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In real time, the speech signal received contains noise produced in the background and
reverberations. These disturbances reduce the quality of speech; therefore, it is important
to eliminate the noise and increase the intelligibility and quality of speech signal. Speech
enhancement is the primary task in any real-time application that handles speech signals.
In the proposed method, the most effective and challenging noise, i.e., babble noise, is
removed, and the clean speech is recovered. The enhancement of the corrupted speech
signal is done by applying a deep neural network-based denoising algorithm in which the
ideal ratio mask is used to mask the noisy speech and separate the clean speech signal.
In the proposed system, the speech signal corrupted by noise is enhanced. Evaluation of
enhanced speech signal by performance metrics such as short time objective intelligibility
and signal to noise ratio of the denoised speech show that the speech intelligibility and
speech quality are improved by the proposed method.

Keywords: deep neural network, noisy speech, speech enhancement, feature extraction,
speech quality, computational intelligence.

1. Introduction

Speech enhancement [21, 22] is very important for any speech signal suffering
from distortions, reflections and background noise that varies from place to place.
Therefore, the speech enhancement techniques are crucial and very important
for improving the speech quality in applications such as speaker recognition,
automatic speech recognition (ASR) [1, 2, 23, 40], speech coding [5, 6, 32] and
hearing aids [3, 4, 32].
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Speech enhancement algorithms [12, 34] help in reducing noise without dis-
turbing the quality of target speech. When the speech quality and intelligibi-
lity are improved, it helps the listeners to listen to the speech without any re-
straints. The conventional algorithms of speech enhancement include minimum
mean square error [7], spectral subtraction [8], Kalman filtering [11] and iterative
Wiener filtering [10].

In the recent past, computational intelligence and machine learning have
found wide applications in enhancing distorted speech and noise removal [38, 39].
The latest trend in speech enhancement uses deep learning [9, 37], which adopts
the architecture of a deep neural network (DNN). A DNN is a feed-forward
network capable of modeling relationships that are non-linear [36]. In order to
model the DNN, the features such as relative spectral transformed perceptual
linear prediction coefficients (RASTA-PLP) [14, 15], amplitude modulation spec-
trogram [30, 13], gammatone frequency cepstral coefficients (GFCC) [9, 16] and
mel frequency cepstral coefficients (MFCC) [18] are extracted.

The training data consists of the speech signal with different noise types and
signal-to-noise ratio (SNR) for the non-linear DNN-based regression model. The
performance of the DNN is restricted to varying real-time noisy situations. There-
fore, to improve the network’s generalization ability, the changing nature of the
noise is given as input to the network for training [31]. This helps to enhance
the efficiency of the network in detecting unseen noise types.

In the past few years, a DNN has played a vital role in separating noise
from speech and improving speech quality [19]. To enhance the noisy-reverberant
speech [19], spectral mapping [17] is done using a single DNN, which removes
noise and reverberation. Basically, the background noise causes disturbance to
the clean speech. Here, denoising is performed for speech signal mixed with
babble noise.

The content of the paper is arranged as follows: Sec. 2 gives the detailed
description about the similar works carried out for speech enhancement, Sec. 3
discusses the methodology of speech enhancement. Section 4 explains the various
feature extraction methodologies. Section 5 discusses a DNN for denoising and
Sec. 6 presents the obtained results and their discussion; finally, the conclusion
is given in the last section.

2. Related work

In the past years, the related work carried out for the speech enhancement has
dealt with unsupervised techniques such as spectral subtraction, Kalman filter-
ing, Weiner filtering and many more. The problem occurring in these techniques
is that the method adopted for analyzing the noise is just an assumption. The
disadvantages occurring in these techniques are eliminated by the powerful super-
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vised technique such as codebook vectors and the model-based techniques where
the speech signal and noise are known a priori. For the distortion-independent
acoustic model, the non-matrix factorization (NMF) is more powerful in the
process of separating the source in the recording made in a single-channel mi-
crophone in the existence of additive noise. The NMF-based technique [41] helps
in estimating the speech signal and noise in the frequency domain. Segment-
based approach [47] is another method to identify longer speech segments with
its full-length speech sentence matching to remove fast-varying noise.

The previous research clearly indicates the improvement in speech enhance-
ment performance when the features are extracted from the speech signal. The
prediction of the log-power spectra (LPS) feature of the clean speech signal
can be made using multi-objective learning. A long short-term memory (LSTM)
technique [43] is a powerful tool that helps in a consistent improvement of the
speech quality and intelligibility. The encoding of features [44] helps in the voice
conversion process, and the different encoders are more effective. The usage of
the deep recurrent neural network [42] is also very helpful in identifying the
speech denoising system model in which the time-frequency masking is applied
to one of the layers in the network.

Speech enhancements with deep learning are based on mapping or masking
[45]. In the mapping-based enhancement, the relationship between the features
of the noisy speech and the clean speech is considered. In the masking-based
scenario, the relationship between the features of the noisy speech and the time-
frequency mask is considered. The estimated mask is used to obtain the features
of the enhanced speech signal. The different ideal masks for speech enhancement
are ideal binary masks, ideal ratio masks and complex ideal ratio masks (cIRMs).
The studies indicate that the ideal ratio mask leads to better results compared
to the ideal binary mask. The cIRM [46] takes both the real and imaginary
components for estimating the target.

Due to the non-linear relationship between the input and the target of the
speech signal features, the networks with multiple layers and non-linear activa-
tion functions are more effective than shallow networks for the enhancement of
speech signal. In certain applications, when the speech signal needs to be masked,
babble noise is utilized for security purposes. In this paper, the ideal ratio mask
is incorporated to obtain the enhanced speech features for denoising the speech
signal affected by babble noise.

3. Speech enhancement methodology

The clean speech is mixed with the babble noise to form the noisy speech
signal, and the features are extracted and given to the DNN, as shown in Fig. 1.
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Fig. 1. Proposed speech enhancement system using a DNN.

3.1. Model of the speech signal

Let c(t) and b(t) represent the clean speech and babble noise, respectively.
The noisy speech signal n(t) is

n(t) = c(t) + b(t). (1)

The babble noise signal b(t) is usually not correlated with the desired signal c(t);
therefore, it is apparent that the noise can be removed first before recovering the
clean speech. The target signal is the clean speech signal.

3.2. Process of denoising

The noisy utterance is given to the speech enhancement system, and the tar-
get signal is the noise-free clean speech. The noise is suppressed by using the
time-frequency masking framework and removed by applying the time-frequency
mask to the noisy speech signal. For the time-frequency masking, the ideal ra-
tio mask is incorporated to remove the noise.
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The ideal ratio mask is given by:

IRM(t, f) =

(
C2(t, f)

C2(t, f) +N2(t, f)

)β
, (2)

IRM(t, f) =

(
SNR(t, f)

SNR(t, f) + 1

)β
, (3)

where C2(t, f) shows the speech signal and N2(t, f) shows the noise signal, as
a time-frequency (T-F) representation, and β acts as the tuning parameter for
scaling the mask. At β = 0.7, the noisy signal is estimated and implemented
using a DNN. After denoising, the signal is reconstructed in the time domain.

4. Feature extraction

The features extracted from the noisy speech signal are given below.

4.1. Mel frequency cepstral coefficients (MFCC)

The MFCC is the commonly used method in the feature extraction of speech
signals. The speech signal is segmented into small duration blocks (windowed
frames) and the fast Fourier transform (FFT) is applied to each frame sequence.

The signal is changed from the time domain signal into the frequency domain.
The mel filter bank is applied to the power spectrum and energy is summed for
all filter banks. The log filter bank energies are applied with a discrete cosine
transform (DCT) [18, 29] to obtain the MFCC.

4.2. Relative spectral transformed perceptual linear
prediction coefficients (RASTA-PLP)

RASTA-PLP is a special methodology that implements band-pass filtering
to the energy in each frequency sub-band. The high-pass filter portion in the
band-pass filter reduces the convolutional noise [33]. The frame-to-frame spectral
changes are smoothened by the low pass portion [15].

4.3. Amplitude modulation spectrogram (AMS)

The speech signal is converted to the frequency domain by applying a short-
time Fourier transform (STFT). After decomposing the signal by the bark scale
decomposition, the spectral analysis is made by a second STFT. Thus, the ampli-
tude modulation coefficients such as acoustic frequencies, time and modulation
frequencies are obtained [25].
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4.4. Gammatone filter bank power spectra

The input speech signal is passed through a 64 channel gammatone filter bank
[24]. In each channel, the filter response is fully rectified and decimated, which is
similar to windowing. The absolute values taken specify the T-F representation.
The cube root of the T-F representation is taken and the DCT is applied to the
cepstral coefficients [16].

4.5. Autoregressive moving average model (ARMA)

The input speech signal is taken as long segments and converted using the
DCT. The windowing function is applied to the DCT signal. The ARMA mode-
ling is applied to sub-band DCT components of the sub-band envelope.

The power spectrum estimate is yielded by integrating the sub-band envelope
with respect to time. The inverse fast Fourier transform (IFFT) is used to trans-
form the power spectrum estimates into temporal autocorrelation estimates and
further used based on linear prediction in the time domain. The output obtained
gives a spectrally smoothed ARMA spectrogram [19].

5. DNN for denoising

The architecture of a DNN is a feed-forward neural network [9] and has the
competence to map the features of the noisy speech signal to clean the speech
signal [33]. The DNN model is trained with the features extracted [9]. Figure 2
shows the DNN architecture of the proposed model.
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Fig. 2. The DNN architecture of the proposed model.
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The sentence list is taken from the IEEE sentence database [26]. The clean
and noisy audio file is taken from the Noizeus website [27]. A babble noise at 0 dB
noise level is considered for mixing with the clean speech. The features extracted
are 31-dimensional MFCC, 15-dimensional AMS, 64-dimensional gammatone fil-
ter bank power spectra, and 13-dimensional RASTA-PLP [35] and are taken as
inputs to the DNN [19]. The DNN uses multilayer perceptron (MLP) as the dis-
criminative learning machine, which shows good performance for speech separa-
tion. The DNN uses 4 hidden layers, each layer having 1024 rectified linear hidden
units (ReLU). The number of hidden layers is taken as 4 in the process of tuning
the hyperparameters as it reduces the MSE to 0.001. The network is trained
with the back-propagation algorithm and the dropout rate considered is 0.2.

For the first 5 epochs, the momentum value is taken as 0.5, and after 5 epochs
it is taken as 0.9. The increase of momentum rate from 0.5 to 0.9 does not fasten
the training of the model, but it helps to increase the accuracy in training and
testing the model. The DNN predicts the output for varying frequency ranges,
and the cost function adopted is the mean squared error (MSE) [9].

For the targets in the range [0,1], the output layer uses a sigmoid activation
function, and for the other layers, a linear activation function is employed. The
input data given to the DNN are the features obtained from the 5-frame window
for implementing the temporal context. The final estimate is obtained by finding
the average of the multiple estimates of each frame [20].

6. Results and discussion

The proposed system uses sentences from the IEEE sentence database. Audio
files are taken from the Noizeus website for the clean speech. The noise used for
this work is a babble noise, which is the most challenging and it is considered
to be the best noise for masking speech. The babble speech is generally the
voice heard in the midst of the crowded ambience. The mixtures are obtained
by mixing clean speech signal with babble noise with different SNR values.

The training data contains 600 sentences and the testing data consists of
120 sentences. The signal is sampled at 16 kHz and converted into frames using
a 20 ms Hamming window with a 10 ms window shift for framing. For each
frame, 320 frame FFT is applied, resulting in 161 frequency bins.

The SNR of the noisy speech signal shows that the noise power is greater than
the signal power. After applying the denoising algorithm, the SNR is improved,
which shows that the signal power has increased more than the noise power, as
shown in Table 1. The noisy speech signal in the time domain, its periodogram
and spectrogram are shown in Fig. 3. The spectrogram shows the intensity of
noise present in the noisy speech signal. The periodogram displays the spectral
density of the noisy speech signal.
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Fig. 3. Noisy speech: a) time domain, b) periodogram, and c) spectrogram.

After applying the DNN speech enhancement algorithm, the noise is removed,
which can be observed in Fig. 4 that shows the denoised speech signal with
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Fig. 4. Denoised speech: a) time domain, b) periodogram, and c) spectrogram.

its periodogram and spectrogram. Normalization of data helps to estimate the
values between the minimum and maximum values so that it can be accessed
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on a common scale. For the DNN training, the normalization of the features of
the input speech signal is adjusted to zero mean and unit variance. All speech
sentences are trained with the rectified linear unit. The denoised speech signal is
tested for its performance based on the metrics such as the SNR and short-time
objective intelligibility (STOI). STOI represents the similarity between reference
and processed signal temporal envelopes for a short interval of time. STOI values
are between 0 and 1, the higher values in this range indicate better intelligibility,
as shown in Table 1.

Noise is removed from the noisy speech signal, and improved SNR and STOI
values are shown in Table 1. Compared to the other methods adopted [48] for
denoising the babble noise, the SNR is improved with this MLP DNN denoising
model. The performance metrics are improved compared to the similar works
adopted in speech enhancement. As the denoising system performs well for the
babble noise, which is a non-stationary noise, the same methodology can be
adapted for speech signals subjected to other noises for speech enhancement.

Table 1. SNR and STOI values of test sentences before and after denoising.

Input data
SNR before
denoising

[dB]

SNR after
denoising

[dB]

STOI before
denoising

STOI after
denoising

Test sentence 1 22.8878 27.0385 0.4915 0.6450
Test sentence 2 21.9277 27.0235 0.4014 0.5429
Test sentence 3 21.2534 26.9404 0.5544 0.5961
Test sentence 4 21.2279 27.0470 0.2677 0.4882
Test sentence 5 22.0107 27.0312 0.3192 0.5652
Test sentence 6 22.1754 26.9361 0.4983 0.6318
Test sentence 7 20.2182 26.7782 0.5444 0.6291
Test sentence 8 21.9834 26.9388 0.5175 0.6325
Test sentence 9 21.0655 27.0799 0.4337 0.6566
Test sentence 10 22.1023 27.4634 0.3488 0.5488

Figures 5 and 6 show the improvement of the denoised signal in terms of
noise removal and intelligibility. The SNR of the denoised signal is more increased
compared to the noisy signal, and the intelligibility of the speech signal indicates
the increase in the clarity of the speech signal [48]. The denoising is very clearly
observed when the denoised speech signal is listened as an audio output. The
quality, as well as the intelligibility, is improved to a great extent. which shows the
capability of the DNN in denoising the noisy speech and delivering the denoised
signal equivalent to the clean speech signal.
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Fig. 5. The SNR of the denoised signal.
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Fig. 6. STOI of noisy signal vs. denoised signal.

7. Conclusion

Background noise plays a major role in distorting the speech signal. The
estimation of the ideal ratio mask yielded good results in estimating the noise and
giving the denoised speech. The performance metrics such as SNR and STOI were
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chosen to analyze the speech quality and intelligibility. The evaluations obtained
in the performance metrics, STOI and SNR showed that the IRM-based deep
learning algorithm excellently denoises the noisy speech signal and retrieves clean
speech. The observations from the spectrogram also clearly indicate the removal
of noise and display the denoised speech. Thus, the enhancement of speech signal
was observed in the numerical values of the two-performance metrics.

References

1. J. Li, L. Deng, R. Haeb-Umbach, Y. Gong, Robust Automatic Speech Recognition: A Bridge
to Practical Applications, 1st ed., Academic, Orlando, FL, USA, 2015.

2. B. Li, Y. Tsao, K.C. Sim, An investigation of spectral restoration algorithms for deep
neural networks-based noise robust speech recognition, [in:] Proceedings of Interspeech,
Lyon, France, pp. 3002–3006, 2013.

3. H. Levitt, Noise reduction in hearing aids: An overview, Journal of Rehabilitation Research
and Development, 38(1), 111–121, 2001.

4. A. Chern, Y.-H. Lai, Y.-P. Chang, Y. Tsao, R.Y. Chang, H.-W. Chang, A smartphone-
based multi-functional hearing assistive system to facilitate speech recognition in the
classroom, IEEE Access, 5: 10339–10351, 2017, doi: 10.1109/ACCESS.2017.2711489.

5. J. Li, L. Yang, J. Zhang, Y. Yan, Comparative intelligibility investigation of single-channel
noise reduction algorithms for Chinese, Japanese and English, Journal of the Acoustical
Society of America, 129(5): 3291–3301, 2011, doi: 10.1121/1.3571422.

6. J. Li, S. Sakamoto, S. Hongo, M. Akagi, Y. Suzuki, Two-stage binaural speech enhance-
ment with Wiener filter for high-quality speech communication, Speech Communication,
53(5): 677–689, 2011, doi: 10.1016/j.specom.2010.04.009.

7. Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-square error log-
spectral amplitude estimator, IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 33(2): 443–445, 1985, doi: 10.1109/TASSP.1985.1164550.

8. S. Boll, Suppression of acoustic noise in speech using spectral subtraction, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 27(2): 113–120, Apr. 1979, doi:
10.1109/TASSP.1979.1163209.

9. Hepsiba D., J. Justin, Role of deep neural network in speech enhancement: A review, [in:]
J. Hemanth, T. Silva, A. Karunananda [Eds.], Artificial Intelligence, SLAAI-ICAI 2018.
Communications in Computer and Information Science, Vol. 890, Springer, Singapore,
2019, doi: 10.1007/978-981-13-9129-3_8.

10. P. Scalart, J.V. Filho, speech enhancement based on a priori signal to noise estimation,
[in:] Proceedings of International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Vol. 2, pp. 629–633, 1996, doi: 10.1109/ICASSP.1996.543199.

11. W. Xue, A.H. Moore, M. Brookes, P.A. Naylor, Modulation-domain multichannel Kalman
filtering for speech enhancement, IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 26(10): 1833–1847, 2018, doi: 10.1109/TASLP.2018.2845665.

12. J. Du, Q. Huo, A speech enhancement approach using piecewise linear approximation of an
explicit model of environmental distortions, [in:] Proceedings of Interspeech, pp. 569–572,
Brisbane, Australia, 2008.

https://doi.org/10.1109/ACCESS.2017.2711489
https://doi.org/10.1121/1.3571422
https://doi.org/10.1016/j.specom.2010.04.009
https://doi.org/10.1109/TASSP.1985.1164550
https://doi.org/10.1109/TASSP.1979.1163209
https://doi.org/10.1007/978-981-13-9129-3_8
https://doi.org/10.1109/ICASSP.1996.543199
https://doi.org/10.1109/TASLP.2018.2845665


Computational intelligence for speech enhancement. . . 83

13. B. Kollmeier, R. Koch, Speech enhancement based on physiological and psychoacoustical
models of modulation perception and binaural interaction, The Journal of the Acoustical
Society of America, 95(3): 1593–1602, 1994, doi: 10.1121/1.408546.

14. H. Hermansky, Perceptual linear predictive (PLP) analysis of speech,The Journal of the
Acoustical Society of America, 87(4): 1738–1752, 1990, doi: 10.1121/1.399423.

15. H. Hermansky, N. Morgan, RASTA processing of speech, IEEE Transactions on Speech
and Audio Processing, 2(4): 578–589, 1994, doi: 10.1109/89.326616.

16. T. Dau, D. Püschel, A quantitative model of the “effective” signal processing in the audi-
tory system, The Journal of the Acoustical Society of America, 99(6): 3615–3622, 1996,
doi: 10.1121/1.414959.

17. K. Han, Y. Wang, D.L. Wang, W.S. Woods, I. Merks, T. Zhang, Learning spectral mapping
for speech dereverberation and denoising, IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(6): 982–992, 2015, doi: 10.1109/TASLP.2015.2416653.

18. S. Davis, P. Mermelstein, Comparison of parametric representations of monosyllabic word
recognition in continuously spoken sentences, IEEE Transactions on Acoustics, Speech,
and Signal Processing, 28(4): 357–366, 1980, doi: 10.1109/TASSP.1980.1163420.

19. Y. Zhao, Z.-Q. Wang, D.L. Wang, Two-stage deep learning for noisy-reverberant speech en-
hancement, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(1):
53–62, 2019, doi: 10.1109/TASLP.2018.2870725.

20. Y. Wang, A. Narayanan, D.L. Wang, On training targets for supervised speech separation,
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12): 1849–1858,
2014, doi: 10.1109/TASLP.2014.2352935.

21. J. Benesty, S. Makino, J.D. Chen, Speech Enhancement, Springer, New York, NY, USA,
2005.

22. P.C. Loizou, Speech Enhancement: Theory and Practice, CRC Press, Boca Raton, FL,
USA, 2013, doi: 10.1201/9781420015836.

23. H.-Y. Lee, J.-W. Cho, M. Kim, H.-M. Park, DNN-based feature enhancement using DOA-
constrained ICA for robust speech recognition, IEEE Signal Processing Letters, 23(8):
1091–1095, August 2016, doi: 10.1109/LSP.2016.2583658.

24. Y. Shao, S. Srinivasan, D.L. Wang, Incorporating auditory feature uncertainties in robust
speaker identification, [in:] Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 2007, pp. 277–280, 2007.

25. Y. Xu, J. Du, L.-R. Dai, C.-H. Lee, A regression approach to speech enhancement based
on deep neural networks, IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 23(1): 7–19, 2015, doi: 10.1109/TASLP.2014.2364452.

26. IEEE, IEEE recommended practice for speech quality measurements, IEEE Transactions
on Audio and Electroacoustics, 17: 225–246, 1969.

27. Y. Hu, P. Loizou, Subjective evaluation and comparison of speech enhancement al-
gorithms, Speech Communication, 2007, 49: 588–601, https://ecs.utdallas.edu/loizou
/speech/noizeus/.

28. K. Tan, D. Wang, Towards model compression for deep learning based speech enhance-
ment, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29: 1785–
1794, 2021, doi: 10.1109/TASLP.2021.3082282.

https://doi.org/10.1121/1.408546
https://doi.org/10.1121/1.399423
https://doi.org/10.1109/89.326616
https://doi.org/10.1121/1.414959
https://doi.org/10.1109/TASLP.2015.2416653
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASLP.2018.2870725
https://doi.org/10.1109/TASLP.2014.2352935
https://doi.org/10.1201/9781420015836
https://doi.org/10.1109/LSP.2016.2583658
https://doi.org/10.1109/TASLP.2014.2364452
https://ecs.utdallas.edu/loizou/speech/noizeus/
https://ecs.utdallas.edu/loizou/speech/noizeus/
https://doi.org/10.1109/TASLP.2021.3082282


84 Hepsiba D., J. Justin

29. F. Bao, W. Abdulla, A new ratio mask representation for CASA-based speech enhance-
ment, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(1): 7–19,
2018, doi: 10.1109/TASLP.2018.2868407.

30. Y. Liu, H. Zhang, X. Zhang, L. Yang, Supervised speech enhancement with real
spectrum approximation, [in:] Proceedings of 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5746–5750, 2019, doi: 10.1109/
ICASSP.2019.8683691.

31. C. Valentini-Botinhao, J. Yamagishi, Speech enhancement of noisy and reverberant speech
for text-to-speech, IEEE/ACM Transactions on Audio, Speech, and Language Processing,
26(8): 1420–1433, 2018, doi: 10.1109/TASLP.2018.2828980.

32. J.-C. Hou, S.-S. Wang, Y.-H. Lai, Y. Tsao, H.-W. Chang, H.-M. Wang, Audio-visual
speech enhancement using multimodal deep convolutional neural networks, IEEE Tran-
sactions on Emerging Topics in Computational Intelligence, 2(20): 117–128, 2018, doi:
10.1109/TETCI.2017.2784878.

33. P. Pujol, S. Pol, C. Nadeu, A. Hagen, H. Bourlard, Comparison and combination
of features in a hybrid HMM/MLP and a HMM/GMM speech recognition system,
IEEE Transactions on Speech and Audio Processing, 13(1): 14–22, 2005, doi: 10.1109/
TSA.2004.834466.

34. Y. Xu, J. Du, L.-R. Dai, C.-H. Lee, Cross-language transfer learning for deep neural
network-based speech enhancement, [in:] Proceedings of the 9th International Sympo-
sium on Chinese Spoken Language Processing, pp. 336–340, 2014, doi: 10.1109/ISCSLP.
2014.6936608.

35. Z.-Q. Wang, D.L. Wang, Robust speech recognition from ratio masks, [in:] Proceed-
ings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5720–5724, 2016, doi: 10.1109/ICASSP.2016.7472773.

36. W. Yuan, A time–frequency smoothing neural network for speech enhancement, Speech
Communications, 124: 75–84, 2020, doi: 10.1016/j.specom.2020.09.002.

37. T. Lavanya, T. Nagarajan, P. Vijayalakshmi, Multi-level single channel speech enhance-
ment using a unified framework for estimating magnitude and phase spectra, IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 28: 1315–1327, 2020, doi:
10.1109/TASLP.2020.2986877.

38. K. Sekiguchi, Y. Bando, A.A. Nugraha, K. Yoshii, T. Kawahara, Semi-supervised mul-
tichannel speech enhancement with a deep speech prior, IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 27(12): 2197–2212, 2019, doi: 10.1109/
TASLP.2019.2944348.

39. F.B. Gelderblom, T.V. Tronstad, E.M. Viggen, Subjective evaluation of a noise-
reduced training target for deep neural network-based speech enhancement, IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 27(3): 583–594, 2020, doi:
10.1109/TASLP.2018.2882738.

40. T. Kawase, M. Okamoto, T. Fukutomi, Y. Takahashi, Speech enhancement parameter
adjustment to maximize accuracy of automatic speech recognition, IEEE Transactions on
Consumer Electronics, 66(2): 125–133, 2020, doi: 10.1109/TCE.2020.2986003.

41. D. Baby, T. Viratanen, J.F. Gemmeke, H. van Hamme, Coupled dictionaries for exemplar-
based speech enhancement and automatic speech recognition, IEEE/ACM Transactions

https://doi.org/10.1109/TASLP.2018.2868407
https://doi.org/10.1109/ICASSP.2019.8683691
https://doi.org/10.1109/ICASSP.2019.8683691
https://doi.org/10.1109/TASLP.2018.2828980
https://doi.org/10.1109/TETCI.2017.2784878
https://doi.org/10.1109/TSA.2004.834466
https://doi.org/10.1109/TSA.2004.834466
https://doi.org/10.1109/ISCSLP.2014.6936608
https://doi.org/10.1109/ISCSLP.2014.6936608
https://doi.org/10.1109/ICASSP.2016.7472773
https://doi.org/10.1016/j.specom.2020.09.002
https://doi.org/10.1109/TASLP.2020.2986877
https://doi.org/10.1109/TASLP.2019.2944348
https://doi.org/10.1109/TASLP.2019.2944348
https://doi.org/10.1109/TASLP.2018.2882738
https://doi.org/10.1109/TCE.2020.2986003


Computational intelligence for speech enhancement. . . 85

on Audio, Speech, and Language Processing, 23(11): 1788–1799, 2015, doi: 10.1109/
TASLP.2015.2450491.

42. P.-S. Huang, M. Kim, M. Hasegawa-Johnson, P. Smaragdis, Joint optimization of masks
and deep recurrent neural networks for monaural source separation, IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 23(12): 2136–2147, 2015, doi:
10.1109/TASLP.2015.2468583.

43. L. Sun, J. Du, L.-R. Dai, C.-H. Lee, Multiple-target deep learning for LSTM-RNN based
speech enhancement, [in:] 2017 Hands-free Speech Communications and Microphone Ar-
rays (HSCMA), pp. 136–140, 2017, doi: 10.1109/HSCMA.2017.7895577.

44. W.-C. Huang, H.-T. Hwang, Y.-H. Peng, Y. Tsao, H.-M. Wang, Voice conversion based
on cross-domain features using variational auto encoders, [in:] 2018 11th International
Symposium on Chinese Spoken Language Processing (ISCSLP), pp. 51–55, 2018, doi:
10.1109/ISCSLP.2018.8706604.

45. W. Han, C. Wu, X. Zhang, Q. Zhang, S. Bai, Joint optimization of modified ideal ratio
mask and deep neural networks for monaural speech enhancement, [in:] Proceedings of
2017 9th International Conference on Communication Software and Networks (ICCSN),
pp. 1070–1074, 2017, doi: 10.1109/ICCSN.2017.8230275.

46. D.S. Williamson, Y. Wang, D.L. Wang, Complex ratio masking for monaural speech sepa-
ration,IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(3): 483–
492, 2016, doi: 10.1109/TASLP.2015.2512042.

47. J. Ming, D. Crookes, Speech enhancement based on full-sentence correlation and clean
speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing,
25(3): 531–543, 2017, doi: 10.1109/TASLP.2017.2651406.

48. R. Jaiswal, D. Romero, Implicit Wiener filtering for speech enhancement in non-stationary
noise, [in:] 2021 11th International Conference on Information Science and Technology
(ICIST), pp. 39–47, 2021, doi: 10.1109/ICIST52614.2021.9440639.

Received September 29, 2021; revised version December 15, 2021;
accepted December 27, 2021.

https://doi.org/10.1109/TASLP.2015.2450491
https://doi.org/10.1109/TASLP.2015.2450491
https://doi.org/10.1109/TASLP.2015.2468583
https://doi.org/10.1109/HSCMA.2017.7895577
https://doi.org/10.1109/ISCSLP.2018.8706604
https://doi.org/10.1109/ICCSN.2017.8230275
https://doi.org/10.1109/TASLP.2015.2512042
https://doi.org/10.1109/TASLP.2017.2651406
https://doi.org/10.1109/ICIST52614.2021.9440639

