞. The plane stress condition is
considered. The plate parameters are depicted in Fig. 2 and the related analytical
solution of the stress around the hole is given by [32]:

σrr =
σ∞
2

(
1−

(a
r

)2
)

+
σ∞
2

(
1− 4

(a
r

)2
+ 3

(a
r

)4
)

cos 2θ,

σθθ =
σ∞
2

(
1 +

(a
r

)2
)
− σ∞

2

(
1 + 3

(a
r

)4
)

cos 2θ,

τrθ = −σ∞
2

(
1 + 2

(a
r

)2
)
− 3

(a
r

)4
sin 2θ.

(21)
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Fig. 2. Schematic diagram of a plate model.

At the hole (r = a), Eq. (21) becomes (the radial stress σrr and the shear stress
τrθ are zero):

σrr = 0,

σθθ = σ∞(1− 2 cos 2θ),

τrθ = 0.

(22)

In addition, when θ = ±90◦, the proportion between the obtained maximum
stress σθθ and the applied stress σ∞ is 3. This analytical solution is used in the
following section to compare FEA and IGA.

2.4.1. Numerical models. The plate geometric model with 10× 2× 0.001 (m)
dimensions is modelled in LS-DYNA software. The radius of the hole is chosen
at 0.25 m. The material properties of the model are given in Table 1. Due to
the symmetry of the geometry and the applied load, just a quarter of the plate
model is analyzed.

Table 1. Material properties of the plate.

Mass density Young’s modulus Poisson’s ratio
7800 kg/m3 205 GPa 0.3

The related isogeometric and finite element mesh models, presented in Fig. 3,
are defined with different densities of mesh elements to perform convergence
analysis. Based on the obtained results, the CPU time for the analysis, and the
maximum stress in the y-direction are respectively compared for IGA and FEA.
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a) b)

Fig. 3. Mesh models and boundary conditions: a) IGA, b) FEA.

The isogeometric shell elements with NURBS, specifically developed for IGA,
are used for the model. The quadrilateral four-node elements are adopted to de-
velop the FEA mesh model. The symmetry boundary conditions, depicted in
Fig. 3, are the same for IGA and FEA. The translational displacements in the
y-direction and x-direction, marked by black bracket, are respectively imposed
on the bottom and right edges of the model. A tension load fixed at 1 MPa
(marked by red a bracket) is applied onto the control points (for IGA) and
nodes (for FEA) on the left edge of the model.

2.4.2. Convergence analysis. The maximum stress in the y-direction ob-
tained from the static analysis is chosen to determine the convergence rate.
In Fig. 4, it can be seen that with the increase of control points number of
IGA and element nodes number of FEA, the maximum stresses tend to reach
a stable value. In order to show the isogeometric convergence analysis intuitive-
ly, a fitting curve is used to approximate the obtained maximum stresses from
different analyses. Furthermore, the minimum correlation coefficient r, defined
by Eq. (23) between the maximum stress values and the values obtained from
the fitting curve, is 0.92:

r =

n∑
i=1

(Yi − Y )(Yfit,i − Y fit)√
n∑
i=1

(Yi − Y )2

√
n∑
i=1

(Yfit,i − Y fit)2

, (23)

where Yi and Yfit,i are the i-th values obtained from the numerical analysis and
fitting curves, Y and Y fit are corresponding mean values, and n is the extracted
number sets and in this case n is 7.

For IGA, the maximum stress values start to converge from the mesh density
(control point number for IGA) 933. For FEA, the maximum stresses become
stable from the mesh density (element node number for FEA) 7701. After choos-
ing the isogeometric and finite element convergence points, the analysis results
of these points are obtained to compare IGA and FEA.
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a) b)

Fig. 4. Convergence analysis results: a) IGA, b) FEA.

2.4.3. Maximum stress in y-direction and CPU time. As the zone of max-
imum stresses is always located in similar elements, just a part of the model
is shown in Fig. 5 in which the maximum stresses obtained from the isogeo-
metric and finite element convergence analysis are respectively 3.098× 106 and
3.015× 106 Pa, leading to the relative error (defined by Eq. (24)) of 2.7%. Fur-
thermore, it has been shown that maximum stress values are situated on the
same elements. On the other hand by comparing CPU time, which shows the
consumed time during the analysis process, we can find that IGA is more time-
efficient compared to FEA, as the CPU time for IGA and FEA is respectively
74 s and 720 s.

All the numerical calculations presented in the article are run on the computer
Intel(R) Core(TM) i5-6440HQ CPU 2.60GHz with RAM 8Gb.

Relative error(%) =
ResultIGA − ResultFEA

ResultFEA
. (24)

a) b)

Fig. 5. Maximum stresses: a) IGA, b) FEA.

3. Fatigue analysis induced by random acceleration

The study of the dynamic response exploiting vibration phenomena aims
to determine the dynamic properties directly connected with the geometrical
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and mechanical characteristics of a system. Hence, some concepts of structural
dynamic response and how to obtain the dynamic parameters are summarized in
this section. The excitation with base motion (e.g., car suspension, earthquake
ground motion or electrodynamic shaker, etc.) does not provide information with
respect to the force applied. Therefore the formalism related to the base motion
is different from the classical force-excitation theory.

For random vibration loading, the global matrices M, C and K (and mode
shapes) given in Eq. (13) remain deterministic. In the time domain, the force
and the displacement field are written in terms of expected values denoted,
respectively, as E[F(t)] and E[u(t)]. In the spectral domain, these two quantities
are connected by the following relation:

Suu(f) =
∣∣HuF(f)

∣∣2SFF(f), (25)

where Suu(f) and SFF(f) are the PSDs of control point displacement and ex-
ternal forces and |HuF(f)

∣∣ corresponds to the frequency response magnitude of
the structure obtained from the ratio between the displacement and the force
given in the frequency domain. In the time domain, the stress expected value
of the structure can therefore be deduced from the force expected value by using
the following expression:

E[σ(t)] = CBK−1 E[F(t)], (26)

where K−1 = HuF(0) represents the static part. The transformation of Eq. (26)
into the spectral domain leads to a relationship between the stress and displace-
ment PSDs:

Sσσ(f) = CBSuu(f)BT CT . (27)

In the following section, only one excitation direction is considered; therefore,
matrices are not used.

3.1. Cumulative fatigue and frequency formulation for deterministic
and random excitation

Fatigue is defined as a progressive change in the material properties following
the application of loading cycles, the repetition of which can lead to the fracture.
Schijve [33] defined fatigue life as the addition of the initiation period and the
crack growth period. The author found that more than 90% of the fatigue life
is usually spent before cracks under high cycle fatigue (HCF) conditions are de-
tected. A cumulative damage calculation was used to quantify the total damage
characterized by the fraction of life consumed by the crack initiation.
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This study is focused on HCF; thus the material behavior remains elastic
during the fatigue loading until crack initiation. Therefore, an elastic computa-
tion is performed to obtain stress states used for the damage calculations. For
deterministic excitation, the linear model of Palmgren–Miner damage accumu-
lation [34, 35] known as Miner’s rule, is one of the most widely used methods
[36–38]. Let us consider m stress amplitudes denoted by σa,i (i = 1, ...,m), which
characterize the time history response calculated at the maximum stress location
of a structure (by FEA or IGA). The authors assume that each significant stress
amplitude extracted from the stress-time history (by using Rainflow counting
techniques, see [39, 40]) produces individual damage and the total damage D is
obtained by the following summation:

D =

m∑
i=1

1

Nf,i
Ni, (28)

where Nf,i is the number of cycles allowable at particular stress before a material
fails by fatigue (the number of cycles to failure at constant stress amplitude
σa) defined from the S-N curve (representing the stress amplitudes versus the
number of cycles to failure) and Ni is the ith applied stress cycle number. For
steel structures, if the cumulative fatigue damage reaches a critical value of 1, the
structure is considered damaged. To define the S-N relationship for high cycle
fatigue region, the Basquin’s power-law is used:

σa = σfN
b
f , (29)

which can also be written as:

Nfσ
β
a = C (30)

with σf = C
1
β and b = − 1

β .
Therefore, Eq. (28) becomes:

D =
m∑
i=1

C−1σβa,iNi, (31)

where C and β are material constants identified by the Basquin’s straight curve
in a logarithmic representation of the S-N curve.

For a deterministic loading, the fatigue analysis is performed in the time do-
main while for Gaussian random excitation, it can be developed in the time
domain or the frequency domain. However, the fatigue analysis in the time do-
main requires a large number of time records compared to the frequency domain.
Therefore, in this work, we consider only frequency formulations. When random
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loading is considered, the damage and fatigue life are random variables. The
random process σ(t) corresponds to a random variation in time of a stress com-
ponent or effective stress. At each instant, the process is composed of a number
of random variables that follow a Gaussian distribution. All parameters useful
for fatigue analysis performed in the frequency domain can be directly extracted
from stress the PSD. When a Gaussian stationary random process is considered,
these parameters are mainly the k-th order spectral moments given by:

mk =

+∞ˆ

−∞

|2πf |k Sσσ(f)df, (32)

where Sσσ(f) is the stress PSD function. Over a duration of observation T ,
the probability that a random process σ(t) does not exceed, in absolute value,
a given value denoted by r can be given by the cumulative density function of
the amplitudes (or maxima for zero-mean stress) denoted by Fσ(r):

Fσ(r) =

rˆ

−∞

pσ(r)dr = prob(|σ(t)| ≤ r), t ∈ [0, T ], (33)

where pσ(r) is the probability density function. When the mechanical structure
is subjected to a zero-mean Gaussian stationary random excitation, the expected
damage per unit time can be obtained from the cumulative expression given in
Eq. (28):

E[D] = C−1E
[
|σ(t)|β

]
E[N ], (34)

where C and β are deterministic. To determine the expected value of |σ(t)|β ,
we can use the expectation definition of a random variable in the HCF domain
such as:

E
[
|σ(t)|β

]
=

+∞ˆ

0

rβpσ(r)dr. (35)

It corresponds to β-th order statistical moment. Knowing that for period T ,
E[N ] = T × E[N+

0 ], Eq. (34) becomes:

E [D] = C−1TE[N+
0 ]

+∞ˆ

0

rβpσ(r)dr. (36)
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E[N+
0 ] =

√
m2
m0

is the expected number of zero-crossings with a positive slope per
second. m0 and m2 are respectively the zeroth-order and second-order spectral
moments of the PSD.

√
m0 is the root mean square (RMS) and represents the

square root of the area under the PSD-frequency graph. The expected fatigue
life denoted by E[Tf ] can then be deduced from Eq. (36):

E[Tf ] =
T

E[D]
=

1

C−1E[N+
0 ]

+∞́

0

rβpσ(r)dr
. (37)

Before the damage evaluation, it is necessary to define a probability density
function pσ(r) of the maxima. The different spectral methods for fatigue da-
mage assessment are first characterized by the cycle counting procedure. Since
the rainflow method has been recognized to give the best predictions, the spec-
tral methods are mainly focused on the rainflow cycle distribution. There is no
analytical formula to establish the cycle distribution; therefore, the existing spec-
tral methods evaluate these distributions approximately or empirically. Some of
the most commonly used methods include the narrow-band approach based on
Rayleigh approximation and Dirlik’s amplitude distribution [2].

In this work, Dirlik’s distribution is used to evaluate the expected value of
damage from Eqs (36) and (37). The amplitude probability density function for
a normalized variable Z = σa√

m0
is:

pσ(Z) =

D1
Q · e

−Z
Q + D2·Z

R2 · e
−Z2

2·R2 +D3Q · e
−Z2

2

2
√
m0

, (38)

γ is the irregularity factor given by:

γ =
m2√
m0m4

(39)

with m4 the fourth-order spectral moment of the PSD. xm is defined by Dirlik
as the mean frequency and is expressed such as:

xm =
m1

m0

√
m2

m4
, (40)

and the other parameters are obtained from:

D1 =
2(xm − γ2)

1 + γ2
, D2 =

1− γ −D1 +D2
1

1−R
, D3 = 1−D1 +D2,

Q =
1.25(γ −D3 −D2)

D1
, R =

γ − xm −D2
1

1− γ −D1 +D2
1

.
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3.2. Application to a plate with reduced section.
Validation by experimental tests

In this section, the isogeometric and finite element analyses are performed on
a steel specimen. The mechanical properties of the material are given in Table 2.
The specimen geometry is depicted in Fig. 6. The reduced section is used to
localize the stresses away from the clamp. The bottom side of the plate is fixed
while the top side is kept free. The plate is then subjected to a random base
acceleration excitation applied to the clamp. To assess the life duration, Dirlik’s
approach is employed in IGA and FEA. The same excitation was considered in
experimental tests to validate the numerical results.

Table 2. Material properties.

Mass density Young’s modulus Poisson’s ratio
7850 kg/m3 1.7× 1011 Pa 0.3

3.2 Application to a plate with reduced section. Validation by experimental tests
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Table 2: Material properties
Mass density Young’s modulus Poisson’s ratio

7850 kg/m3 1.7.1011 Pa 0.3

3.3 Numerical analysis

3.3.1 Analysis procedures

As shown in Figure 7, the static convergence analysis is performed first to reach an asymptotic stress result. Here, a

normal pressure load is applied (in the z-direction, see Figure 8) on the free edge of the plate to simulate the bending

effect. In the second step, the mesh model resulting from the previous convergence analysis is used to perform the

damage calculation for a plate submitted to random loading. The numerical fatigue results are then validated with

experimental tests.

3.3.2 IGA and FEA modelling of the plate

The isogeometric and finite element mesh models are presented in Figure 8. The boundary conditions were considered

similar for IGA and FEA. The clamp is represented by a black box in Figure 8. The pressure load fixed at 100 Pa and
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Fig. 6. The plate model with reduced section.

3.3. Numerical analysis

3.3.1. Analysis procedures. As shown in Fig. 7, the static convergence ana-
lysis is performed first to obtain an asymptotic stress result. Here, a normal
pressure load is applied (in the z-direction, see Fig. 8) onto the free edge of the
plate to simulate the bending effect. In the second step, the mesh model resulting
from the previous convergence analysis is used to perform the damage calculation
for a plate submitted to random loading. The numerical fatigue results are then
validated with experimental tests.
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Static analysis

Convergence
points

No

step 1

step 2 step 3
yes

Calculation
 of the expected damage
from a PSD acceleration

Experimental test

Figure 7: Flow chart of analysis procedure

represented by the red box, is applied on the first top row elements of the model in the minus z direction to simulate the

bending effects in which the applied load area is always 5x20 mm related to the length portion and width of the plate.

For IGA, the load is applied on each NURBS element with a keyword LOAD NURBS Shell in LS-DYNA.

(a) (b)

Figure 8: Mesh models and boundary conditions (a) IGA (b) FEA

17

Fig. 7. Flow chart of analysis procedure.

a) b)

Fig. 8. Mesh models and boundary conditions: a) IGA, b) FEA.

3.3.2. IGA and FEA modelling of the plate. The isogeometric and finite
element mesh models are presented in Fig. 8. The boundary conditions are con-
sidered similar for IGA and FEA. The clamp is represented by a black box in
Fig. 8. The pressure load is fixed at 100 Pa and represented by the red box,
is applied to the first top row elements of the model in the minus z-direction to
simulate the bending effects in which the applied load area is always 5× 20 mm
related to the length portion and width of the plate. For IGA, the load is applied
onto each NURBS element with a keyword LOAD NURBS Shell in LS-DYNA.
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The effective stress results are used for the convergence analyses. From these
analyses, presented in Fig. 9, the number of control points for IGA is chosen at
52 and the number of elements for FEA at 133.
a) b)

Fig. 9. Convergence results and the related correlation coefficient r of the fitting curves for:
a) IGA, b) FEA.

Figure 10 shows the isogeometric and finite element convergence analyses
leading to similar maximum stress values (respectively 1.062× 104 and 1.054×
104 Pa) with a relative error of 0.75%. Moreover, these maxima are at similar
locations of the reduced section. The CPU time of analysis, respectively 231 s
and 462 s, shows that IGA is more time-efficient than FEA.

a) b)

Fig. 10. Effective stress: a) IGA, b) FEA.

3.3.3. Fatigue analysis using power spectral density and damage ratio. After
choosing convergence points, the isogeometric and finite element random vibra-
tion fatigue analyses are performed on the obtained mesh models. Table 3 and

Table 3. The first five natural frequencies [Hz].

1 2 3 4 5
IGA 211 1282 1510 1623 4253
FEA 209 1141 1506 1579 4266
Relative error [%] 0.9 12.4 0.3 2.8 −0.3
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Fig. 11 respectively show the first five natural frequencies and the first vibration
mode. Through comparison, it is found that the natural frequencies and vibra-
tion mode computed from IGA and FEA are similar. According to Eq. (24),
the relative error for the first natural frequency is 0.9%. We can also observe
higher relative error for the second and fourth natural frequencies. In our opi-
nion, the difference is due to the low correlation observed in Fig. 9a. Therefore,
the number of control points chosen for IGA leads to a small deviation of the
von Mises stress in static (see Fig. 10) and to a more consequent deviation in
dynamic especially for the pair modes (e.g., torsion). However, only the first
mode is useful for this study because it causes the most damage. For this mode,
the deviation of the displacements given in Fig. 11 is small.

a) b)

Fig. 11. The first vibration mode: a) IGA, b) FEA.

After the modal analysis, the random analysis is performed with LS-DYNA.
The acceleration PSD depicted in Fig. 12 is used to excite the specimen. This
PSD is applied on the element nodes (control points for IGA) selected in boun-
dary conditions in the z-direction to simulate the base acceleration. The damping
ratio and exposure time are respectively set to 0.016 and 18000 s. The random
vibration fatigue analysis is developed in LS-DYNA to obtain the effective stress
PSD, the related RMS, and the expected damage. The material constants σf and

Frequency [Hz]

PS
D

 [m
/s

2 ]2 /H
z

Fig. 12. Applied acceleration PSD.
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b of the Basquin’s equation (see Eq. (29)) are respectively 612.3± 5% MPa and
−0.105, which are obtained from CES EduPackTM software. The margin on σf is
used to take into consideration the material uncertainty and overcome the small
number of specimens tested.

Figures 13 and 14 show the obtained isogeometric and finite element effective
stress PSDs and RMS. It can be seen that only the first natural frequency is
excited by the acceleration PSD, and the resulting PSD and RMS values are
similar. The deviation between the isogeometric and finite element PSDs is due to
the difference in the first natural frequencies reported in Table 3. The RMS values
of the maximum effective stress obtained from IGA and FEA are respectively
5.24× 107 and 5.278× 107 Pa, leading to a relative error of −0.7%. In Fig. 15,
it can be seen that the resulting expected damage is respectively 1.45 and 1.47,
leading to a relative error of 1.2%. The maximum values of the damage are
located in similar locations. According to Eq. (37), the expected fatigue lives
are reported in Table 4. It can be observed that for different σf , the isogeometric
and finite element fatigue lives are in good agreement.

Frequency [Hz]

PS
D

 [P
a]

2 /H
z

Fig. 13. The effective stress PSD.

a) b)

Fig. 14. The effective stress RMS: a) IGA, b) FEA.
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a) b)

Fig. 15. The cumulative damage ratio: a) IGA, b) FEA.

Table 4. Fatigue life results related to the 5% variation of σf
(in the units of hours :minutes : seconds).

σf [MPa] 581.685 612.3 642.915
IGA 2:19:40 3:27:02 4:48:43
FEA 2:17:06 3:24:30 4:46:48

3.4. Experimental test

Three specimens were tested in fatigue induced by vibration. The test was
carried out with random acceleration using the electrodynamic shaker TiraVib
TV50100 + BAA1000 + 114 FPS (Fig. 16a) from the Mechanical Laboratory of
Normandy [41, 42]. Figure 16b gives a schematic representation of the system.

a) b)

c)

Fig. 16. a) Vibration-based bending fatigue bench, b) scheme of the test,
and c) scheme of the bending deflection.
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The series of three specimens used for the experimental tests are made up of
low-carbon steel DC01 (or St10 or XC10 or SAE 1010) with the yield stress
of 235 MPa and Young’s modulus of 170 GPa. A reduced section was designed
in the specimen to locate the crack away from the clamp. The specimen was
clamped on one edge, and the remaining edge was free. A transversal vibra-
tion (Fig. 16c) was imposed at the clamp by driving the shaker with a closed-
loop control device (ACP or Acquisition Control Peripheral of spectral dynamic
“Jaguar”). The shaker drive was possible thanks to an accelerometer PCB 333A30
mounted at the specimen fixture. The response measurements of the specimen
were given by a laser displacement sensor located at the free edge and a strain
gauge HBM 1LY15-1.5/350 was glued at the centre of the reduced section of the
specimen. The input acceleration PSD was identical to that used in the numeri-
cal analysis (see Fig. 12). One thousand six hundred frequency lines were used
to generate the related time signal. Frequency and time signal responses were
continuously recorded by the ACP and an “HBM quantum” device, respectively.
The frequency response corresponding to the ratio of the displacement over the
input acceleration was used to follow the resonant frequency of the system. If
a crack occurs (see Fig. 16c), a shift and a decrease of magnitude of the fre-
quency response are observed. Figure 17 shows the frequency responses recorded
at different times of a fatigue test. An amplitude decrease is observed when
cumulative damage occurs. Therefore, it is possible to detect a change in the
response of the specimen by the evolution of the resonant frequency deviation
defined by the following ratio:

RFD [%] = 100× f0
r − f ir
f0
r

, (41)

where f0
r corresponds to the initial resonant frequency of undamaged specimen

and f ir is the i-th measure of the resonant frequency during the fatigue test.
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Fig. 17. Frequency responses during fatigue test (four measures).
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The strain signal in time recorded by the HBM device via the strain gauge
is represented in Fig. 18 for specimen S1 (with a sampling rate of 4800 of per
second). The related spectrogram given in Fig. 19 shows the evolution of resonant
frequency during the exposure time. The deviation of this resonant frequency is
clearly visible.
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Fig. 18. Strain measure (a) complete signal during fatigue test and (b) signal zoom.
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Fig. 19. Spectrogram obtained from the strain measure.

Figure 20 represents the RFD evolution extracted from the spectrogram.
This evolution represents the time versus the number of cycles deduced from
the frequency. After the occurrence of crack, it can be observed that the RFD
values increase with the crack growth. Based on the studies of Xu et al. [43]
and Hu et al. [44], the fatigue lives of the specimens were determined for the
RFD threshold fixed at 5%. The resulting fatigue lives obtained after the test
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Fig. 20. Resonant frequency deviation during fatigue test (a) versus time
and (b) versus number of cycles.

of the three specimens are reported in Table 5. The lifetimes obtained from the
experimental tests are within the range obtained numerically from the values
of σf .

Table 5. The experimental fatigue lives obtained for 5% frequency drop
(hour :minutes : seconds).

Id of specimen Fatigue life
S1 4:26:40
S2 3:30
S3 3:16:45

4. Conclusion

The objective of this study was to propose a new method of numerical mo-
delling for the fatigue life prediction of structures. We considered the random
vibration fatigue analysis on a steel plate with a reduced section. The specimen
was clamped on one side and random acceleration in the normal direction to
the plate surface was applied on the fixture side. IGA was chosen for modelling
because it potentially allows for faster numerical simulations, which is impor-
tant for complex structures. The finite element model was also computed for
comparison. We chose the LS-DYNA software for the numerical modelling.

The convergence analysis of the static bending problem was used to define
the mesh density. It is shown that the IGA and FEA convergence analyses led to
similar maximum stress values with a relative error of 0.75%, and are situated
at similar locations of the reduced section. The CPU time of the analysis, re-
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spectively 231 and 462 seconds, shows that IGA is more time efficient compared
to FEA.

The convergence analysis highlighted that for IGA during each mesh refine-
ment step, there is no need to re-create mesh elements on the original geometry
model. It is sufficient to develop mesh elements on the previous mesh model,
so that the mesh refinement time can be greatly saved. However, for FEA, it is
mandatory to communicate with the original geometric model for mesh refine-
ment, and so this process is more time-consuming in LS-DYNA software.

The comparison of numerical analysis results, shows that the effective stress
power spectral densities and the related root mean square values are similar,
with a relative error of −0.7%. This small inaccuracy is probably due to the
convergence and the choice of the number of finite elements and control points.
Despite this, IGA can predict the fatigue life using fewer NURBS elements and
integration points through the thickness, and the predictions are consistent with
the FEA result.

These results were estimated by experimental tests. In fact, the experimen-
tally obtained lifetimes are effectively evaluated by IGA and FEA, leading to
the conclusion that these analyses are suitable for random vibration fatigue.
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Highlights

• A numerical model is implemented in LS-DYNA to predict the fatigue
damage of a specimen under random vibrations in the frequency domain.

• Isogeometric analysis is used for the numerical modelling.
• Finite element models are used for the comparison.
• Convergence rates are compared, and IGA models converge with less mesh

density.
• Isogeometric random vibration fatigue analysis can predict similar results

with finite element counterparts (with a relative error of 1.2% for the cu-
mulative damage).
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• The analysis results are validated by experimental test, concluding that the
isogeometric analysis is appropriate for random vibration fatigue problems.

References

1. A. Ringeval, Y. Huang, Random vibration fatigue analysis with LS-DYNA, [in:] Proceed-
ings of the 12th International LS-DYNA Users Conference, Dearborn, Michigan, USA,
2012.

2. T. Dirlik, Application of computers in fatigue analysis, PhD thesis, University of Warwick,
Coventry, England, 1985.

3. S.J. Owen et al., An immersive topology environment for meshing, [in:] M.L. Brewer, D.
Marcum [Eds], Proceedings of the 16th International Meshing Roundtable, pp. 553–577,
Springer, Berlin, Heidelberg, 2008.

4. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics
and Engineering, 194(39): 4135–4195, 2005, doi: 10.1016/j.cma.2004.10.008.

5. J. Lu, Isogeometric contact analysis: Geometric basis and formulation for frictionless con-
tact, Computer Methods in Applied Mechanics and Engineering, 200(5–8): 726–741, 2011,
doi: 10.1016/j.cma.2010.10.001.

6. İ. Temizer, P. Wriggers, T.J.R. Hughes, Contact treatment in isogeometric analysis with
NURBS, Computer Methods in Applied Mechanics and Engineering, 200(9–12): 1100–
1112, 2011, doi: 10.1016/j.cma.2010.11.020.

7. İ. Temizer, P. Wriggers, T.J.R. Hughes, Three-dimensional mortar-based frictional contact
treatment in isogeometric analysis with NURBS, Computer Methods in Applied Mechanics
and Engineering, 209–212: 115–128, 2012, doi: 10.1016/j.cma.2011.10.014.

8. Y. Bazilevs, T.J.R. Hughes, NURBS-based isogeometric analysis for the computation
of flows about rotating components, Computational Mechanics, 43: 143–150, 2008, doi:
10.1007/s00466-008-0277-z.

9. Y. Bazilevs, V.M. Calo, Y. Zhang, T.J.R. Hughes, Isogeometric fluid–structure interaction
analysis with applications to arterial blood flow, Computational Mechanics, 38: 310–322,
2006, doi: 10.1007/s00466-006-0084-3.

10. Y. Bazilevs, V.M. Calo, T.J.R. Hughes, Y.J. Zhang, Isogeometric fluid-structure inter-
action: theory, algorithms, and computations, Computational Mechanics, 43: 3–37, 2008,
doi: 10.1007/s00466-008-0315-x.

11. X. Qian, Full analytical sensitivities in NURBS based isogeometric shape optimization,
Computer Methods in Applied Mechanics and Engineering, 199(29–32): 2059–2071, 2010,
doi: 10.1016/j.cma.2010.03.005.

12. W.A. Wall, M.A. Frenzel, C. Cyron, Isogeometric structural shape optimization, Com-
puter Methods in Applied Mechanics and Engineering, 197(33–40): 2976–2988, 2008, doi:
10.1016/j.cma.2008.01.025.

https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2010.10.001
https://doi.org/10.1016/j.cma.2010.11.020
https://doi.org/10.1016/j.cma.2011.10.014
https://doi.org/10.1007/s00466-008-0277-z
https://doi.org/10.1007/s00466-006-0084-3
https://doi.org/10.1007/s00466-008-0315-x
https://doi.org/10.1016/j.cma.2010.03.005
https://doi.org/10.1016/j.cma.2008.01.025


Prediction of random vibration fatigue damage. . . 221

13. B. Hassani, S.M. Tavakkoli, N.Z. Moghadam, Application of isogeometric analysis in struc-
tural shape optimization, Scientia Iranica, 18(4): 846–852, 2011, doi: 10.1016/j.scient.
2011.07.014.

14. S. Shojaee, N. Valizadeh, M. Arjomand, Isogeometric structural shape optimization using
particle swarm algorithm, International Journal of Optimization in Civil Engineering,
1(4): 633–645, 2011.

15. J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with
Kirchhoff–Love elements, Computer Methods in Applied Mechanics and Engineering,
198(49–52): 3902–3914, 2009, doi: 10.1016/j.cma.2009.08.013.

16. D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, Isogeometric shell analysis: The
Reissner-Mindlin shell, Computer Methods in Applied Mechanics and Engineering, 199
(5–8): 276–289, 2010, doi: 10.1016/j.cma.2009.05.011.

17. D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large deformation, rotation-free,
isogeometric shell, Computer Methods in Applied Mechanics and Engineering, 200(13–16):
1367–1378, 2011, doi: 10.1016/j.cma.2010.12.003.

18. T.-K. Uhm, S.-K. Youn, T-spline finite element method for the analysis of shell struc-
tures, International Journal for Numerical Methods in Engineering, 80: 507–536, 2009,
doi: 10.1002/nme.2648.

19. J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, The bending strip
method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple
patches, Computer Methods in Applied Mechanics and Engineering, 199(37–40): 2403–
2416, 2010, doi: 10.1016/j.cma.2010.03.029.

20. S.-I. Moon, I.-J. Cho, D. Yoon, Fatigue life evaluation of mechanical components using
vibration fatigue analysis technique, Journal of Mechanical Science and Technology, 25:
631–637, 2011, doi: 10.1007/s12206-011-0124-6.

21. Y. Eldoğan, E. Ciğeroğlu, Vibration fatigue analysis of a cantilever beam using different
fatigue theories, [in:] R. Allemang, J. De Clerck, C. Niezrecki, A. Wicks [Eds], Topics in
Modal Analysis, Vol. 7, Conference Proceedings of the Society for Experimental Mechanics
Series, pp. 471–478, Springer, New York, NY, 2014, doi: 10.1007/978-1-4614-6585-0_45.

22. J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural
vibrations, Computer Methods in Applied Mechanics and Engineering, 195(41–43): 5257–
5296, 2006, doi: 10.1016/j.cma.2005.09.027.

23. D. Wang, W. Liu, H. Zhang, Novel higher order mass matrices for isogeometric structural
vibration analysis, Computer Methods in Applied Mechanics and Engineering, 260: 92–
108, 2013, doi: 10.1016/j.cma.2013.03.011.

24. S. Shojaee, E. Izadpanah, N. Valizadeh, J. Kiendl, Free vibration analysis of thin plates
by using a NURBS-based isogeometric approach, Finite Elements in Analysis and Design,
61: 23–34, 2012, doi: 10.1016/j.finel.2012.06.005.

25. S. Gondegaon, H.K. Voruganti, Static structural and modal analysis using isogeome-
tric analysis, Journal of Theoretical and Applied Mechanics, 46(4): 36–75, 2016, doi:
10.1515/jtam-2016-0020.

https://doi.org/10.1016/j.scient.2011.07.014
https://doi.org/10.1016/j.scient.2011.07.014
https://doi.org/10.1016/j.cma.2009.08.013
https://doi.org/10.1016/j.cma.2009.05.011
https://doi.org/10.1016/j.cma.2010.12.003
https://doi.org/10.1002/nme.2648
https://doi.org/10.1016/j.cma.2010.03.029
https://doi.org/10.1007/s12206-011-0124-6
https://doi.org/10.1007/978-1-4614-6585-0_45
https://doi.org/10.1016/j.cma.2005.09.027
https://doi.org/10.1016/j.cma.2013.03.011
https://doi.org/10.1016/j.finel.2012.06.005
https://doi.org/10.1515/jtam-2016-0020


222 S. Wang et al.

26. T.D. Hien, H.-C. Noh, Stochastic isogeometric analysis of free vibration of functionally
graded plates considering material randomness, Computer Methods in Applied Mechanics
and Engineering, 318: 845–863, 2017, doi: 10.1016/j.cma.2017.02.007.

27. S. Hartmann, D.J. Benson, D. Lorenz, About isogeometric analysis and the new NURBS-
based finite elements in LS-DYNA, [in:] 8th European LS-DYNA Users Conference, Stras-
bourg, France, 2011.

28. Y. Huang, S. Hartmann, D.J. Benson, Random vibration fatigue analysis based on IGA
model in LS-DYNA, Ansys TechCon 2020, October 2020, https://ftp.lstc.com/anony
mous/outgoing/huang/nvh/papers.htm.

29. V. Agrawal, S.S. Gautam, IGA: A simplified introduction and implementation details
for finite element users, Journal of The Institution of Engineers (India): Series C, 100:
561–585, 2019, doi: 10.1007/s40032-018-0462-6.

30. O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fun-
damentals, 6th Ed., Elsevier, Butterworth-Heinemann, 2005.

31. P. Milić, D. Marinković, Isogeometric structural analysis based on NURBS shape func-
tions, Facta Universitatis, Series: Mechanical Engineering, 11(2): 193–202, 2013.

32. G. Kirsch, Die Theorie der Elastizität und die Bedurfnisse der Festigkeitslehre [in German],
Zantralblatt Verlin Deutscher Ingenieure, 42: 797–807, 1898.

33. J. Schijve, Four lectures on fatigue crack growth: I. Fatigue crack growth and fracture
mechanics, Engineering Fracture Mechanics, 11: 169–181, 1979.

34. M.A. Miner, Cumulative damage in fatigue, Journal of Applied Mechanics, 12(3): 159–
164, 1945, doi: 10.1115/1.4009458.

35. A. Palmgren, Die Lebensdauer von Kugellagern [in German; in English: Durability of ball
bearings], Zeitschrift des Vereines Deutscher Ingenieure (ZVDI), 14: 339–341, 1924.

36. B.R. Krasnowski, Application of damage tolerance to increase safety of helicopters in
service, Defense Technical Information Center, 1999.

37. A. Strauss, D.M. Frangopol, K. Bergmeister, Life-cycle and Sustainability of Civil Infras-
tructure Systems, [in:] A. Strauss, D. M. Frangopol, K. Bergmeister [Eds], Proceedings
of the Third International Symposium on Life-Cycle Civil Engineering, Vienna, Austria,
October 3–6, 2012, CRC Press, 2013.

38. G. Risitano, D. Corallo, A. Risitano, Cumulative damage by Miner’s rule and by ener-
getic analysis, Structural Durability Health Monitoring, 8(2): 91–109, 2012, doi: 10.3970/
sdhm.2012.008.091.

39. Y.-L. Lee, D. Taylor, Cycle counting techniques, [in:] Y.-L. Lee, J. Pan, R.B. Hath-
away, M.E. Barkey [Eds], Fatigue Testing and Analysis, vol. 3, pp. 77–102, Burlington,
Butterworth-Heinemann, 2005.

40. I. Milne, R.O. Ritchie, B.L. Karihaloo, Cyclic loading and fatigue, [in:] R.O. Ritchie,
Y. Murakami [Eds], Comprehensive Structural Integrity. Volume 4: Cyclic Loading and
Fatigue, Elsevier, 2003.

41. A. Appert, C. Gautrelet, L. Khalij, R. Troian, Development of a test bench for vibratory
fatigue experiments of a cantilever beam with an electrodynamic shaker, [in:] Proceedings

https://doi.org/10.1016/j.cma.2017.02.007
https://ftp.lstc.com/anonymous/outgoing/huang/nvh/papers.htm
https://ftp.lstc.com/anonymous/outgoing/huang/nvh/papers.htm
https://doi.org/10.1007/s40032-018-0462-6
https://doi.org/10.1115/1.4009458
https://doi.org/10.3970/sdhm.2012.008.091
https://doi.org/10.3970/sdhm.2012.008.091


Prediction of random vibration fatigue damage. . . 223

of the 12th International Fatigue Congress (FATIGUE 2018). MATEC Web Conferece,
vol. 165, 8 pages, 2018, doi: 10.1051/matecconf/201816510007.

42. L. Khalij, C. Gautrelet, A. Guillet, Fatigue curves of a low carbon steel obtained from
vibration experiments with an electrodynamic shaker, Materials and Design, 86: 640–648,
2015, doi: 10.1016/j.matdes.2015.07.153.

43. W. Xu, X. Yang, B. Zhong, Y. He, C. Tao, Failure criterion of titanium alloy irregular sheet
specimens for vibration-based bending fatigue testing, Engineering Fracture Mechanics,
195: 44–56, 2018, doi: 10.1016/j.engfracmech.2018.03.031.

44. H.-T. Hu, Y.-L. Li, T. Suo, F. Zhao, Y.-G. Miao, P. Xue, Q. Deng, Fatigue behavior of alu-
minum stiffened plate subjected to random vibration loading, Transactions of Nonferrous
Metals Society of China, 24(5): 1331–1336, 2014, doi: 10.1016/S1003-6326(14)63196-4.

Received June 28, 2021; revised version January 13, 2022.

https://doi.org/10.1051/matecconf/201816510007
https://doi.org/10.1016/j.matdes.2015.07.153
https://doi.org/10.1016/j.engfracmech.2018.03.031
https://doi.org/10.1016/S1003-6326(14)63196-4

