
CAMES, 28(4): 291–319, 2021, doi: 10.24423/cames.384
Copyright © 2021 by Institute of Fundamental Technological Research
Polish Academy of Sciences

A Novel Conversion Technique from Nodal
to Edge Finite Element Data Structure
for Electromagnetic Analysis

Durgarao KAMIREDDY∗, Arup NANDY

Department of Mechanical Engineering
Indian Institute of Technology Guwahati
Guwahati, India; e-mail: arupn@iitg.ac.in
∗Corresponding Author e-mail: durga176103010@iitg.ac.in

Standard nodal finite elements in the electromagnetic analysis have a well-known limita-
tion of the occurrence of a spurious solution. In order to circumvent the problem, a penalty
function method or a regularization method is used with the potential formulation. These
methods solve the problem partially by pushing the spurious mode to the higher end of the
spectrum. But it fails to capture singular eigenvalues in the case of the problem domains
with sharp edges and corners. To circumvent this limitation, edge elements have been
developed for the electromagnetic analysis where degree of freedom is along the edges.
But most of the preprocessors develop complex meshes in the nodal framework. In this
work, we have developed a novel technique to convert nodal data structure to edge data
structure for electromagnetic analysis. We have explained the conversion algorithm in de-
tails, mentioning associated complexities with relevant examples. The performance of the
developed algorithm has been demonstrated extensively with several examples.

Keywords: FEM, electromagnetics, edge finite elements, eigenvalue analysis.

1. Introduction

The finite element method (FEM) has been widely used for radiation and
scattering problems in interior and exterior domains and it has extensive appli-
cations in antenna radiations, waveguide transmissions, etc. In order to apply the
FEM technique, the domain can be discretized with either edge element or nodal
element. The problem of the occurrence of a spurious solution is a well-known
limitation of standard nodal finite elements in the electromagnetic analysis. In
order to circumvent the problem, the penalty function method and regularization
method [22, 28, 29] have been used extensively in the nodal FEM framework.
These methods solve the problem partially by pushing the spurious mode to the



292 D. Kamireddy, A. Nandy

higher end of the spectrum. In order to capture singular eigenvalue in the case of
sharp edges and corners, in the regularization method, we have to use a penalty
parameter varying from 0 at the sharp edge to 1 at a large distance from the
sharp edge. Also, in order to take care of inherent tangential continuity and nor-
mal discontinuity across the material interface, the potential formulation is used
in the nodal finite element framework [1, 4, 24–26]. In [19], a two-field variation
formulation in electromagnetics can predict the eigenfrequencies very accurately
with correct multiplicities. There is no ad hoc term in the mixed formulation as in
the penalty function or the regularization method. This method worked very well
for all two-dimensional geometries such as non-convex domains with sharp cor-
ners, in-homogeneous domains, curved domains, etc. In three dimension, mixed
FEM worked for plane structures (structures without any curvature) quite well;
there, it worked flawlessly with sharp edges and in-homogeneous domains. But in
the case of curved three-dimensional geometries, this mixed formulation failed.

Edge elements were introduced by Whitney, which are also called curl-confor-
ming elements. Nedelec presented the conceptual theory of edge elements [27].
He presented a nonconforming tetrahedron and cube finite elements construc-
tion [27] conforming to the H curl and H div spaces. Whitney spaces can act as
bases for edge elements in FEM for field type of problems [9] and eddy current
problems. In [3, 6, 7, 11, 12, 15, 20, 21] edge elements are used to solve the
eigenvalue problems with different shapes. In [10], Bossavit and Vérité solved
the 3-D eddy current problems using the combination of FEM and boundary in-
tegral element method (BIEM) methods. Edge elements can be easily applied to
an exterior domain problem where the coupling of other methods like absorbing
boundary condition (ABC) [37], boundary integral (BI) [34], perfectly matched
layer (PML) [30] is required. Cendes [12] presented the implementation of the
tangential vector finite element method to analyze the dielectric waveguides.
In the literature, various methods such as method of moment, spectral-domain
methods, finite difference and finite element are adopted for the analysis of di-
electric waveguide problems.

Webb [35] broadly discussed the useful properties of edge elements. Vector
finite element or edge element [7, 8, 12, 27, 32] was proposed to circumvent
the spurious solution problem of nodal FEM. Electromagnetic radiation and
scattering problems require special elements where normal discontinuity and
tangential continuity exists across material interfaces are met by edge elements.
In [5], Barton and Cendes showed that continuity of tangential components of
the vector field is sufficient in vector-based FEM to compute the magnetic fields.
Another advantage of edge elements is that electric or magnetic fields can be
directly computed without any differentiation on potentials. Also, no penalty
or regularization term is required in edge element framework. While modeling
sharp, perfectly conducting objects, the electric field has to be infinite inside



A novel conversion technique from nodal to edge finite element. . . 293

the domain and its direction changes rapidly at the sharp edges and corners. In
order to do eigenanalysis of such geometries in nodal framework, singular trial
functions are required, whereas due to tangential continuity of edge elements, no
such function is required.

Yioultsis and Tsiboukis [39, 40] presented the systematic approach to con-
struct the higher order tetrahedral edge elements and used them to solve the wave-
guide problems with material discontinuity. General expressions for the shape
functions were presented and unknown coefficients were found by following the
decoupling procedure. In [31], the formation of higher-order Whitney p-elements
was shown. In [23], the construction of higher-order two-dimensional and three-
dimensional H1 curl elements are presented to solve the electromagnetic scatter-
ing problems. In [16], Graglia et al. presented the general approach of interpo-
latory vector basis functions of various two-dimensional and three-dimensional
elements. Edge elements can be constructed by using hierarchical vector ba-
sis functions also. Webb [36] proposed hierarchical vector basis functions for
higher-order triangle and tetrahedral finite elements. In [33], Seung-Cheol Lee
et al. implemented higher-order hierarchical vector finite elements in the field
of microwave engineering to the wave guiding structures. In hierarchical type
implementation, there can be p refinement in some parts of the domain and in
some part we can have h refinement. But, in the interpolatory type we can only
have one type of refinement in the entire domain. To the best knowledge of the
authors, in all the above literature, the detailed conversion strategy from nodal
FE input file to edge element data-structure is not available. As most of the
available mesh generator packages are based on nodal FEM, it will be very use-
ful if such a conversion algorithm is developed. In the current work, we present
a systematic and thorough conversion algorithm.

The rest of this article is organized as follows: in Sec. 2, we present the
algorithm in minute details with associated flowcharts and simple conversion
examples for different elements such as four-edge quadrilateral, three-edge trian-
gle, twelve-edge quadrilateral and eight-edge triangle. In Sec. 3, we validate our
conversion algorithm with several benchmark numerical examples, including all
possible complexities such as curved surfaces, sharp edges and corners. We com-
pare our results with available analytical and benchmark solutions from the
literature.

2. Conversion algorithm for creating edge data structure
from nodal data structure

For electromagnetic analysis in the edge element framework, element data
is required in the form of edge data structure. To achieve this, a standalone
conversion algorithm is needed where the edge information is generated as output



294 D. Kamireddy, A. Nandy

from the supplied nodal data as input. Here, every edge is generated by joining
the two nodes of the element. In this section, we are presenting such a conversion
algorithm to different edge elements. This type of program is necessary because
most of the available commercial mesh generators create and generate nodal
element data structure.

2.1. Calculation of ∂ξ
∂x ,

∂ξ
∂y ,

∂η
∂x and ∂η

∂y

The edge shape functions contains the terms of an inverse Jacobian (Γ) and
its components ∂ξ

∂x ,
∂ξ
∂y ,

∂η
∂x and ∂η

∂y , which can be obtained as discussed below.
From the relation:

∂f

∂ξ

∂f

∂η

 = J


∂f

∂x

∂f

∂y

 =⇒


∂f

∂x

∂f

∂y

 = J−1


∂f

∂ξ

∂f

∂η

,
where J is Jacobian can be written as:

J =

[
J11 J12

J21 J22

]
=


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

 and assume J−1 = Γ =

[
Γ11 Γ12

Γ21 Γ22

]
;

therefore,


∂ξ

∂x

∂ξ

∂y

 =

{
Γ11

Γ21

}
and


∂η

∂x

∂η

∂y

 =

{
Γ12

Γ22

}
.

2.2. Four-edge quadrilateral element

For four-node quadrilateral element Fig. 1a shows the local nodal connectivity
for which Fig. 1b shows the required local edge connectivity sequence. Edge e1
is formed by connecting the local node set (1, 2). Similarly, e2, e3 and e4 are

a) b)

Fig. 1. Quadrilateral element with: a) four nodes, b) four edges.



A novel conversion technique from nodal to edge finite element. . . 295

the other three edges generated by connecting the node sets (4, 3), (1, 4) and
(2, 3), respectively. The edge shape functions of four edges are v1 =

l1
4 (1−η)∇ξ,

v2 = l2
4 (1 + η)∇ξ, v3 = l3

4 (1 − ξ)∇η and v4 = l4
4 (1 + ξ)∇η [18]. Here l1, l2, l3

and l4 are the lengths of the edges e1, e2, e3, and e4, respectively.

2.2.1. Calculation of ∇× E with edge element. The components of ∇ × E
can be calculated by using the relation:

∇×E=

[
∂v1y
∂x
− ∂v1x

∂y

∂v2y
∂x
− ∂v2x

∂y

∂v3y
∂x
− ∂v3x

∂y

∂v4y
∂x
− ∂v4x

∂y

]


E1

E2

E3

E4


=BE,

where E1, E2, E3 and E4 are the tangential electric fields along the edges 1, 2,
3 and 4, respectively. The components of the B-matrix are obtained as below:[

∂v1x
∂x

∂v1x
∂y

]
=

[
∂v1x
∂ξ

∂v1x
∂η

][
Γ11 Γ21

Γ12 Γ22

]
.

We can derive partial derivative terms ∂v1x
∂ξ , ∂v1y∂η , ..., etc., with finite difference

or Mathematica software [38].

2.2.2. Conversion algorithm: Generation of edge connectivity array. To de-
scribe the conversion algorithm, we consider a domain is meshed with quadrila-
teral elements, as shown in Fig. 2a. Figure 2b shows the global nodal connectivity
of the meshed domain. Nodal connectivity list for all the elements for the mesh
is given in Table 1.

a) b)

Fig. 2. Discretized domain with: a) global elements, b) global nodes.

In this algorithm, the outermost loop runs over the total number of discretized
elements, and the next inner loop runs over the total number of local edges
(nlocedge) of each element. One global counter el is used, which is updated
to the last assigned global edge number at the end of each element loop. Inside the



296 D. Kamireddy, A. Nandy

Table 1. Element nodal connectivity.

Element number Nodal connectivity (global node no.)
1 1, 4, 5, 2
2 2, 5, 6, 3
3 4, 7, 8, 5
4 5, 8, 9, 6

loop of nlocedge, a subroutine edgend , as shown in Fig. 3, returns global node
numbers of two end nodes (endnd1 and endnd2) of the edge using local nodal
connectivity and local edge connectivity information as shown in Fig. 1a and
Fig. 1b. We follow the convention that each edge directs from endnd1 to endnd2.

Start

Input: Running local edge no., i ;
Global node no’s as per connectivity for
the element, nodrr ; Element type, eletype

Select proper case
based on eletype

Find end nodes from nodarr
for i as per edge connectivity

Stop

Fig. 3. Flow chart of edgend structure.

For example, two local nodes 4 and 3 (see Fig. 1a) are connected to form the
local edge e2 of the element, as shown in Fig. 1b. These two local node numbers
are the position in the nodal connectivity array (nodarr) of the element, and
this array contains global node numbers, as shown in Table 1. Thus, for example,
for second element, global nodes 6 and 3 are two end nodes for edge e2. Local
edges and its corresponding connected nodes of the elements for the discretized
domain are tabulated in Table 2.



A novel conversion technique from nodal to edge finite element. . . 297

Table 2. Local edges and its end nodes of elements of discretized domain.

Element number Local edge number End nodes (endnd1, endnd2)

1

1 1, 4
2 2, 5
3 1, 2
4 4, 5

2

1 2, 5
2 3, 6
3 2, 3
4 5, 6

3

1 4, 7
2 5, 8
3 4, 5
4 7, 8

4

1 5, 8
2 6, 9
3 5, 6
4 8, 9

After successful collection of output from the edgend subroutine, i.e., infor-
mation about two end nodes of local edge (i), last assigned global edge (el) and
existing edge connectivity array (edgearr) are further supplied into edgedata
structure as shown in Fig. 4. In this data structure, at the end of each itera-
tion (for each local edge), different variables such as nodeedgenum, nodeedge,
nodeedgexn, edgenode, edgearr are updated for every endnode (nd1 and nd2) of
each edge which is discussed below:

1. nodeedgenum: Global one-dimensional static array of dimension of maxi-
mum number of global nodes (mx_nmnode) in which i-th row stores the
number of edges shared by the i-th global node.

2. nodeedge: This is two-dimensional array of dimension (mx_nmnode × 8)
where 8 columns of i-th row store two informations of 4 connecting edges
shared by i-th node. The 1st column stores global edge no. of the 1st
connecting edge, second column stores another end node of that connecting
edge. The 3rd and 4th column store (edge no., other end node no.) of the
second connecting edge. The 5th to 8th columns store a similar set of
information for the third and fourth connecting edges. If some node is
shared by more than four connecting edges, then additional information
from the 5th edge is stored in nodeedgeexn. Also this array nodeedge has
the direction information of the edge. If the i-th node is the start node



298 D. Kamireddy, A. Nandy

Start

Input: Running local edge, i ; End nodes
nd1 and nd2; Last assigned global
edge, el; Existing edge array, edgearr

Check if any edge
is already there

between nd1 and nd2

Assign global edge no.
el = el + 1 to current edge

Get no. of existing connecting
edges at endnode, edgej

If edgej < 4

Update nodeedgenum,
nodeedge, edgearr for endnode

Update nodeedgenum, ndexn,
nodeedgeexn, edgearr for endnode

el = el + 1

Output: Updated argument variable
edgearr, el; Updated global variable:

nodeedgenum, nodeedge, ndexn, nodeedgeexn

Update edgearr from
nodeedge∕nodeedgexn

Do this
portion for

nd1 and nd2

Stop

No

Yes No

Yes

Fig. 4. Flow chart of edgedata structure.

of the edge, i.e., if the edge is going from the i-th node to another node
then edge no. is stored in the odd column as positive integer. If the edge
is towards the i-th node from another node, then edge no. is stored as
a negative integer. Total no. of negative edges are kept in an account with
one counter variable.



A novel conversion technique from nodal to edge finite element. . . 299

3. nodeedgeexn: Global two-dimensional array of size (maximum number of
nodes in the programme shared by more than 4 edges (mx_nmnnd), 2×
maximum additional edges after four edges sharing one node (mx_exedge)).
Each row consists of the information about the node having more than
four connecting edges. It consists of the information from the fifth edge
onwards. Global number of the node whose information are stored in the
i-th row of nodeedgeexn is stored in the i-th row of ndexn, where nndexn
– no. of nodes associated with more than 4 edges, ndexn(i) – the i-th
node number connected with more than 4 edges (according to occurrence),
nodeedgeexn(i, 1) and (i, 2) are 5th edge no. for the node ndexn(i) and
another end node of that edge, (i, 3) and (i, 4) are 6th edge no. for the
node ndexn(i) and another end node of that edge and so on.

4. edgenode: Global variable of dimension (maximum number of edges in the
program, 2) in which the j-th row contains the global number of starting
node and ending node of the j-th edge in two columns, respectively.

5. edgearr: Local argument variable in the element loop which stores in the
process global edge numbers of all the edges of the element according to
edge connectivity.

Table 3. Elemental edge connectivity of meshed domain.

Element number Edge connectivity (global edge no.)
1 1, 2, 3, 4
2 2, 5, 6, 7
3 8, 9, 4, 10
4 9, 11, 7, 12

Table 4. Edgenode array of nodes of the meshed domain.

Global edge(i) Starting node End node
1 1 4
2 2 5
3 1 2
4 4 5
5 3 6
6 2 3
7 5 6
8 4 7
9 5 8
10 7 8
11 6 9
12 8 9



300 D. Kamireddy, A. Nandy

Fig. 5. Element to edge connectivity sequence of the meshed domain.

In edgedata subroutine, there is a running counter called edgej that stores
the associated number of edges of the starting end nodes of the current local
edge. The information is interchanged between the local edgej and the global
array nodeedgenum. In order to understand the update of the variables, let us
first summarize stored values in different variables after the completion of the
element loop for the first element.

1. The first, second, fourth and fifth rows of ‘nodeedgenum’ array are assigned
‘two’ because the first element has global nodes 1, 2, 4, and 5 (see Fig. 2b),
and after the loop for element 1 each of these nodes is associated with ‘two’
edges.

2. Last assigned global edge, i.e., el with the value 4.
3. nodeedge will have the following values as shown in Table 5.

For the first row (for the global node 1), we have 1 (associated the first
edge), 4 (other node of the first edge), 3 (associated the second edge), and 2
(other node of the second edge). The reason for the negative sign in (2, 1)
position of nodeedge is that the first associated edge of node 2, i.e., edge 3
is directing from the other node (1, stored in (2, 2)) towards the current
node 2 (see Fig. 5). For node 1, both the associated edges (1 and 3) are
directing from the current node 1 to the respective other nodes. Therefore,
those edge numbers are stored with the ‘+’ sign. In the first row (i.e., for
the first global edge) of the edgenode array, starting node (1) and end
node (4) are stored as shown in Fig. 4. Similarly, for the other global edges
of the element 1, starting and end nodes are stored in the 2nd, 3rd and 4th
rows of this array. Table 4 shows such information for the edges 1 to 4.

4. First row of the edge connectivity array is stored with the edge numbers
of the first element, 1, 2, 3 and 4 as shown in the first row of Table 3.

Now for the next entity of the outer element loop, i.e., for element 2, for local
edge 1 we have starting and end nodes as 2 and 5 (see Fig. 2b) as per convention
of Figs. 1a and 1b. At first, from nodeedgenum, we get the total number of
already associated edges of the starting node. For our starting node 2, there are



A novel conversion technique from nodal to edge finite element. . . 301

Table 5. Nodeedge array of nodes after element loop of the first element.

Global
node

Associated edge and second node of the edge (nodeedge (1:8))

1st
edge

Other
node

2nd
edge

Other
node

3rd
edge

Other
node

4th
edge

Other
node

1 1 4 3 2 0 0 0 0
2 −3 1 2 5 0 0 0 0
3 0 0 0 0 0 0 0 0
4 −1 1 4 5 0 0 0 0
5 −2 2 −4 4 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

two associated edges. After that, we get the other node numbers of the associated
edges from the even columns of row 2 (our current node) of the nodeedge array.
If any of these other node numbers matches with our current end node (5), then
the associated edge no. (available in the respective odd column) will be the global
edge no. of that local edge. In this case the edge no. is 2, and we will update the
current edge number with global edge number 2. In this local edge loop, we will
not update the last assigned global edge (el). Also, the first column of edgearr
is assigned with 2.

For the 2nd local edge, starting and end nodes are 3 and 6, as shown in
Fig. 2b. As there is no data available in the 3rd row of the nodeedge array, the
end node 3 is appearing for the first time. So, a new edge number is assigned
just by updating el to el+1, i.e., with digit 5. Therefore, in the nodeedge array,
the first and second columns of the third (current end node) row are assigned
with 5 (associated edge no.) and 6 (other end node), respectively. For end node
number 6, the sixth row of this array is updated with −5 and 3 in the first two
columns. Because edge 5 is pointing away from the current end node 6, a negative
symbol is assigned to the digit 5. The 5th row of the edgenode array is updated
with the end node informations (3 and 6) of this new edge (5). In the 2nd column
of edgearr, this new edge number 5 is assigned. In nodeedgenum, the existing
number in the third and sixth rows is incremented by 1 because global node 3
and global node 6 become associated with new edge ‘5’ in this local edge loop.

For the third local edge, 2 and 3 are supplied as starting and end nodes (see
Fig. 2b) respectively from the edgend subroutine. For starting node 2, there are
two connected edges 3 and 2. Other end nodes of these connected edges (available
in the even columns), i.e., 1 and 5 are not matching with other end node 3. As
there is no already existing edge between these two nodes, the last assigned



302 D. Kamireddy, A. Nandy

global edge (el) is incremented from 5 to 6. After this, edgearr is updated with
this value in the third row. In the second row of the nodeedge array, this new
edge data (global edge 6) and its other end node (3) are updated in the fifth and
sixth columns. For end node 3, the corresponding row of this array (3rd row)
is updated with −6 and 2 in the third and fourth columns. The ‘−’ symbol is
assigned to the digit 6 because the edge 6 is pointing away from the current
node 3. Also, the second row of the nodeedgenum array (related to the 2nd
global node) is updated from the previous count 2 to 3. Similarly, the third row
(related to the 3rd global node) is updated from 1 to 2. The edgenode array is
also updated with the end nodes (2 and 3) of the newly formed edge in the first
and second columns of the corresponding (sixth) row.

For the fourth local edge, end nodes as 5 (starting node) and 6 (end node),
el with 6 and existing edgearr (2, 5 and 6) are supplied. After checking the end
node 6 with the other nodes (2 and 4) available in the fifth row of the nodedge
array, el is updated from 6 to 7. This value is assigned to the running local edge.
Now, the fourth column of edgearr is updated with 7. Thus we complete the 2nd
row of Table 3, which shows the element to edge connectivity array of the second
element. Figure 5 shows such element to edge connectivity for all the global ele-
ments of the finite element meshed domain.

After this, the nodeedge array is updated with the new edge number 7 and
its associated other node 6 in the 5th and 6th columns of fifth row. Similarly, in
the 6th row corresponding to global node 6, the third and fourth columns are
updated with digits −7 and 5, respectively. Also, the existing no. of edges in the
fifth and sixth rows of the nodeedgenum array are incremented by 1 and updated
as 3 and 2. Finally, the global edge number 7 and its end nodes (5 and 6) are
stored in the corresponding row (seventh) of edgenode array as shown in Table 4.

Table 6. Nodeedge array of the global nodes of the meshed domain.

Global
node

Total no.
of conecting

edges
(nodeedgenum)

Associated edge and second node of the edge (nodeedge (1:8))

1st
edge

Other
node

2nd
edge

Other
node

3rd
edge

Other
node

4th
edge

Other
node

1 2 1 4 3 2 – – – –
2 3 −3 1 2 5 6 3 – –
3 2 5 6 −6 2 – – – –
4 3 −1 1 4 5 8 7 – –
5 4 −2 2 −4 4 7 6 9 8
6 3 −5 3 −7 5 11 9 – –
7 2 −8 4 10 8 – – – –
8 3 −9 5 −10 8 12 9 – –
9 2 −11 6 −12 8 – – – –



A novel conversion technique from nodal to edge finite element. . . 303

After updating of all the global variables, program comes out from the inner
(local edge) loop as shown in Fig. 6 and enters into the outer (element) loop
after incrementing as ele = ele+1. Now, the program runs for local edges of the
third element. This process repeats until all the discretized elements are finished.
Table 3 shows the edge connectivity array for the entire domain; Table 4 shows
the end nodes for all the edges; Table 6 shows the complete nodeedge array of
all the global nodes of the finite element meshed domain after finishing the outer
loop for all four elements.

Start

Input: Nodal connectivity array, nodecon;
Element type, eletype;
No. of elements, nele

ele = 1

Based on eletype, find
nodarr from nodecon;

No. of edges in each element, nedge

i = 1

Find nd1 and nd2 using edgend

Update edgearr (el),
nodeedgenum, nodeedge, ndexn,

nodeedgeexn using edgedata

i = i + 1

Update edge connectivity array,
edgecon appending edgearr to it

ele = ele + 1

Output: Updated edgecon, nodeedgenum,
nodeedge, ndexn, nodeedgeexn

Stop

Lo
op

i
=

1
to

ne
dg

e

Lo
op

el
e
=

1
to

ne
le

Fig. 6. Flow chart of the node to edge structure.



304 D. Kamireddy, A. Nandy

This algorithm can be implemented to other edge elements. These edge ele-
ments include 3-edge triangle, 8-edge triangle and 12-edge quadrilateral elements.
In the following sections we discuss the implementation of these elements.

2.3. Three-edge triangular element

The lower-order three-edge triangular element is formed from three-node
triangle, and Fig. 7a shows the nodal connectivity (local) of the triangular ele-
ment. For this element the expected edge connectivity is shown in Fig. 7b. With
the help of node sets (1, 2), (2, 3) and (3, 1) three edges e1, e2 and e3 are
formed, respectively. Figure 8a shows one general domain discretized with nodal
elements, which can be transformed into a domain discretized with three-edge
triangular elements as shown in Fig. 8b. For this triangular element three-edge
shape functions are [18] v1 = l1(ξ∇η − η∇ξ), v2 = l2(−η∇ξ − (1 − ξ)∇η) and
v3 = l3((1−η)∇ξ+ξ∇η), where l1, l2 and l3 are the edge lengths of three edges.

a) b)

Fig. 7. Triangular element with: a) three nodes, b) three edges.

a) b)

Fig. 8. Discretized domain meshed with:
a) three-node triangular element, b) three-edge triangular element.

2.3.1. Calculation of ∇× E. From the relation:

∇×E =

[
∂v1y
∂x
− ∂v1x

∂y

∂v2y
∂x
− ∂v2x

∂y

∂v3y
∂x
− ∂v3x

∂y

]
E1

E2

E3

 = BE,



A novel conversion technique from nodal to edge finite element. . . 305

where E1, E2 and E3 are tangential components of electric fields along the three
edges e1, e2 and e3, respectively. The components of the B-matrix can be ob-
tained by using the relation:[

∂v1x
∂x

∂v1x
∂y

]
=

[
∂v1x
∂ξ

∂v1x
∂η

][
Γ11 Γ21

Γ12 Γ22

]
.

We can derive the ∂v1x
∂ξ , ∂v1x∂η , ..., etc., explicitly.

2.3.2. Conversion algorithm. Like four-edge quadrilateral elements, the edge
data structure for three-edge triangle can be constructed as described in Sub-
sec. 2.2.2. If any node is shared by more than four edges, then some additional
data-structure is required as follows. In this algorithm if any i-th node is shared
by more than 4 edges, then the information from the fifth edge onwards is stored
in the nodeedgeexn, nndexn and ndexn arrays. In the entire geometry, there
will be a few nodes associated with more than four edges. Our nodeedge array
has a number of rows as a total number of nodes and the number of column as
8 in order to accommodate the first four associated edges, which is very common.
nodeedgeexn is initialized with a number of rows far smaller than the total num-
ber of nodes, as it has 16 columns to accommodate next eight edges. When we
come across a node associated with more than four edges, nndexn is incremented
by 1. Suppose in a flow, we have j-th occurrence of such a node associated with
more than four edges. Then, ndexn(j) will store the corresponding node number.
The j-th row of nodeedgeexn will store the information of the associated edge
and other node from the fifth edge onwards. This can be understood from the
case shown in Figs. 9a and 9b. Node no. 9 of the discretized domain is shared
by 8 edges. So the information of the first four connecting edges of node no. 9

a) b)

Fig. 9. Discretized circular domain with coarse mesh: a) nodal connectivity of the elements,
b) edge connectivity of the elements.



306 D. Kamireddy, A. Nandy

and its other end nodes are stored in the nodeedge array as shown in Table 7
after the element loop for the fifth element. But from the fifth to eighth associ-
ated edge of node 9, the information is stored in the nodeedgeexn array. Table 8
shows update of the information of the nodeedgeexn array after the end of the
element loop for the fifth element. After the element loop runs for the remaining
existing elements, the nodeedgeexn array is updated as shown in Table 9. Here,
nndexn will be 1 and ndexn(1) will be 9. We have solved a numerical example
of similar domain as discussed in Subsecs. 3.2 and 3.3 to obtain eigenvalues.

Table 7. Nodeedge array of nodes after element loop of the fifth element.

Global
node

Total no.
of conecting

edges
(nodeedgenum)

Associated edge and second node of the edge (nodeedge (1:8))

1st
edge

Other
node

2nd
edge

Other
node

3rd
edge

Other
node

4th
edge

Other
node

9 6 1 3 3 2 4 5 6 7
2 2 −2 3 −3 9 – – – –
3 3 −1 9 2 2 −5 5 – –
5 3 −4 9 5 3 −7 7 – –
7 3 −6 9 7 5 −9 1 – –
1 3 −8 9 9 7 −11 8 – –
8 2 −10 9 11 1 – – – –
– – – – – – – – – –

Table 8. Nodeedgeexn array of nodes after element loop of the fifth element.

Global
node

Associated edge and second node of the edge (nodeedgeexn (1:16))

5th
edge a∗

6th
edge a∗

7th
edge a∗

8th
edge a∗ 9th

edge a∗ 10th
edge a∗ 11th

edge a∗ 12th
edge a∗

9 8 1 10 8 – – – – – – – – – – – –
– – – – – – – – – – – – – – – – –

a∗ – other node.

Table 9. Nodeedgeexn array of nodes of the discretized domain after complete conversion.

Global
node

Associated edge and second node of the edge (nodeedgeexn (1:16))

5th
edge a∗

6th
edge a∗

7th
edge a∗

8th
edge a∗ 9th

edge a∗ 10th
edge a∗ 11th

edge a∗ 12th
edge a∗

9 8 1 10 8 12 6 14 4 – – – – – – – –
– – – – – – – – – – – – – – – – –

a∗ – other node.



A novel conversion technique from nodal to edge finite element. . . 307

2.4. Eight-edge triangular element

The higher-order triangular edge element (eight-edge triangle) is formed from
six-node triangular element. Figure 10a is the local nodal connectivity of the six-
node triangular element. Figure 10b represents the desired local edge connecti-
vity of the eight-edge triangular element. Here, eight edges e1, e2, e3, e4, e5, e6,
e7 and e8 are formed by using the node sets (1, 4), (4, 2), (2, 5), (5, 3), (3, 6),
(6, 1), (6, 5) and (5, 4), respectively. l1, l2, ..., l8 are the edge lengths of the ele-
ment. Here, three edges can be formed on the face of the element. But one edge
can be ignored due to independency of three edges. The edge shape functions of
the element are [2] v1 = l1(4ξ−1)(ξ∇η−η∇ξ), v2 = l2(4η−1)(ξ∇η−η∇ξ), v3 =
l3(4η−1)(η∇α−α∇η), v4 = l4(4α−1)(η∇α−α∇η), v5 = l5(4α−1)(α∇ξ−ξ∇α),
v6 = l6(4ξ−1)(α∇ξ−ξ∇α), v7 = 4l7η(α∇ξ−ξ∇α) and v8 = 4l8ξ(η∇α−α∇η),
where α = 1− ξ − η and ∇×E can be calculated by using the relation:

∇×E=

[
∂v1y
∂x
− ∂v1x

∂y

∂v2y
∂x
− ∂v2x

∂y
...

∂v7y
∂x
− ∂v7x

∂y

∂v8y
∂x
− ∂v8x

∂y

]


E1

E2

...

E7

E8


=BE,

a) b)

Fig. 10. Higher-order triangular element with: a) six nodes, b) eight edges.

a) b)

Fig. 11. Discretized quadrilateral domain with: a) six-node triangular element,
b) eight-edge triangular element.



308 D. Kamireddy, A. Nandy

where E1, E2, ..., E8 are tangential components of electric fields along the edges
e1, e2, ..., e8, respectively. Here, we can obtain the components of the B-matrix
explicitly. We have used the conversion algorithm, as discussed in Subsec. 2.2.2,
to convert one general domain as shown in Fig. 11a discretized with four 6-node
triangular elements into the domain meshed with four eight-edge elements shown
in Fig. 11b.

2.5. Twelve-edge quadrilateral element

The higher-order quadrilateral edge element with twelve edges is formed from
the nine-node quadrilateral element. The edges e1, e2, e3, ..., e12 are formed from
the local node sets (1, 2), (2, 3), (4, 5), (5, 6), (7, 8), (8, 9), (1, 4), (2, 5),
(3, 6), (4, 7), (5, 8) and (6, 9), respectively. Local nodal connectivity and edge
connectivity are shown in Figs. 12a and 12b, respectively. The twelve edge shape
functions are [18] v1 = −l1

2 η(η − 1)(ξ − 0.5)∇ξ, v2 = l2
2 η(η − 1)(ξ + 0.5)∇ξ,

v3 = l3(η
2 − 1)(ξ − 0.5)∇ξ, v4 = −l4(η2 − 1)(ξ + 0.5)∇ξ, v5 = −l5

2 η(η + 1)

(ξ − 0.5)∇ξ, v6 = l6
2 η(η + 1)(ξ + 0.5)∇ξ, v7 = −l7

2 ξ(ξ − 1)(η − 0.5)∇η, v8 =

l8(ξ
2−1)(η−0.5)∇η, v9 =

−l9
2 ξ(ξ+1)(η−0.5)∇η, v10 =

l10
2 ξ(ξ−1)(η+0.5)∇η,

v11 = −l11(ξ2 − 1)(η + 0.5)∇η and v12 = l12
2 ξ(ξ + 1)(η + 0.5)∇η, where l1, l2,

..., l12 are the lengths of the edges of the element.

a) b)

Fig. 12. Higher-order quadrilateral element with: a) nine nodes, b) twelve edges.

∇×E of the element can be calculated by using the following relation:

∇×E=

[
∂v1y
∂x
− ∂v1x

∂y

∂v2y
∂x
− ∂v2x

∂y
...
∂v11y
∂x
− ∂v11x

∂y

∂v12y
∂x
− ∂v12x

∂y

]


E1

E2

...

E11

E12


=BE,

where E1, E2, ..., E12 are tangential components of electric fields along the
edges e1, e2, ..., e12, respectively. We can obtain the components of the B-matrix



A novel conversion technique from nodal to edge finite element. . . 309

explicitly by using the finite difference method or Mathematica software tool [38].
For the general domain shown in Fig. 13a, which shows the domain meshed
with four 9-node quadrilateral elements we have used the conversion algorithm
to transform into the domain as shown in Fig. 13b. This generated domain is
discretized with four 12-edge quadrilateral elements.

a) b)

Fig. 13. Discretized domain with: a) nine-node quadrilateral element,
b) 12-edge quadrilateral element.

3. Numerical examples

In the frequency domain, the electromagnetic wave equation can be written
as [18]:

∇×
(

1

µr
∇×E

)
− k20εrE = −iωµ0 j, (1)

where i =
√
−1 and k0 = ω/c is the wave number in vacuum. From the relations,

relative permittivity and relative permeability εr := ε/ε0 and µr := µ/µ0, where
ε0 and µ0 are the permittivity and permeability for vacuum, and c = 1/

√
ε0µ0

is the speed of light. Assuming current density, j to be zero, the above equation
reduces to

∇×
(

1

µr
∇×E

)
= k20εrE. (2)

Equation (2) is used to solve the eigenvalue problems for finding the square of
the eigenvalue k20. In order to validate the transformed edge elements we have
performed numerical analysis by considering the standard eigenvalue problems.
Here, edge elements such as 3-edge triangular, 4-edge quadrilateral, 12-edge
quadrilateral and 8-edge triangular elements are represented as T3, Q4, Q12
and T8 respectively. Q4(N) and Q9(N) represents the 4-node quadrilateral and
9-node quadrilateral elements respectively. We assume εr = µr = 1.0 for all the
problems considered in this section.



310 D. Kamireddy, A. Nandy

3.1. Square domain with perfectly conducting boundaries

The square domain of side length π is chosen. For this square domain,
all the sides/boundaries are assumed to be perfectly conducting. Here, to con-
duct the numerical analysis, the domain is discretized with the first-order edge
elements (T3 and Q4) and higher-order edge elements (Q12 and T8). Table 10
shows the total number of equations along with the total number of discretized
elements for different meshes. For each element, square of eigenvalues is listed
in Table 11. Results with the transformed edge elements are in good agreement

Table 10. Analysis data of different edge elements for the square domain problem.

Type of element Total no. of elements Total free degrees
of freedom (equations)

T3 512 736
Q4 256 480
T8 128 1280
Q12 256 1984

Table 11. k2
0 on the square domain for different elements.

Analytical Edge element
Benchmark T3 Q4 Q12 T8

1 0.998066 1.000803 1.000002 0.999992
1 0.999795 1.000803 1.000002 1.000010
2 2.002121 2.001607 2.000004 2.000115
4 3.982881 4.012868 4.000131 4.000089
4 3.982939 4.012868 4.000131 4.000089
5 4.982602 5.013671 5.000133 5.000260
5 5.015107 5.013671 5.000133 5.002108
8 8.032183 8.025735 8.000262 8.006889
9 8.906076 9.065245 9.001478 9.000147
9 8.921107 9.065245 9.001478 9.001707
10 9.950139 10.066048 10.001480 10.005688
10 9.952486 10.066048 10.001480 10.005711
13 12.960172 13.078112 13.001609 13.012005
13 13.133842 13.078112 13.001609 13.037121
16 15.726881 16.206657 16.008194 16.004350
16 15.727173 16.206657 16.008194 16.004383

Number of computed zeros
– 65 220 217 224



A novel conversion technique from nodal to edge finite element. . . 311

with the analytical results stated in [13]. We can observe that all the elements
gave the accurate multiplicity of eigenvalues. The first non-zero eigenvalues of
all the elements appeared after stating the number of zeros generated at the
machine precision level. These zeros indicate the approximation of null space.

3.2. Circular domain with perfectly conducting surfaces

A circular domain of unit radius with perfectly conducting boundaries is
considered to perform eigenanalysis. Our interest to consider this domain is to
test the proposed algorithm in handling the data of the additional edges (more
than four edges shared at a particular node) as mentioned in Subsec. 2.3.2. In
the earlier examples, the whole domains are discretized with only one type of
element. But in the present case, the domain is discretized with the combination
of first-order edge elements (T3 and Q4) or the combination of higher-order edge
elements (Q12 and T8) to perform numerical analysis. Triangular elements are
used to mesh the center portion of the domain up to one layer in the r direc-
tion. Quadrilateral elements are adopted to discretize the rest of the domain, as
shown in Fig. 14. Mesh details of these elements are shown in Table 12, and k20
values are listed in Table 13 and are compared with analytical results reported
in [14, 17, 19]. The results of the generated edge elements indicate a strong fit
with the analytical results along with the correct multiplicity of eigenvalues.

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

–1 –0.5 0 0.5 1
x

 y

Fig. 14. Discretized circular domain.

Table 12. Analysis data of different edge elements for the circular domain problem.

Type
of element

Total no.
of triangular elements

Total no.
of quadrilateral elements

Total free degrees
of freedom (equations)

Q4/T3 30 1770 1430
Q12/T8 20 680 6340



312 D. Kamireddy, A. Nandy

Table 13. k2
0 on the circular domain for different elements.

Analytical Edge element
Benchmark T3/Q4 T8/Q12
3.391122(2) 3.425827(2) 3.383070(2)
9.329970(2) 9.530267(2) 9.329383(2)

14.680392(1) 14.802788(1) 14.737119(1)
17.652602(2) 18.347489(2) 17.662205(2)
28.275806(2) 28.658911(2) 28.304885(2)
28.419561(2) 30.105560(2) 28.343554(2)
41.158640(2) 45.175889(2) 41.404575(2)
44.970436(2) 45.564095(2) 44.974232(2)
49.224256(1) 49.668776(1) 49.543520(1)
56.272502(2) 64.056343(2) 56.956832(2)
64.240225(2) 65.762272(2) 64.271185(2)

Number of computed zeros
– 494 629

3.3. Cracked circular domain with perfectly conducting surfaces

In this example, the same circular domain but with the crack running from
the center to the side of the circle is taken into consideration, as shown in Fig. 15.
Here, the domain’s crack is modeled by using the ‘double noding’ method at the
same position. Mesh details are shown in Table 14 including the total number of
equations. Table 15 shows the numerical values along with the computed zeros
and they are compared with analytical results reported in [14, 17, 19]. The results
of the edge elements (T8/Q12) demonstrate close matching with the analytical
results.

Fig. 15. Cracked circular domain.



A novel conversion technique from nodal to edge finite element. . . 313

Table 14. Analysis data of different edge elements for the cracked circular domain problem.

Type
of element

Total no.
of triangular elements

Total no.
of quadrilateral elements

Total free degrees
of freedom (equations)

Q4/T3 30 1770 3631
Q12/T8 20 680 5591

Table 15. k2
0 on the cracked circular domain for different elements.

Analytical Edge element
Benchmark T3/Q4 T8/Q12
1.358390 1.362745 1.297322
3.391122 3.425901 3.383104
6.059858 6.146835 6.053942
9.329970 9.530267 9.329383

13.195056 13.589143 13.201275
14.680392 – 15.304855
17.652602 18.347489 17.662205
21.196816 21.297238 20.547667
22.681406 23.838848 22.709137
28.275806 28.660201 28.305522

Number of computed zeros
– 546 659

3.4. Curved L-shape domain with perfectly conducting surfaces

In this example, solved in [13], the domain has three straight and three cir-
cular sides of radii 1, 2 and 3 and Fig. 16 shows such domain discretized with Q4
elements. Here, all the boundary edges of the domains are perfectly conducting.
This problem is quite complicated due to the existence of singular eigenvalue
for the sharp corner and curvature effect. To find the eigenvalues, we discretize
the domain with both nodal and edge elements. Here, edge elements include T3,
Q4, Q12 and T8 elements, whereas nodal elements are Q4(N) and Q9(N). In Ta-
ble 16, we present the total number of equations and total number of elements
for each type of element. For all the elements, the numerical results obtained are
listed in Table 17 along with the number of computed zeros. We compare the
numerical results of these elements with analytical values taken from [13]. It can
be observed that higher-order edge element Q12 results matches with the bench-
mark values up to the second decimal and for T8 elements it matches up to the
first decimal. In the case of nodal elements, Q4(N) and Q9(N) failed to predict
the first singular eigenfrequency. Also with nodal elements, spurious eigenvalues
are predicted, which can be seen in the third row of Table 17.



314 D. Kamireddy, A. Nandy

3

2.5

2

1.5

1
y

–2.5 –2 –1.5 –0.5 1
x

–1

Fig. 16. Mesh for curved L-shape domain.

Table 16. Analysis data of different edge and nodal elements
for the curved L-shape domain problem.

Type
of element

Total no.
of elements

Total free degrees
of freedom (equations)

T3 600 860
Q4 300 560
T8 96 448
Q12 108 816

Q4(N) 300 909
Q9(N) 108 1425

Table 17. k2
0 on the curved L-shaped domain for different elements.

Analytical Edge element
Benchmark Q4(N) Q9(N) T3 Q4 Q12 T8
1.818571 – – 1.797075 1.811631 1.814860 1.807729
3.490576 3.760217 3.689097 3.491215 3.500850 3.490516 3.4954251

– 6.786038 5.033585 – – – –
10.065602 10.050998 10.153471 10.047041 10.151037 10.066760 10.082410
10.111886 10.235756 10.284415 10.101835 10.203259 10.112480 10.127115
12.435537 15.027126 13.845497 12.397735 12.510154 12.429986 12.431268

Number of computed zeros
– 306 475 101 220 217 224

We want to make a comparison between edge and nodal elements in terms of
computational cost and performance of elements in obtaining the solutions dur-
ing the numerical analysis. For this purpose, we have calculated the percentage
of error with analytical values for the first five eigenvalues to both nodal and



A novel conversion technique from nodal to edge finite element. . . 315

edge elements. Total no. of equations (which represents the computational cost)
along with the percentage of error values for all types of elements are presented
in the Table 18. We have chosen the meshes for nodal and edge elements (please
see Table 16) such that nodal element meshes result in more no. of equations
than respective edge element meshes. It can be seen in Table 18 that for al-
most all the edge element meshes have less than 1% error with the analytical
benchmarks where as there are around 11% and 20% errors for the 5th eigenfre-
quency with two nodal mesh Q4(N) and Q9(N), respectively. Also, as reported
in the literature, the nodal meshes are not able to capture singular eigenvalue
1.818571, which is captured by all the edge elements successfully. Total free de-
grees of freedom represent the total no. of equations, which is representative of
the computational cost.

Table 18. Comparison between nodal and edge elements for percentage error with analytical
benchmark solutions.

Type
of

element

Total no.
of free degrees
of freedom
(equations)

% error
for 1st
eigen-

frequencies

% error
for 2nd
eigen-

frequencies

% error
for 3rd
eigen-

frequencies

% error
for 4th
eigen-

frequencies

% error
for 5th
eigen-

frequencies
T3 860 1.182027 0.018306 0.184400 0.099398 0.303984
Q4 560 0.381618 0.294335 0.848782 0.903620 0.600030
T8 448 0.596182 0.138920 0.166985 0.150605 0.034329
Q12 816 0.204061 0.001719 0.011505 0.005874 0.044638

Q4(N) 909 – 5.687342 0.872963 1.706200 11.338151
Q9(N) 1425 – 7.724828 0.145088 1.224994 20.840186

4. Conclusions

Electromagnetic analysis with nodal finite elements has several shortcom-
ings. Nodal FEM cannot model the null space accurately, there are spurious
values. With regularization or penalty method this spurious values are shifted
towards the higher end. But with this method, an ad hoc penalty parameter is
required to be adjusted. Also, with this penalty method singular eigenvalues for
the domains with sharp edges and corners cannot be approximated accurately.
With the edge finite element method all these limitations are addressed with-
out the use of any ad hoc penalty parameter. Furthermore, in nodal FEM, it is
required to decompose electric and magnetic fields into scalar and vector poten-
tials to attain the necessary continuity requirement across elements. After the
FEM analysis, fields are calculated from the potentials with additional postpro-
cessing. In edge FEM, we can formulate directly in terms of field variables. But
most of the preprocessors in practice generate FEM meshes in terms of nodal



316 D. Kamireddy, A. Nandy

connectivities. Hence, in this article we have presented a very useful novel con-
version technique transforming the nodal connectivities into edge connectivities.
Also, this conversion algorithm generates other necessary data structures in edge
formulations such as direction information of the edges, connecting nodes of a
particular edges, associated edges of a particular node and respective other node
of those edges. This algorithm converts the 4-node quadrilateral into the 4-edge
quadrilateral, the 3-node triangle into the 3-edge triangle, the 6-node triangle
into the 8-edge triangle, and the 9-node quadrilateral into the 12-edge quadrilat-
eral. For some special geometries, combinations of triangular and quadrilateral
elements are more effective. Our conversion algorithm is capable to combine
successfully a 3-edge triangle with a 4-edge quadrilateral and a 8-edge triangle
with a 12-edge quadrilateral. In Subsecs. 3.2 and 3.3, the successful implementa-
tion of such combination was presented with numerical examples. Some special
treatment is required in the data structure for the nodes connected to many
edges; this is explained in detail in Subsec. 2.3.2 with associated representative
examples. This additional data structure is verified with numerical examples
in Subsecs. 3.2 and 3.3. The effectiveness of the conversion technique is tested
with different standard benchmark examples. These numerical examples include
square domain, circular domain, cracked circular domain, curved L-shape do-
main, etc. Our proposed conversion technique gives accurate k20 values along
with correct multiplicity for both convex and non-convex domains. For non-
convex domains, singular eigenvalues are predicted without any spurious modes.
The perfect match with the benchmark results for different examples in terms of
eigenvalues, their multiplicities, singular eigenvalues for the domain with sharp
corners and edges, all exhibit the correctness and efficacies of the conversion al-
gorithm. Our edge elements are performing accurately with more computational
efficiency than nodal elements.

Acknowledgments

Supported by Science and Engineering Research Board (SERB), and Depart-
ment of Science and Technology (DST), Government of India, under the project
IMP/2019/000276 and VSSC, ISRO through MoU No.: ISRO:2020:MOU:NO: 480.

References

1. M. Agrawal, C.S. Jog, Monolithic formulation of electromechanical systems within the
context of hybrid finite elements, Computational Mechanics, 59 (3): 443–457, 2017, doi:
10.1007/s00466-016-1356-1.

2. A. Ahagon, T. Kashimoto, Three-dimensional electromagnetic wave analysis using high
order edge elements, IEEE Transactions on Magnetics, 31(3): 1753–1756, 1995, doi:
10.1109/20.376375.

https://doi.org/10.1007/s00466-016-1356-1
https://doi.org/10.1109/20.376375


A novel conversion technique from nodal to edge finite element. . . 317

3. M. Ainsworth, J.F. Coyle, P.D. Ledger, K. Morgan, Computing Maxwell eigenvalues by
using higher order edge elements in three dimensions, IEEE Transactions on Magnetics,
39(5): 2149–2153, 2003, doi: 10.1109/TMAG.2003.817097.

4. Nandy Arup Kumar, Robust Finite Element Strategies for Structures, Acoustics, Electro-
magnetics and Magneto-hydrodynamics, Ph.D. thesis, Indian Institute of Science Banga-
lore, Department of Mechanical Engineering, IISc, Bangalore, India, https://etd.iisc.ac.in/
handle/2005/2913.

5. M.L. Barton, Z.J. Cendes, New vector finite elements for three-dimensional magnetic field
computation, Journal of Applied Physics, 61(8): 3919–3921, 1987, doi: 10.1063/1.338584.

6. D. Boffi, Finite element approximation of eigenvalue problems, Acta Numerica, 19: 1–120,
2010, doi: 10.1017/S0962492910000012.

7. D. Boffi, M. Farina, L. Gastaldi, On the approximation of Maxwell’s eigenproblem in
general 2D domains, Computers & Structures, 79: 1089–1096, 2001, doi: 10.1016/S0045-
7949(01)00003-7.

8. D. Boffi, P. Fernandes, L. Gastaldi, I. Perugia, Computational models of electromagnetic
resonators: analysis of edge element approximation, SIAM Journal on Numerical Analysis,
36(4): 1264–1290, 1999, doi: 10.1137/S003614299731853X.

9. A. Bossavit, A rationale for ‘edge-elements’ in 3-D fields computations, IEEE Transactions
on Magnetics, 24(1): 74–79, 1988, doi: 10.1109/20.43860.

10. A. Bossavit, J.-C. Vérité, A mixed FEM-BIEM method to solve 3-D eddy-current prob-
lems, IEEE Transactions on Magnetics, 18(2): 431–435, 1982, doi: 10.1109/TMAG.1982.
1061847.

11. J.H. Bramble, T. Kolev, J.E. Pasciak, The approximation of the Maxwell eigenvalue prob-
lem using a least-squares method,Mathematics of Computation, 74(252): 1575–1598, 2005,
doi: 10.1090/S0025-5718-05-01759-X.

12. Z.J. Cendes, Vector finite elements for electromagnetic field computation, IEEE Transac-
tions on Magnetics, 27(5): 3958–3966, 1991, doi: 10.1109/20.104970.

13. M. Dauge, Benchmark computations for Maxwell equations for the approximation
of highly singular solutions, 2004, http://perso.univ-rennes1.fr/monique.dauge/core/in
dex.html.

14. A. Elsherbeni, D. Kajfez, S. Zeng, Circular sectoral waveguides, IEEE Antennas and
Propagation Magazine, 33(6): 20–27, 1991, doi: 10.1109/74.107352.

15. L.E. Garcia-Castillo, M. Salazar-Palma, Second-order Nédélec tetrahedral element for
computational electromagnetics, International Journal of Numerical Modelling: Elec-
tronic Networks, Devices and Fields, 13, 261–287, 2000, doi: 10.1002/(SICI)1099-1204
(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L.

16. R.D. Graglia, D.R. Wilton, A.F. Peterson, Higher order interpolatory vector bases for
computational electromagnetics, IEEE Transactions on Antennas and Propagation, 45(3):
329–342, 1997, doi: 10.1109/8.558649.

17. R.F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, NY,
1961, https://cds.cern.ch/record/230916.

18. J.-M. Jin, The Finite Element Method in Electromagnetics, Third ed., John Wiley & Sons,
New Jersey, 2014.

https://doi.org/10.1109/TMAG.2003.817097
https://etd.iisc.ac.in/handle/2005/2913
https://etd.iisc.ac.in/handle/2005/2913
https://doi.org/10.1063/1.338584
https://doi.org/10.1017/S0962492910000012
https://doi.org/10.1016/S0045-7949(01)00003-7
https://doi.org/10.1016/S0045-7949(01)00003-7
https://doi.org/10.1137/S003614299731853X
https://doi.org/10.1109/20.43860
https://doi.org/10.1109/TMAG.1982.1061847
https://doi.org/10.1109/TMAG.1982.1061847
https://doi.org/10.1090/S0025-5718-05-01759-X
https://doi.org/10.1109/20.104970
http://perso.univ-rennes1.fr/monique.dauge/core/index.html
http://perso.univ-rennes1.fr/monique.dauge/core/index.html
https://doi.org/10.1109/74.107352
https://doi.org/10.1002/(SICI)1099-1204(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-1204(200003/06)13:2/3<261::AID-JNM360>3.0.CO;2-L
https://doi.org/10.1109/8.558649
https://cds.cern.ch/record/230916


318 D. Kamireddy, A. Nandy

19. C.S. Jog, A. Nandy, Mixed finite elements for electromagnetic analysis, Computers and
Mathematics with Applications, 68(8): 887–902, 2014, doi: 10.1016/j.camwa.2014.08.006.

20. D. Kamireddy, A. Nandy, Combination of triangular and quadrilateral edge element for the
eigenvalue analysis of electromagnetic wave propagation, European Journal of Molecular
& Clinical Medicine, 7(11): 1656–1663, 2020, https://ejmcm.com/article_5696.html.

21. D. Kamireddy, A. Nandy, Creating edge element from four node quadrilateral ele-
ment, IOP Conference Series: Materials Science and Engineering, 1080, 2021, doi:
10.1088/1757-899x/1080/1/012015.

22. M. Koshiba, K. Hayata, M. Suzuki, Finite-element formulation in terms of the electric-
field vector for electromagnetic waveguide problems, IEEE Transactions on Microwave
Theory and Techniques, 33(10): 900–905, 1985, doi: 10.1109/TMTT.1985.1133148.

23. J.F. Lee, D.K. Sun, Z.J. Cendes, Tangential vector finite elements for electromag-
netic field computation, IEEE Transactions on Magnetics, 27(5): 4032–4035, 1991, doi:
10.1109/20.104986.

24. A. Nandy, C.S. Jog, An amplitude finite element formulation for electromagnetic radiation
and scattering, Computers & Mathematics with Applications, 71(7): 1364–1391, 2016, doi:
10.1016/j.camwa.2016.02.013.

25. A. Nandy, C.S. Jog, A monolithic finite-element formulation for magnetohydrodynamics,
Sadhana – Academy Proceedings in Engineering Sciences, 43: 1–18, 2018, doi: 10.1007/
s12046-018-0905-z.

26. A. Nandy, C.S. Jog, Conservation properties of the trapezoidal rule for linear transient
electromagnetics, Journal of Advances in Mathematics and Computer Science, 26(4): 1–
26, 2018, doi: 10.9734/JAMCS/2018/39632.

27. J.C. Nedelec, Mixed finite elements in R3, Numerische Mathematik, 35: 315–341, 1980,
doi: 10.1007/BF01396415.

28. R. Otin, Regularized Maxwell equations and nodal finite elements for electromag-
netic field computations, Electromagnetics, 30(1–2): 190–204, 2010, doi: 10.1080/02726
340903485489.

29. K.D. Paulsen, D.R. Lynch, Elimination of vector parasites in finite element Maxwell so-
lutions, IEEE Transactions on Microwave Theory and Techniques, 39(3): 395–404, 1991,
doi: 10.1109/22.75280.

30. U. Pekel, R. Mittra, An application of the perfectly matched layer (PML) concept to the
finite element method frequency domain analysis of scattering problems, IEEE Microwave
and Guided Wave Letters, 59(8): 258–260, 1995, doi: 10.1109/75.401074.

31. F. Rapetti, A. Bossavit, Whitney forms of higher degree, SIAM Journal on Numerical
Analysis, 47(3): 2369–2386, 2009, doi: 10.1137/070705489.

32. C.J. Reddy, M.D. Deshpande, C.R. Cockrell, F.B. Beck, Finite element method for
eigenvalue problems in electromagnetics, NASA Technical Paper, 3485, http://ecee.colora
do.edu/∼ecen5004/PDFs/FiniteElementCJReddy.pdf.

33. Seung-Cheol Lee, Jin-Fa Lee, R. Lee, Hierarchical vector finite elements for analyzing
waveguiding structures, IEEE Transactions on Microwave Theory and Techniques, 51(8):
1897–1905, 2003, doi: 10.1109/TMTT.2003.815263.

https://doi.org/10.1016/j.camwa.2014.08.006
https://ejmcm.com/article_5696.html
https://doi.org/10.1088/1757-899x/1080/1/012015
https://doi.org/10.1109/TMTT.1985.1133148
https://doi.org/10.1109/20.104986
https://doi.org/10.1016/j.camwa.2016.02.013
https://doi.org/10.1007/s12046-018-0905-z
https://doi.org/10.1007/s12046-018-0905-z
https://doi.org/10.9734/JAMCS/2018/39632
https://doi.org/10.1007/BF01396415
https://doi.org/10.1080/02726340903485489
https://doi.org/10.1080/02726340903485489
https://doi.org/10.1109/22.75280
https://doi.org/10.1109/75.401074
https://doi.org/10.1137/070705489
http://ecee. colorado.edu/~ecen5004/PDFs/FiniteElementCJReddy.pdf
http://ecee. colorado.edu/~ecen5004/PDFs/FiniteElementCJReddy.pdf
https://doi.org/10.1109/TMTT.2003.815263


A novel conversion technique from nodal to edge finite element. . . 319

34. X.Q. Sheng, J.M. Jin, C.C. Lu, W.C. Chew, On the formulation of hybrid finite-element
and boundary-integral methods for 3-D scattering, IEEE Transactions on Antennas and
Propagation, 46(3): 303–311, 1998, doi: 10.1109/8.662648.

35. J.P. Webb, Edge elements and what they can do for you, IEEE Transactions on Magnetics,
29: 1460–1465, 1993, doi: 10.1109/CEFC.1992.720787.

36. J.P. Webb, Hierarchal vector basis functions of arbitrary order for triangular and tetra-
hedral finite elements, IEEE Transactions on Antennas and Propagation, 47: 1244–1253,
1999, doi: 10.1109/8.791939.

37. J.P. Webb, V.N. Kanellopoulos, Absorbing boundary conditions for the finite element
solution of the vector wave equation, Microwave and Optical Technology Letters, 2: 370–
372, 1989, doi: 10.1002/mop.4650021010.

38. Wolfram Research, Inc., Mathematica 10.4.1, Champaign, IL (2020),
https://www.wolfram.com.

39. T.V. Yioultsis, T. Tsiboukis, Development and implementation of second and third order
vector finite elements in various 3-D electromagnetic field problems, IEEE Transactions
on Magnetics, 33(2): 1812–1815, 1997, doi: 10.1109/20.582630.

40. T.V. Yioultsis, Multiparametric vector finite elements: a systematic approach to the con-
struction of three-dimensional, higher order, tangential vector shape functions, IEEE
Transactions on Magnetics, 32(3): 1389–1392, 1996, doi: 10.1109/20.497506.

Received September 8, 2021; revised version February 11, 2022.

https://doi.org/10.1109/8.662648
https://doi.org/10.1109/CEFC.1992.720787
https://doi.org/10.1109/8.791939
https://doi.org/10.1002/mop.4650021010
https://www.wolfram.com
https://doi.org/10.1109/20.582630
https://doi.org/10.1109/20.497506

