
CAMES, 29(1–2): 49–69, 2022, doi: 10.24423/cames.383
Copyright © 2022 by Institute of Fundamental Technological Research PAS

This article belongs to the Special Issue on Advanced Optimization Methods for Uncertainties
in Intelligent Industrial Systems edited by Dr. I.J. Jacob, Dr. B.H. bin Ahmad and Dr. Z.F. Khan

Multi-Objective Approach to Improve Network
Lifetime and Congestion Control Routing for Wireless
Sensor Networks

P. Suman PRAKASH1), D. KAVITHA2), P. Chenna REDDY3)

1) Jawaharlal Nehru Technological University Anantapur
Andhra Pradesh, India
∗Corresponding Author e-mail: sumanprakashp@gmail.com

2) Department of Computer Science and Engineering, G. Pulla Reddy Engineering College
Kurnool, India, e-mail: dwaramkavithareddy@gmail.com

3) Department of Computer Science and Engineering, Jawaharlal Nehru Technological
University Anantapur
Andhra Pradesh, India, e-mail: pcreddy1@rediffmail.com

The wireless sensor networks (WSNs) and their extensive characteristics and applicability
to a wide range of applications attract researchers attention. WSN is an emerging technol-
ogy where the sensor nodes are its major elements used to monitor and control physical
and environmental systems. Clustering in wireless sensor networks groups all the nodes
in a region, uses a single node as a cluster head, and communicates with the sink. Howe-
ver, the resource-constrained nodes’ lifetime reduces in the communication process. To
improve the network lifetime, an efficient cluster head selection process is widely adopted.
Similarly, identifying energy-efficient routing reduces the node energy requirements and
enhances the network lifetime. Considering these two characteristics as objective, this
research work proposes a fuzzy neural network-based clustering with dolphin swarm opti-
mization routing and congestion control (FNDSCC), where an energy-efficient cluster head
selection using a deep fuzzy neural network (DFNN) model and an energy-aware optimal
routing using an improved dolphin swarm optimization (DSO) enhance the network life-
time by reducing the energy consumption of the nodes. Moreover, novel rate adjustment
techniques to overcome the congestion inside the network are introduced. Proposed model
performance is experimentally verified and compared with conventional methods such as
genetic based efficient clustering (GEC), hybrid particle swarm optimization (HPSO), and
artificial bee colony (ABC) optimization and rate-controlled reliable transport (RCRT)
protocol in terms of latency, reliability, packet delivery ratio, network lifetime and ef-
ficiency. The results demonstrate that the proposed multi-objective approach performs
better than conventional models.

Keywords: deep fuzzy neural network, network lifetime, wireless sensor network, dolphin
swarm optimization (DSO), cluster head selection, energy-aware routing.
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1. Introduction

Internet paves the way for many wireless communications, making it pos-
sible for new technologies to emerge. People share their data more instantly.
In this modern world, people expect new technologies and faster communication
with no interruption. Many wireless communication technologies were developed,
and some are still under development. Each of these has its unique features and
possesses different standards for communications. Wireless communications play
a vital role in transmitting information from one place to another without any
cables and wires within a specified distance. In wireless communications, all the
nodes have to run for longer periods of time without any substitute for any ener-
gy resources. So, there is a need for optimizing the energy in the network. For
this, a greater number of resources are added to increase the network lifetime.
Energy sources may be recharged and replaced at any time within a conventional
network. So, energy consumption is not a problem. All the sensor networks are
constrained oriented for some resource limitations. So, if the power is increased
in these criteria, it will be more useful. To minimize power consumption, various
algorithms and techniques are used.

WSNs comprise of small sensor devices with limited battery power. More-
over, after their deployment they become unnoticeable, which leads to difficulty
in recharging. Every node has different computational capabilities. These nodes
with the limited available power process the received data and forward the infor-
mation to the nearest possible node. Most wireless network systems, situated in
remote locations, monitor the environment and military surveillance, and deal
with the communication and coverage hole problems. In such situations, the
exhaustion of the battery takes place in the sensor nodes. It consumes more
power, and the battery drains fast when the sensor node is placed near the
sink node. The conservation of power resources, the exclusion of the network
life-time during the process of the sensed data reporting task and sensing the
network are tedious tasks in conserving the energy. As these issues shorten the
network lifetime, sink relocation is introduced to WSN to avoid these prob-
lems. It is an efficient method of extending the network lifetime in WSN, and
also helps to avoid excess battery consumption. An efficient method for preserv-
ing the network lifetime is energy-aware sink relocation. In this method, sensor
nodes undergo unequal energy depletion because of multiple nodes. So, they re-
lease their energy very fast and finally go down. Moreover, the sensor nodes face
a problem in transmitting. In this situation, there is no proper replacement for
batteries in such environments. Moreover, the residual battery provides low per-
formance after completing the rounds of relaying the message and sensing the
environment task. So, if the transmission range is reduced, there is less energy
consumption.
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In WSN, routing holds a significant part in decreasing energy consump-
tion. The distance between the two nodes (i.e., source and destination nodes)
is considered inversely proportional. It uses the routing protocol such as maxi-
mum capacity path (MCP) to maintain the network lifetime for WSN by tak-
ing the routing protocol as an underlying message relaying. This also may af-
fect the performance because of the algorithm variations due to the parame-
ters. Many approaches have been used to save power in sensor nodes by al-
lowing more energy-intensive mobile sensor nodes, where power is transferred
to the place where there are low-level nodes. This has been achieved by control-
ling the energy distribution in WSNs. Mobile sensors are often used via sensor
relocation to manage energy consumption and improve network lifetime, and
these mobile nodes are used as relays for long-distance communication. The
following summary provides an overview of the contributions presented in this
work:

• an energy-efficient cluster head selection method using a DFNN,
• an energy-aware optimal routing using improved DSO to enhance the net-

work lifetime and minimize energy consumption,
• a novel rate adjustment technique to overcome network congestion,
• an thorough experimental analysis to demonstrate the proposed method

enhanced performance,
• performance comparative analysis of the proposed approach with existing

ones such as GEC, HPSO, ABC optimization, and RCRT algorithm.
The remaining part of the article is organized as follows. Section 2 presents

a brief literature analysis of existing works. Section 3 presents the proposed
methodology and Sec. 4 presents the results and discussion. The features of the
proposed work are concluded in Sec. 5.

2. Related works

Nowadays, researchers pay more attention to develop a model that enhances
the WSN lifetime. In this section, various research works are considered to
present different methodologies, advantages, and further enhancement possibi-
lities. WSN consists of various factors such as energy-efficient operations, the
energy dissipation among nodes, temporal and spatial variations of node opera-
tions, routing and network unbalance. Among these, routing algorithms are the
major factor that improves the network lifetime by selecting appropriate cluster
heads for the shortest path to transmit data and reduce energy consumption.
The modified ad-hoc on-demand distance vector (AODV) routing protocol for
wireless sensor networks reported in [1] reduces the jamming and the energy
depletion issues by maintaining the desired energy level for each node.
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The two-phase routing model, reported in [2], explores the available energy in
the non-hotspot network to create routes between the nodes and source. Min-hop
routing is used to obtain the node energy consumption and a diffusive routing
phase is introduced to estimate the remaining node energy. This routing process
enhances network lifetime along with security. Distributed energy-aware routing
algorithm based on fuzzy logic [3] is reported to resolve the energy balancing and
efficiency issues in the wireless sensor networks. To obtain the shortest path rout-
ing, energy metrics are converted into respective cost values, and by using fuzzy
logic the path is identified in the fuzzy-based energy-aware approach. Q-learning
based routing [4] is introduced to achieve reliable routing where a weighted agent
approach is used to adapt to the changes in the network. The reinforcement
learning concept is used to adjust the weights that improve the network lifetime,
which reduces the network latency.

Similar to routing, clustering is another widely adopted approach in nume-
rous research models. Clustering approaches introduce the cluster heads, which
improves the load balancing characteristics of WSNs. Conventional methods
use the round policies to select the cluster heads, but this imposes network
overhead while selecting the next cluster heads. Recently, various approaches
such as low energy adaptive clustering hierarchy (LEACH) protocol, power-
efficient gathering in sensor information systems (PEGASIS), adaptive perio-
dic threshold-sensitive energy efficient sensor network protocol (APTEEN), dis-
tributed energy efficient clustering (DEEC), and Het-DEEC [5, 6] have been
introduced to improve the clustering performance and network lifetime. Re-
search work, reported in [7], introduces an optimization model to enhance the
performance of the LEACH protocol. Results of the LEACH protocol are op-
timized using PSO, which increases the network lifetime by its optimal cluster
head selection process. An enhanced PEGASIS model for multi-hop routing re-
ported in [8] reduces the latency and increases the energy efficiency by deploying
the nodes and creating the individual clusters to form a chain from the sen-
sor node.

The clustering algorithm, reported in [9], considers the node’s initial energy,
residual energy, and optimal cluster heads of the network to select the succes-
sive cluster heads. This energy-based approach increases the network lifetime by
66% compared to the conventional LEACH. A high-quality clustering algorithm,
reported in [10], generates high-quality clusters to enhance energy efficiency. Va-
rious parameters are considered in the clustering algorithm to assess the cluster
quality. This process reduces the error rate and improves the inter/intra cluster
distances [11]. Hyper round policy based on fuzzy inference logic is used to com-
pute the terms, which improves the network lifetime and reduces the overhead
instead of fixing the hyper round into a fixed value [12]. The energy-efficient clus-
ter head selection module introduced in [13] uses an adaptive clustering strategy
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for improved load balancing and cluster head selection. Through dedicated pa-
rameters such as mobility level, distance from the node to sink, and neighbor
density the cluster heads are selected in this approach, which directly reflects on
improved lifetime performance.

Fuzzy logic-based cluster head selection is widely used to select cluster heads
through its decision-making characteristics. However, this model faces difficul-
ties while handling uncertain level decisions, So, type-2 fuzzy logic is introduced
in [14] to efficiently handle the decision factors and improve the network lifetime
better than conventional fuzzy models. Further, an interval type-2 fuzzy logic
system [15] is designed to increase the lifetime. The interval model is used for
the decision-making process, which considers the transmission power allocation
strategies for network lifetime enhancement. Load balanced data gathering al-
gorithm reported in [16] achieves energy efficiency through its node deployment
strategy that introduces less traffic and efficient coverage supporting the net-
work. The multi-hop path for packet delivery reduces the network traffic. which
is performed using a random bipartite graph model that obtains the deployed
load boundaries. This significantly reduces the deployment cost and improves
the network lifetime.

The congestion control model, reported in [17]. comprises of three modules:
hop by hop flow control, prioritized medium access control (MAC), and rate
limiting. The fusion process prevents packet drop in the transmission. The flow
control model identifies the packets to be dropped based on the analysis of
insufficient space in the nodes. The prioritized MAC confirms the congested
nodes’ access to the channel, and the rate limiting provides better support to
the nodes distant from the sink in the transmission process. The rate-controlled
reliable transport (RCRT) protocol eliminates the congestion by analyzing the
data rate. All processes such as rate control, detection of congestion level and
providing resource to the node are performed in the sink. However, the inability
to identify the flow constraints and slow convergence rate are considered the
demerits of the presented approach.

In [18], a decentralized clustering algorithm along with the game theory is
presented to improve the network quality and lifetime. The non-cooperative game
theory controls the node activities and the neighboring nodes in forwarding the
messages. These control activities decrease the energy consumption and improve
the lifetime compared to LEACH and location-based clustering models. A dis-
tributed medium access control, reported in [19], considers the limitations of
cooperative-based communication in the multi-hop device selection process. The
conventional cooperative communication models limit the energy consumption
based on the bit, and this is overcome by the optimized transceiver operations
while selecting the multi-hop devices. Minimized energy consumption and max-
imum lifetime are the advantages of this distributed control model.
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Various optimization models are employed to obtain optimal routing, network
lifetime enhancement and energy efficiency enhancement. Optimization models
such as genetic algorithm, ant colony optimization, ant lion optimization, and
PSO are comparatively analyzed in [20] to obtain a WSN optimal routing. The
experimental analysis concluded that the best performance is observed in the
ant colony optimization compared to other optimization algorithms. An ABC
optimization-based optimal routing strategy presented in [21] effectively uses the
characteristics of the optimization model to obtain centralized and decentralized
routing decisions. Improved network performance and network lifetime are the
merits of the presented work.

In the analysis, it is observed that efficient cluster head selection, congestion
control and routing are the major parameters considered in existing research
work to reduce energy consumption and increase the network lifetime. In exist-
ing congestion techniques such as RCRT and the hop-by-hop-based congestion
control technique were used based on normal routing, and they were not used
for cluster-based routing. Most existing congestion techniques do not support
cluster-based routing.

Considering these observations, an optimal cluster head selection algorithm
and deep learning approach for efficient routing are proposed, and for conges-
tion control we introduce a rate optimization congestion control scheme that
maximizes the network lifetime as much as possible by measuring the congestion
levels using the intensity of traffic. This measurement is based on queue buffer
allocation in the link.

2.1. Objective of the research

The objectives of the proposed research work are set based on the analysis
given in Sec. 2, and they are summarized as:

• to obtain an efficient cluster head selection algorithm for a balanced net-
work,

• to obtain an optimal routing model for enhanced network lifetime and
reduce the latency,

• to obtain the rate adjustment technique to overcome the congestion inside
the network to reduce the packet loss.

To achieve the above objectives, a deep learning model is introduced for the
efficient cluster head selection and the dolphin swarm optimization model is
presented intended for the optimal energy-efficient routing.

3. Proposed work

The multi-objective model presented in this section initially selects the opti-
mal cluster heads and identifies the optimized routing path along with congestion
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control. This section provides a detailed description of the presented objectives.
The nodes in WSN generally communicate with the sink through cluster heads.
Various statistical and mathematical models evolved to identify suitable clus-
ter heads. However, the performance of conventional systems can be increased
by introducing deep learning models in the cluster head selection and election
process.

In the efficient cluster head selection process, the DFNN model is intro-
duced, combining the characteristics of fuzzy logic and deep neural network.
Initially, the clusters are generated using the Bayesian fuzzy clustering approach
in which the nodes are categorized based on the location and the energy le-
vels. The combined nodes are considered as the clusters and node factors are
estimated as a probability function:

P (Lxy , v
∗, g∗) = P (Lxy |v∗, g∗)P (g∗)P (v∗|g∗), (1)

where the prior distribution of the Gaussian function is denoted as P (g∗), the
fuzzy clustering is denoted as P (v∗|g∗) and the likelihood distribution of nodes
is represented as P (Lxy |v∗, g∗). Based on the likelihood distribution, the cluster
model is derived as:

P (Lxy |v∗, C∗) =
m∑
n=1

P (Ln|gn, C), (2)

where the node likelihood information is denoted as Lxy , the relationship func-
tion for fuzzy is denoted as v∗ and cluster information based on the Gaussian
function is denoted as gn. The total number of nodes is represented by n, and
the cluster is represented by C. The clusters are obtained based on the likelihood
function, and the same principle is followed for all the clusters and is represen-
ted as:

P (Lxy |v∗, C∗) =
m∑
n=1

1

ρ(gn, δ, C)

j∑
i=1

N(Ln|µ = ki, b = CniI), (3)

where ρ(gn, δ, C) represents the normalization constants, the total number of
clusters is represented as j, and the cluster number is represented as i. The
fuzzifier function is represented as δ and C represents the cluster. The perfor-
mance of the clustering model is evaluated similar to the fuzzy c-means algorithm
and it is expressed as:

P (v∗|C∗) =
m∑
n=1

P (Ln|C∗). (4)



56 P. Suman Prakash et al.

The fuzzy clustering has two factors including a Dirichlet function (Ln|µ)

and ρ(gn, δ, C),
j∑
i=1

(
C
m/2
ni

)
and it is expressed as:

P (v∗|C∗) =
m∑
n=1

ρ(gn, δ, C)

[
j∑
i=1

(
C
m/2
ni

)]
Dir(Ln|µ), (5)

where Cni represents the membership function for the cluster i and µ is used
to obtain the mean function. In order to obtain a high membership function,
the initial factors in the cluster stabilization points are neglected. This process
increases the clustering proficiency, and the distribution probability of the cluster
is expressed as:

P (C∗) =

j∑
i=1

N
(
ki|µb,

∑
k
)
, (6)

where µb = 1
g

m∑
n=1

Ln is the mean for the clusters and the cluster coverage is

defined as the
∑
k = 1

g

j∑
i=1

(Ln − µb)(Ln − µb)T .

After the clustering process, the cluster heads are selected using a DFNN
model. Figure 1 depicts the cluster head selection model in the proposed ap-
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Fig. 1. DFNN for cluster head selection.  
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Fig. 1. DFNN for cluster head selection.
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proach using the DFNN approach. The inputs of the networks are the clusters
and these process the nodes based on the energy levels. Fuzzy logic is used to
obtain logical decisions to select and elect the nodes as the cluster heads. Ini-
tially, the membership function is obtained based on the average mean value of
residual energy of the nodes, and then it is compared with all the other nodes to
select the cluster heads for all the clusters. In the DFNN model, each cluster with
its nodes is connected to multiple membership functions. This process provides
labels for the inputs and is based on fuzzy logic. The function is expressed using
the mean, variance, and Gaussian membership function, and it is given as:

C(i)
n = e

−

(
L

(i)
n −µb

)2

ϕ2
i , (7)

where µ represents the mean, and ϕ2
i indicates the variance function. Next to the

fuzzy representation, the neural network model provides the high-energy level
nodes as cluster heads. A fully connected neural network model is used in the
proposed approach, which is mathematically expressed as:

h(i)n = w(i)
n h

(i−1) + b(i)n , (8)

where w(i)
n denotes the weight function used to define the energy level of the

nodes, and b(i)n represents the connected bias factors. The results are combined
in the fusion process where the dense layer is expressed as:

din = w
(i)
dn
h
(i−1)
d + w

(i)
fn
h
(i−1)
f + b(i)n , (9)

where the deep network and fuzzy logic for cluster head selection are denoted as
hd and hf respectively, and their corresponding weight functions are denoted
as wd for deep network and wf for fuzzy logic. Finally, the node with the high-
est energy has the possibility to provide maximum data aggregation, which is
obtained by using the SoftMax function. This is expressed as the final layer as
below:

Cih =
ewnπΘ(fn)+bn∑
k

ewnπΘ(fn)+bn
, (10)

where the cluster heads are selected based on the network bias coefficient and
regression coefficient denoted as bn and wn, respectively. Based on the selected
nodes, the cluster heads are assigned for each cluster in an efficient manner,
which improves the network lifetime. The summarized pseudocode for the effi-
cient cluster head selection process is given in Algorithm 1.
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Algorithm 1: Cluster head selection using a DFNN.
Initialize the nodes in wireless sensor networks
Initialize deep fuzzy parameters
Initialize Bayesian fuzzy clustering
Start
{{

Estimate probability function for clusters P (Lxy , v∗, g∗)
Derive the cluster model using P (Lxy |v∗, C∗)
Evaluate the performance for P (v∗|C∗)
Improve the clustering probability distribution using P (C∗)
}

{
Derive the fuzzy layer function using C(i)

n

Derive the deep neural network layer function h(i)n
Fuse fuzzy and deep neural network layer as din

Estimate the cluster heads Cih
}}
End

Optimal route selection is another factor considered in this research work
to improve network lifetime. To achieve this, the improved dolphin swarm op-
timization is proposed providing optimal solutions based on the food searching
behavior of dolphins. Compared to other optimization algorithms, dolphin op-
timization provides fast convergence and avoids local optimal better than other
optimization algorithms. Moreover, it does not require any specific benchmark
functions to obtain the optimal solution, which is the major merit of the DSO
algorithm. The significant characteristics of dolphins are categorized into four
features: echolocation, information exchange, coordination, and diversity of la-
bor. The artificial neural network model is used to classify the cluster heads, and
the results are further optimized through a swarm intelligence model. Mathemat-
ically, the proposed optimization model characteristics are derived for the four
operations. In echolocation, the distance estimation characteristics of dolphins
are formulated to estimate the location and prey size. The intensity of the echo
helps the dolphins to predict the environment easily. In the cooperation and la-
bor division phase, the predatory nature of dolphins is utilized to attack the large
prey. The coordination process helps to track the prey movements and the dol-
phins. The information exchange phase helps the dolphins to communicate by
producing different frequency sounds either to update the position information
about the prey or to call others. The three-stage process includes four opera-
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tions in which dolphins make use of sounds to predict the environment and prey,
exchange information, and identify the food source.

Similar to the dolphin characteristics, the cluster heads are identified for
each cluster and analyze the nearby cluster cooperative status to obtain opti-
mal path in the wireless sensor networks. The details of the cluster heads are
obtained from the DFNN model, and privilege to act as cluster head is ob-
tained through an artificial neural network model. It classifies the cluster heads
as active and passive ones using a training and testing dataset. Consider the
cluster heads in a wireless sensor network where each cluster head is consid-
ered as dolphin D = [d1, d2, d3, ..., dn]. The fitness function of each dolphin is
F = [f1, f2, f3, ..., fn]. To obtain the available cluster head details in the net-
work search process is initiated, which analyzes the characteristics using fitness
function and distance, and it is expressed as:

Hm,n,t = F (D + unt), (11)

where D represents the dolphin and unt indicates the sound produced in the
search phase. The minimum fitness (Fmin) and the maximum fitness (Fmax)
values are obtained based on the characteristics and are expressed as:

Fmin = [min(H1nt),min(H1nt), ...,min(Hmnt)] , (12)

Fmax =

{
Fmin if Fmin < Fmax,

Fmax otherwise.
(13)

In the call phase, the nearby clusters are analyzed for route formation. For
this, the distance (dm,n) and the energy (E) of the cluster heads are considered,
and we have:

Sm,n =

{ (
dm,n
E

)
if Fk,n < Fk,m,

Sm,n otherwise.
(14)

The next phase in the route selection is the incepted phase, which eliminates
the cluster heads unsuitable for path selection. This is expressed as:

Fk,m =

{
Fk,n if Sm,n = 0 and Fk,n < Fk,m,

Fk,m otherwise.
(15)

Finally, the hunting phase is related to the path selection process, which is
the optimal path from source to sink, and it is expressed as:

NCH =

{
Sm,n >

(
dm,n
E

)
if dk,n < dk,m,

Sm,n = 0 otherwise.
(16)
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The movement of dolphins to their new position is depicted in Fig. 2. This
process is proceeded continuously along with a fitness function new position
while identifying the shortest path to reach the sink. The pseudocode for the
optimized path selection is summarized in Algorithm 2.
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Algorithm 2: Optimal routing using improved DSO.
Initialize the cluster heads
Initialize optimization parameters D, F
Start
{

Estimate the available cluster heads Hm,n,t

Derive the maximum and minimum fitness function Fmin, Fmax

Evaluate the neighbor clusters Sm,n
eliminates the unsuitable cluster heads Fk,m
Select the optimal cluster head NCH

}
Repeat the process to reach sink
End

The improved DSO incorporates the results of the Bayesian fuzzy clustering-
based deep learning approach for cluster head selection to reduce energy con-
sumption and enhance the network lifetime.

3.1. Congestion detection

According to the queue buffer presented in the link, the overall traffic inten-
sity is computed. Traffic intensity in and among the clusters is monitored by the
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network. Once the cluster formation becomes complete, the congestion level in all
the local clusters is estimated. To perfectly fine-tune the source node transmis-
sion rate and overall congestion level are estimated and provided to the source
nodes. Hence, computing the intensity of congestion present in the clusters and
among the clusters is quite significant.

3.2. Computing the cluster traffic intensity

Considering a sensor node i that is alive and its traffic flow queue length is
BLsi, BLi indicates the node queue length in total. The ratio BLsi/BLi is the
caching queue of the node, which is termed ωsi. For each N distinct queue, con-
sidering the packets δ in a queue, the probability of traffic flow is mathematically
formulated as:

P (δ1, δ2, ..., δM ) =
M∏
i=1

(1− ωsi)ωδisi . (17)

Computing the intensity of traffic in each cluster σ is the likelihood at which
minimum of one sensor contains complete queue:

σ = 1− P (0, 0, ..., 0) = 1−
M∏
i=1

1− ωsi. (18)

Hence, every sensor i computes the neighborhood load ωsi at the specified
time gaps, and the same is notified to the cluster head via neighbor transmission.
To gather the ωsi value of every sensor, the cluster head computes the σ in every
cluster through Eq. (18).

3.3. Computing the intensity of traffic among the clusters

Correspondingly, the overall traffic intensity computation can be performed
by modifying the λ value among the cluster head, and σi can be represented
as the value σ of the cluster i. Besides, the computations of the source and sink
in the available cluster are obtained from the next cluster. By integrating σj−1,
the overall traffic intensity obtained by the cluster head is formulated as:

σj = 1−

[
(1− σj−1)

N∏
i=1

1− ωsi

]
. (19)

3.4. Rate optimization

Assuming that the traffic flow s passes along the link l, we consider ηls =
1/CPl (where CPl is the transmitting capacity of wireless networks), else ηs
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will be considered as “0”. Similarly, the transmitting link presence is indicated as
Ynl = 1, else it is considered as “0”. Consider the node data forwarding rate as χs;
hence, to assure the MAC protocol applicability, the MAC protocol bounding
conditions are obtained using matrices Y and η. Thus, ηY χ ≤ 1− ϑ, where the
efficiency factor ϑ = (ϑjε[0, 1]) jεN . The node utility function is considered elas-
tic [19]. which expands the transmitting rate monotonously. In view of resource
allocation, the obtained utility factor is used to define the available resources in
the network. This helps to realize the distribution using suitable weight factors.
So the weight factor based on the utility parameter is formulated as:

ϕs(χs) = ws log(χs). (20)

Further, we consider the issue of maximizing the utility of the Internet [19]
and denote the issue of congestion control in WSNs as a non-linear optimiza-
tion issue. The total traffic is optimized to select the transmission rate through
which every node present in the cluster maximizes the overall utility. Hence, the
following problem has to be solved:

max
x

ϕs(χs) = max
χ

∑
s∈S

ws log(χ), (21)

where the condition of constraint GAχ ≤ (1 − ε). The theory of optimization
states that the formula to compute utility function (21) is a rigid concave con-
tinuous function where the practicable segment is convex in any case:

P (χ : G,A) = σT (GAχ− (1− ε)). (22)

Hence, we employ the Lagrange function in order to solve

L (χ, β) =
∑
s∈S

ws log(χ)− σT (GAχ− (1− ε)), (23)

where the Lagrange factor σ denotes the traffic link ‘1’ of the overall traffic level
computation. Further, it is realized that the traffic control in the network changes
the utility factor. Since the practicable segment in the optimization problem is
programmed convex and the utility function is continuous, an optimal solution
must be derived. As per the theory of optimization, the actual problem (21)
will contain two-fold problem. The optimal solution can be derived as a two-fold
problem, and it is formulated as:

D : min
σ≥0

D(χ), (24)

where the objective function is

D (χ) = max
χ

L(χ, σ). (25)
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The two-fold problem solution is obtained using the steepest descent ap-
proach by considering the input and output links of traffic flow that passes
through the nodes li(n, r) and lo(n, r), respectively. The rate has been adjusted
by adapting the updated process, and therefore we can obtain the cluster nodes:

χs(t+ 1) = χs(t) + α

(
−∂D (χ)

∂χs

)

= χs(t) + α

−wsχs +
∑
jεA(s)

(
σj

cli(n, s)
+

σj
clo(n, s)

) , (26)

where the constant step is represented as α. Optimal convergence will be ob-
tained for smaller step values. The above function, expressed in Eq. (25), de-
notes the varying direction of rate χs(n) with respect to the node and it is
reverse to the varying direction of the considered objective function. In other
words, the varying rate across the negative descent of the objective functions
is used to realize the desired objective function. The proposed algorithm com-
putes the overall degree of traffic to obtain the congestion information present
in the network through the Eq. (19). Then, it computes χs(n) and it is con-
sidered source node transmission rate based on Eq. (26). Thus, the proposed
algorithm is capable of justifying the network state by fine-tuning the source
node transmission rate. Hence, the presented procedure transforms the network
with responsiveness to real-time and better adaptability.

4. Performance analysis

The proposed multi-objective model is experimentally verified to demonstrate
the improved performance. Network simulator version 2.35 is used to experiment
with the model, and Table 1 depicts the simulation parameters used in the
experimentation process. The performance is evaluated using the parameters
such as latency, packet delivery ratio, network lifetime, reliability, efficiency, and
throughput.

Table 1. Simulation parameters.

Simulation no. Parameters Range
1 Total number of nodes 500
2 Packet size 1024 bytes
3 Simulation area 5000*5000 sq. units
4 Initial energy 0.5 nJ
5 Transmission rate 1 packet/sec
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Existing methodologies such as GEC, HPSO, ABC optimization models and
RCRT protocol are compared with the proposed model. Figure 3 depicts the
latency comparison for all the algorithms considering the nodes. Results show
that the proposed multi-objective optimization model introduces a smaller delay
compared to that of the other models, due to its efficient cluster head selection
and the optimal routing process.

 

Figure 3 Latency analysis 
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Fig. 3. Latency analysis.

Next, the proposed approach performance is evaluated based on the packet
delivery ratio. The efficient clustering approach supports the deep neural network
model to select the cluster heads, providing clusters to the optimization model.
These cluster heads are used to obtain the optimal path so that the packet de-
livery ratio increases for the proposed model more than for other approaches.
Figure 4 depicts a comparative analysis for the algorithms in which maximum

 
Figure 4 Comparison of Packet delivery ratio 
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Fig. 4. Comparison of packet delivery ratio.
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performance is exhibited by the proposed approach for all values. The short-
est path and the efficient cluster heads allow the proposed system to transmit
more packets. Besides the conventional techniques, the HPSO approach performs
better. However, compared to the proposed model, almost 10% increased per-
formance is observed. The genetic based energy efficient (GEC) model exhibits
lesser performance than all the other models.

The next parameter considered for analysis is throughput obtained based on
the number of nodes employed in the network. The obtained values are compared
and depicted in Fig. 5. This proposed model exhibits maximum throughput be-
cause of the high-energy cluster heads and the shortest path. The lesser distance
helps the nodes to transmit data quickly and efficiently, whereas the conventional
models exhibit lower performance due to their longest path length.

 

Figure 5 Comparative Throughput analysis 
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Fig. 5. Comparative throughput analysis.

The network reliability with respect to the number of nodes is depicted in
Fig. 6. It is observed in the above figure that the proposed approach attains
higher reliability when compared to the existing methods. The energy efficient
cluster head selection and the optimal routing improve the network reliability by
reducing the node failure. Since the proposed approach measures the energy level
of nodes and selects the cluster heads, the successive selected cluster heads are
ready to process the data to sink when the primary cluster head fails or disap-
pears. This process extensively improves the network reliability of the proposed
approach.

The network lifetime depends on the number of alive nodes. The perfor-
mance of the proposed approach in terms of alive nodes is depicted in Fig. 7.
The multi-objective approach reduces the energy consumption of nodes and in-
creases the cluster head lifetime during data transmission, which simultaneously
increases the overall network lifetime. In the proposed approach, the number
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Figure 6 Network Reliability Comparison  
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Fig. 7. Network lifetime analysis.

of alive nodes gradually decreases, which indicates the balanced energy-efficient
processing characteristics. The performance of the proposed multi-objective ap-
proach is 18%, 12% and 8% better compared to the GEC approach, the ant
colony optimization model and the HPSO approach, respectively.

The proposed multi-objective approach efficiency is comparatively analyzed
with conventional models, as shown in Fig. 8. The efficiency is measured based
on the number of alive nodes, delay, and the packet delivery ratio. The pro-
posed model exhibits an efficiency of 98.5% compared to the other models. The
efficiency attained by RCRT is approximately 96.8%, whereas the efficiency of
HPSO is 96%. The proposed model performance is further verified through simu-
lation analysis with different samples at different instances as a post-classification
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process. It is observed that there are minor deviations that are less than 0.05%
in terms of efficiency, which is acceptable. The efficiency attained by ABC and
GEC is 94.5% and 93%, respectively, which is lesser than the proposed model
efficiency. Results clearly show that the presented approach will be suitable for
the reliable energy-efficient wireless sensor applications.

5. Conclusion

A multi-objective approach to improve the wireless sensor network lifetime
and congestion control was presented in this research work. The objectives of
this study were the efficient cluster head selection, the rate-based congestion con-
trol scheme and the optimal route establishment. The deep fuzzy-based cluster
head selection model, cluster head congestion control scheme with rate adaption
technique and the dolphin swarm optimization-based route identification pro-
cess were used to achieve the objectives. To improve the efficiency of the cluster
head selection process, Bayesian fuzzy clustering was used to create clusters and
a DFNN approach was used to select the optimal cluster heads. Further, to im-
prove the network lifetime, the optimal routing process was incorporated using
an improved DSO model. The proposed model performances were validated ex-
perimentally and compared with the conventional models such as GEC, HPSO
and ABC optimization algorithms. In the proposed model, a performance better
than in the existing models was observed for all the parameters. Further, this
research work can be extended by introducing hybrid deep learning approaches
for optimal route selection.
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