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This paper is devoted to a theoretical and numerical study of different ways of calculating the Fourier
transform of a noisy signal where the boundary conditions at the lateral boundaries of the measurement
interval are not precisely known. This happens in different characterization problems where infrared camera
is used for temperature measurements. In order to overcome this difficulty, the interval where the Fourier
transform (its support) is supposed to be larger than the measurement domain is defined. Thus, this
virtual interval larger than the measurement interval is used. We show that regularization by truncated
singular value decomposition is able to yield good estimates to this very ill-posed inverse problem.
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1. INTRODUCTION

We consider here the problem of reconstructing the Fourier spectrum of Nx noisy discrete tempera-
ture measurements θi made on a solid surface, which is for discrete abscissa xi ∈]− ℓ; ℓ] ⊂]−L; L]
for i = 1 to Nx, in a 2D heat transfer case. The Nh = 2nh harmonics of this spectrum are

θ̃n =

L∫

−L

θ(x) exp(−iαnx)dx with i2 = −1, L ≥ ℓ,

and αn = nπ/L (for n = −nh + 1, −nh + 2, · · · ,−1, 0, 1, 2, · · · , nh − 1, nh).

(1)

Estimation of this spectrum is required in thermal characterization experiments where infrared
thermography (IR) is used. We take as example thermal diffusivity measurement of a composite
flat plate made of anisotropic material with a front face flash excitation and rear face IR temperature
measurement [1] or for estimating the heat fluxes at different interfaces of a mini-channel heated
locally over its front face (either steady state or transient heating), using front or rear face IR
temperature measurement [2–4]. This stems from the fact that an analytical solution of this type
of heat transfer problem can be obtained very easily using the Fourier integral transform over a
finite space domain, for example, through the thermal quadrupoles technique [5]. Inversion of the
corresponding experimental temperature distribution, written in the Fourier domain, can be applied
either to estimate thermophysical parameters of a sample (a parameter estimation problem) [1] or
to recover temperature and fluxes at different interfaces as well as the bulk temperature distribution
in a conjugated (fluid flow/wall) heat transfer (inverse function estimation problem based on inverse
heat conduction/convection) [2–4].
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The main difficulty in this type of configuration is that the experimental boundary conditions at
x = ±ℓ are generally not precisely known: heat flux in the x direction by both natural convection
and radiation can occur in the anisotropic diffusivity characterization problem [1] or the channel wall
length 2L can be larger than the measurement length 2ℓ in the channel thermal characterization
problem [2], which means that neither temperature nor heat flux are equal to zero at the two
boundaries, especially at the downstream one if it is too close to the heated region (at x = ℓ if the
fluid flows in the positive x direction).
If the eigenvalues α′n = nπ/ℓ are chosen, which correspond to the zero temperature or flux

boundary conditions, the solution of the direct or the inverse problem may be biased.
This is why the authors decided to define the eigenvalues αn = nπ/L over a larger interval

]−L; L], called here a ‘virtual’ interval, wider than the measurement interval ]−ℓ; ℓ], see Eq. (1),
where kv = L/ℓ ≥ 1. If kv becomes large enough, the virtual boundaries x = ±L are far enough
from the heat source, which lays inside the ]−ℓ; ℓ] measurement interval and the zero temperature
or flux boundary conditions become valid, and the αn eigenvalues become exact.

2. THE STUDIED FUNCTION

We consider here the following function (2) which is plotted in Fig. 1:

θ(x) = 0 for x ∈ ]−L0; 0] ,

θ(x) = Ax2 exp

(
−B x

L0

)
for x ∈ ]0; L0] ,

(2)

where A and B are the parameters of this function (here A = 1.2× 105 ◦C.m−2 and B = 14.4 with
L0 = 80 mm. The exact analytical spectrum of this function is

θ̃exactn =
A

K2

[
−KL2

0 exp(−KL0)− 2L0 exp(−KL0)−
2

K
{exp(−KL0)− 1}

]
, (3)

where

K =
B

L0

+ iαn.

Fig. 1. Exact (Eq. (2)), noised (Eq. (4)) and reconstructed (Eq. (9)) temperature profiles
for N2L0

x = 492 points.
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An identically independently distributed noise εi of standard deviation σ = 0.08◦C is added at
each location (see Fig. 1) xi = −L0 + i∆x, for i = 1, to N2L0

x = 492, where ∆x = 2L0/N
2L0

x :

θnoisedi = θ(xi) + εi. (4)1

This generates a synthetic temperature measurement vector of size N2L0

x × 1:

θ
noised = θ + ε, where E(ε) = 0 and cov(ε) = σ2

I
N

2L0
x

, (4)2

where E () is the expectancy of a random column vector, cov() its variance-covariance matrix and
INx the identity matrix of size N

2L0

x .

2.1. Noisy data available on the whole interval of length 2L0

Since the zero temperature and flux boundary conditions are valid at x = ±L0 (see Fig. 1), the αn

eigenvalues αn = nπ/L0 become exact. For this reason we will use here kv = 1. The Nh harmonics

of the temperature profile (3) can be generated in a θ̃
exact column vector of size Nhx1 (see its

energy spectrum in Fig. 2). Once the synthetic (pseudo-experimental) temperature profile θnoised

is known, the unknown spectrum θ̃ can be calculated in two different ways:

a) Spectrum assessment by direct numerical quadrature

This technique is the simplest one, it consists in calculating an approximation of the definition (1)

of each harmonic θ̃n through a numerical integration of the noised signal [6]:

θ̃n ≈ ∆x

N
2L0
x∑

i=1

θnoisedi exp(−iαnxi) =

N
2L0
x∑

i=1

Gniθ
noised
i with Gni = exp(−iαnxi)∆x. (5)

Since N2L0

x data θnoisedi are available, a number Nh = 2nh ≤ N2L0

x of harmonics can be calculated.
This technique can provide good approximations of the harmonics of low order (low values of |n |)
but its precision decreases for high space frequencies, because of the presence of noise in the signal.
In this paper this technique is not used, we will use only technique (b).

b) Spectrum estimation by inverse discrete Fourier transform

Instead of using the approximation of an integral of a noised signal (5), it is better to consider
estimation of its spectrum as an inverse problem. So, we can start with an exact model, which is
the definition of the inverse Fourier transform for an exact output signal θ depending on a limited
number of harmonics Nh = 2nh = N2L0

x :

θ(xi) = θi =
1

2L0

nh∑

n=−nh+1

θ̃n exp(+iαnxi) =

nh∑

n=−nh+1

Sinθ̃n

with Sin =
1

2L0

exp(+iαnxi).

(6)

This equation can be expressed in a matrix/column vector form, if the subscripts of the θ̃n
harmonics are increased by a simple translation equal to nh, in order not to have any negative
index in the components of the spectrum vector θ̃, that is [θ̃]k = θ̃k−nh

. This spectrum vector,
a parameter vector to be estimated as well as the corresponding model is

θ̃ = [ θ̃−nh+1 θ̃−nh+2 · · · θ̃0 · · · θ̃nh−1
θ̃nh

]T and θ = Sθ̃, (7)
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where the coefficients of the matrix S of size N2L0

x are [S]ik = Si,k−nh
. So, the ordinary least square

(OLS) solution for Nh = N2L0

x and for a square matrix S is

̂̃
θ

square
OLS = arg(min(J(θ̃))) = S

−1
θ
noised

where J(θ̃) =
∥∥∥r(θ̃)

∥∥∥
2

with r(θ̃) = θ
noised − Sθ̃.

(8)

Here, the inverse problem is very well posed, since the condition number of matrix S is very

close to unity, which means that the residual vector r(
̂̃
θ

square
OLS ) is very small. The recalculated

(reconstructed) signal can be written as

θrecalc = S
̂̃
θ

square
OLS . (9)

The reconstructed signal is plotted together with the exact signal θ and with the noised signal
θ
noised in Fig. 1. One can see that the fit is perfect.
The spectral energy density θ̃∗nθ̃n (the upper star designates the transpose of the complex con-

jugate) of the exact temperature profile, as well as its estimated value that stems from the ordinary
least square estimation (8) deduced from the noised temperature profile, is plotted in Fig. 2. Since
the analytical and estimated spectra outside the ]−40; 40] interval are equal to zero, we show here
only the spectra for this interval. We can see that all the harmonics are very well estimated except
the n = 0 harmonic (peak) that is lower than its true value. The noise in the discrete simulated
measurements is the only cause of this error.

Fig. 2. Spectral energy densities of temperature profile: exact (θ̃∗

nθ̃n) and estimated (
̂̃
θ

∗square

OLS

̂̃
θ

square

OLS ).

2.2. Noisy data available over a part of the 2L0 interval

Now let us consider the case where we only know a part of the profile (here, we suppose that we only
know Nx = 200 points over ]−ℓ; ℓ], where Nx < N2L0

x , see Fig. 3). Our aim here is to estimate the
spectrum of this profile, which has to be as close as possible to the “true” spectrum shown in Fig. 2
corresponding to the ]−L0; L0] interval. We suppose here that L0 corresponding to homogeneous
boundary conditions is unknown and that ℓ = 32.5 mm remains fixed and L ≤ L0 = 80 mm will be
changed. In the following sub-sections, we will show the spectrum estimation of this profile for two
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cases: the first case kv = 1(L = ℓ), in which the eigenvalues are set on the small interval α′n = nπ/ℓ
and the second case kv = 2(L = 2ℓ), in which the eigenvalues are calculated on the larger interval
αn = nπ/2ℓ.

Fig. 3. Exact and noised temperature profiles over ]−ℓ; ℓ] with ℓ = 0.0325 m and Nx = 200.

2.2.1. Estimation of the Fourier spectrum without any virtual length (kv = 1)

In this case no regularization is needed since condition number of S is equal to 1 (see Fig. 6 further
in this paper). Figure 4 shows a very good agreement between the noisy profile and the profile
recalculated from an estimated spectrum. But the use of the eigenvalues that do not satisfy the
boundary conditions leads to a biased estimation of the defined exact spectrum, for reference, over
the 2L0 length (see Fig. 5).

Fig. 4. Exact, noised and reconstructed temperature profiles over ]−ℓ; ℓ] using ordinary least squares
Nx = 200 points (kv = 1).
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Fig. 5. Estimated spectrum of noisy profile over ]−ℓ; ℓ] without regularization (kv = 1).

2.2.2. Estimation of the Fourier spectrum with a virtual length (kv = 2)

Here, we show how the spectrum of the noisy profile can be estimated using the measurement over a
part of its support. The Nx noised temperatures are known on the ]−ℓ; ℓ] interval, and the integral
Fourier transform (1) is defined on the ]−L; L] interval with L = 2ℓ and, as a consequence, the Nx

new eigenvalues αn =
nπ

L
=

nπ

2ℓ
are used. They are the halves of the preceding ones (case L = ℓ).

This means that the distribution of the space frequencies used for parameterizing the θ(x) profile
is more dense than in the case kv = 1.
If we calculate square matrix S using eigenvalues defined on the ]−L; L] interval and the in-

formation points (here Nx points) chosen on interval ]−ℓ; ℓ] it becomes very ill-conditioned. Con-
sequently, very poor estimates of the spectrum are obtained: for a linear system the relative error
of the estimated spectrum can be expressed as the product of the condition number of the matrix
S and the relative error of the measurement. We know in reality it is impossible to make a mea-
surement without noise. So in the presence of the noise it is impossible to estimate the spectrum if
matrix S is ill-conditioned. Normally to overcome this difficulty, we use a regularization to make
the inverse problem well-conditioned. In the following subsections (I and II), we present two reg-
ularization techniques that have been applied to the synthetic profile. In another work, the same
technique has been applied to experimental IR temperature measurements for a flat mini-channel
in a transient heating case [4].

I. Rectangular estimation

We know that the maximum number of harmonics that can be estimated cannot exceed the number
of space points (Nh = 2nh ≤ Nx). If there is no abrupt change in the experimental profile, there is
no need for many harmonics to reconstruct this profile. So we can estimate a number of harmonics
α to be lower than the number of measurements Nx. In this case, matrix S can be replaced by
a rectangular matrix Sα with the size Nxxα (the (Nx−α)/2 first column as well as the (Nx−α)/2
last columns of S have been removed) and the ordinary least square solution becomes

̂̃
θ

rect
OLS,α = arg(min(J(θ̃α))) = (S∗αSα)

−1
S
∗

αθ
noised,

where J(θ̃α) =
∥∥∥r(θ̃α)

∥∥∥
2

with r(θ̃) = θ
noised − Sαθ̃α.

(10)
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The matrix S
∗

α is the adjoint of complex matrix Sα, which is the transpose of its conjugate

(S∗α = S
T

α).

II. Truncated singular value estimation

Instead of trying to reduce the number of unknowns, the α ≤ Nx harmonics corresponding to the
rectangular sensitivity matrix Sα used in Eq. (10), it is possible to keep the total number of har-
monics to be estimated equal to Nx using regularization by truncated singular value decomposition
(TSVD) [4]. This regularization technique is based on the square matrix S whose singular value
decomposition (SVD) is

S = UWV
T with U

∗
U = UU

∗ = V
∗
V = V

∗
V = INx ,

with W = diag(w1, w2, · · · , wNx),

where w1 ≥ w2 ≥ · · ·wNx−1 ≥ wNx ≥ 0,

U =
[
U1 U2 · · · UNx

]
; V =

[
V1 V2 · · · VNx

]
(11)

and where wk, Uk and Vk are the k-th singular value, the k-th left singular vector and the k-th
right singular vector respectively. The ordinary least estimator (8) can also be written as

̂̃
θ

square
OLS = arg(min(J(θ̃))) = V W

−1
U
∗
θ

noised. (12)

The truncated version of this estimator is

̂̃
θ

TSV D
α = V W

−1
α U

∗
θ

noised with W
−1
α = diag(w−1

1
, w−1

2
, · · · , w−1α 0 · · · 0 ). (13)

This estimator is intended to keep the number of estimated Nx unchanged, while using a number
of internal degrees of freedom α (the number of the inverse singular values w−1k different from zero
in (13)), which becomes smaller than Nx with a decrease of the dispersion of the estimates since

Trace

(
cov

(
̂̃
θ

TSV D
α

))
=

Nx∑

n=1

var

(
̂̃
θ TSV D
n, α

)
= σ2

Nx∑

k=1

1

w2
k

≤ Trace
(
cov

(
̂̃
θ

square
OLS

))
, (14)

where cov ( ) is the variance-covariance matrix of a column vector.
The singular values of the sensitivity matrix S calculated over the ]−ℓ; ℓ] interval with the

eigenvalues calculated on the larger interval αn = nπ/2ℓ (kv = 2) are plotted in Fig. 6, together
with the eigenvalues αn = nπ/ℓ (kv = 1).
It is very clear that the inverse problem met here is severely ill-posed since the condition number

of matrix S is cond(S) = w1/wNx=200 = 153.9/3.57 10−15 = 4.3 1016 ≈ ∞. This matrix is clearly
singular and regularization is compulsory. If the TSVD is used, it is obvious that the optimum
value for the truncation parameter α will be in the region between 90 < α < 110 where the singular
values show a sharp change of level.
Comparison of the variations of the root mean square residual rrms (Eq. (15)) with the α regular-

ization hyperparameter for the rectangular and the TSVD estimation is shown in Fig. 7, where the
vertical scale is logarithmic. Rectangular ordinary least square estimation cannot follow the sim-
ulated measurements for α > 20 where strong oscillations with α appear. The residuals of TSVD
estimation meet the level of the standard deviation of the noise, for α between 80 and 90.

rrms

(
θ̂ reg
α

)
=

1√
Nx

∥∥∥θ noised − θ̂ reg
α

∥∥∥ =
1√
Nx

∥∥∥∥θ
noised − S

̂̃
θ reg
α

∥∥∥∥ (15)

with reg = rect or TSV D.
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Fig. 6. Singular values of the square sensitivity matrix S for (kv = 1 and 2).

Fig. 7. Root mean square residuals for rectangular and TSVD estimations (kv = 2).

The root mean squares of the errors of the estimates erms (Eq. (16)) are plotted as a function
of α for the rectangular estimation and for the TSVD estimation in Fig. 8, where the vertical scale
is logarithmic. For values of α lower than 120, the error is lower for the TSVD estimate, with
a minimum being slightly lower than α = 100. This corresponds roughly to the value where the
rrms is slightly above the noise level (flat region between 80 and 90) in Fig. 7, which corresponds
to the discrepancy principle [7]

erms(α) =
1√
Nx

∥∥∥∥
̂̃
θ reg
α − θ̃ exact

α

∥∥∥∥. (16)

The recalculated signal θ recalc = S
̂̃
θ

TSV D
α is plotted together with the exact signal θ exact and

with the noised signal θ noised in Fig. 9 for α = 89, the fit is good.

The corresponding spectral energy density is presented in Fig. 10. It shows that the estimation
on a smaller x interval instead of being on the whole interval of width 2L, even if it is not perfect
is possible using a TSVD regularization.
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Fig. 8. Root mean square errors of the estimates of the harmonics for rectangular and TSVD estimations
(kv = 2).

Fig. 9. Exact, noised and reconstructed temperature profiles using TSVD (kv = 2).

Fig. 10. Spectral energy densities of temperature profiles: exact (θ̃∗

nθ̃n) and estimated (
̂̃
θ

∗TSV D
α

̂̃
θ

TSV D
α ).
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From the spectrum estimated previously we can reconstruct the θ profile not only over the ]−ℓ; ℓ]
interval (the distance between the two dotted lines, see Fig. 11) but also outside this interval. We
can see that the profile on the interval ]−ℓ; ℓ] is fairly reconstructed but that is not the case outside
of this interval.

Fig. 11. Noised and reconstructed temperature profiles using TSVD (kv = 2).

The choice of kv constitutes a delicate point: it should be not too large because in this case α will
be small (with a loss in the number of the degrees of freedom), but not too small in order to satisfy
the discrepancy principle. Figures 12 and 13 show the root mean square error for the estimated
spectrum (with respect to the reference case L = L0) and the root mean square residual that are
plotted against the value of the regularization parameter α corresponding to different values of kv
(that is, corresponding to different values of L for the preceding fixed value of ℓ).
This shows quite clearly that there is a relationship between the optimum value of α (regular-

ization parameter) and the virtual length ratio.
Table 1 was constructed, starting from Figs. 12 and 13, to clarify the optimal choices of both

kv and α. In practice, the line giving erms is not available for a real problem and is only present to
test the optimality condition of the discrepancy principle. Let us remark here that our approach is

Fig. 12. Root mean square errors of the estimates of the harmonics for TSVD estimation at different kv.
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Fig. 13. Root mean square residuals for TSVD estimation at different kv.

Table 1. Optimization of α for different virtual length ratios kv .

kv = L/ℓ 1 1.8 2 2.2 2.4 2.6 3

αopt based on discrepancy 200
principle using residuals (αopt = Nx, 96 87 79 73 68 59
rrms no regularization)

αopt based on the lower
norm of the erms error and 200 96 89 91 84 77 67
corresponding lower value (7.75) (3.54) (2.54) (1.66) (1.11) (1.30) (2.80)
of erms × 103

αopt based on Eq. (17) 200 111 100 91 83 77 67

limited to functions θ(x) that are quite smooth over the ]−ℓ; ℓ], that is, without an abrupt change
and with a return to zero on the lower and upper bounds of the ]−L0; L0] interval in order to get
a Fourier reconstruction without discontinuity in ±L0 (periodicity conditions).

We see that the real optimum (lower value of erms) is close to the optimum corresponding to the
discrepancy principle. The higher the value of kv chosen, the smaller the optimum value αopt of the
TSVD hyperparameter becomes. So, as a rule of thumb, one can adopt the following criterion:

αopt ≈ Nx/kv . (17)

The corresponding value of αopt is given in the last line of Table 1, it fits quite well the real optimum
here.

Concomitantly, the higher the value of kv , the lower the erms error till its exact minimum value
for kv = 2.4, which is very close to kv0 = L0/ℓ = 2.46, with an increase of past this value, which is
quite normal. So, if a too large value for kv is chosen, the quality of the estimation of the spectrum
will degrade. In practice, it is recommended to make a numerical simulation with kv as close as
possible to the reality.

We have also considered the case kv = 1 in Table 1, which does not require regularization and
allows a good fit of the data, see Fig. 4, but with a poor estimation of its spectrum, see Fig. 5 (high
value of erms).
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3. CONCLUSIONS

We have shown in this paper that estimation of the Fourier spectrum of a temperature profile
was possible using measurements over an interval smaller than the space interval where its Fourier
transforms are defined. This allowed to take into account ill-defined lateral boundary conditions in
problems involving inversion of a temperature profile measured by infrared thermography. These
problems are met, for example, in thermal characterization of heat transfer in a flat mini-channel
with outside temperature measurements, where the model can be written analytically in a simple
way using Fourier transforms of temperature and flux (thermal quadrupoles method).
Let us note that in terms of inversion, this problem is related to data completion [8]. However,

here one does not try to extrapolate available data but rather to reconstruct an optimum linear
parameterization of a sampled function, where its coefficients, the different Fourier harmonics, have
a physical meaning, for example, in heat transfer.
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