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In this paper, the two-dimensional linear and nonlinear integral equations of the second kind is analyzed.
The homotopy analysis method (HAM) is used for determining the solution of the investigated equation.
In this method, a solution is sought in the series form. It is shown that if this series is convergent, its sum
gives the solution of the considered equation. The sufficient condition for the convergence of the series is
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1. INTRODUCTION

The HAM was invented by the Chinese mathematician Shijun Liao [25–29] and is dedicated to the
solution of various operator equations (linear and nonlinear ones). For the first time, this method
was presented in 1992 in the PhD dissertation of its inventor and since then it has found numer-
ous applications in solving the problems described by differential equations [2, 44, 49], as well as
fractional differential equations [4, 51], differential-difference equations [48] and integro-differential
equations [7, 40]. In particular, among the problems solved with the aid of the HAM, one can
list the following problems: the nonlinear Cauchy problem of parabolic-hyperbolic type [20], the
Toda lattice system (described by differential-difference equations) [48], the nonlinear reaction-
diffusion-convection problems [37], a nonlocal initial boundary value problem [31], and the frac-
tional differential equations [4, 51]. The HAM was also used for investigating the heat conduction
problems [1, 16, 33], whereas in [36, 38] the method was applied for solving the inverse heat con-
duction problem. The theoretical results concerning, among others, the convergence of the method
are included, for example, in [26, 28, 32, 34, 43].

The HAM was also applied to solve integral equations. The paper [22] considers the application
of the method to one-dimensional nonlinear and linear integral equations of the second kind. The
Fredholm and Volterra integral equations are examples of special cases of such equations. In addi-
tions the theoretical results concerning the convergence of the method and the error estimation of
approximate solution are also presented in [22].

The application of the HAM to the nonlinear Fredholm integral equations of the second type is
also described in [3], while its application to the second-kind Volterra equations is presented in [47].
In papers [10, 18] a special class of nonlinear Fredholm and Volterra equations of the second-kind
is considered, namely those with power nonlinearity in form of up.
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Moreover, in [12] the systems of integral equations, some theoretical results and examples of
applying this method are presented. Other examples of using the HAM to solve the system of
integral equations are included in [35, 39].
In [24], the HAM in a modified form is used for solving the system of Fredholm integral equations

of the second type. The work [21] shows the application of the HAM for solving a given type of
linear and nonlinear integral equations, the special case of which is the Volterra-Fredholm integral
equation. The authors also provide some theoretical results about the convergence of the HAM and
the error estimation.
The classical methods dedicated to the solution of integral equations, one- and two-dimensional,

include for instance the Nystrom method [8, 17] and the collocation method [19]. Recently, the
Euler-type method [30], differential transform [41], radial basis functions [9], spline functions [13],
wavelets [15] and matrix-based method [23] were also developed. The application of the HAM to
solve the two-dimensional integral equations is considered in [5, 11]. In these papers, the computing
examples are only presented, without any theoretical results.
In this paper, a more general type of nonlinear and linear two-dimensional integral equations

of the second kind is considered and some theoretical results are also presented. In the considered
method, the solution is sought in the series form. It is shown that if the series converges, its sum
gives the solution of the investigated equation. The sufficient condition for convergence of the
created series is also given. Additionally, the error of approximate solution obtained by using the
partial sum of the series is estimated. The application of the HAM is illustrated with examples.

2. EQUATIONS UNDER DISCUSSION

Mathematical models of many physical phenomena and engineering problems are described by
means of integral equations. In this paper, we consider a two-dimensional integral equation of the
form

u(x, y) = F (x, y) +
g1(x)

∫
f1(x)

K1(x, y, t)R1(u(t, y))dt +

+
g2(y)

∫
f2(y)

K2(x, y, s)R2(u(x, s))ds +
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3(u(t, s))dsdt, (1)

where (x, y) ∈ D ∶= [a1, b1] × [a2, b2], and for k = 1,2, fk, gk ∈ C[ak, bk], a1 ⩽ f1(x) ⩽ g1(x) ⩽ b1,
a2 ⩽ f2(y) ⩽ g2(y) ⩽ b2. Additionally, the functions Kk, k = 1,2,3, and F are continuous in the
appropriate sets, Rk ∶ C(D) → C(D) are the linear or nonlinear operators, whereas the function u
is the sought element.
As a norm in space C(Ω), where Ω is a compact set, we take the supremum norm
∣∣ϑ∣∣ = sup

z∈Ω
∣ϑ(z)∣, (2)

whereas the norm of operator Rk is defined as follows:

∣∣Rk ∣∣ = sup
u∈C(D)

u≠0

∣∣Rk(u)∣∣∣∣u∣∣ ,

where the norms on the right-hand side of the above equation are defined by formula (2).
As a special case of the equation above, we obtain the classical two-dimensional Fredholm integral

equation of the second kind

u(x, y) = F (x, y) + b1

∫
a1

b2

∫
a2

K3(x, y, t, s)R3(u(t, s))dsdt,
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for K1 = K2 = 0, fk(x) = ak, gk(x) = bk, and the two-dimensional Volterra integral equation of the
second kind

u(x, y) = F (x, y) + x

∫
a1

y

∫
a2

K3(x, y, t, s)R3(u(t, s))dsdt,
for K1 =K2 = 0, fk(x) = ak, gk(x) = x.
Under appropriate assumptions, the two-dimensional Volterra integral equation of the first kind

x

∫
a1

y

∫
a2

k(x, y, t, s)u(t, s)dsdt = f(x, y)
can be transformed into the equation of form (1) (see [30]).

3. BASES OF THE HAM

The HAM serves for solving the operator equations of many kinds, linear and nonlinear ones.
This method applies the topological concept of homotopy to create a solution of the investigated
operator equation in the form of a convergent series. In topological sense, we say that two continuous
functions, acting from one topological space to another one, are homotopic if one of them can be
continuously transformed into the other one with the aid of a “continuous deformation” called
a homotopy between these two functions.
In the HAM, the idea of homotopy is used in such a way that the considered equation is trans-

formed into the corresponding deformation equation. The new equation depends on a parameter,
the variation of which, from one boundary value to the other one, corresponds to the variation
of the solution from the known initial solution to the sought one. To determine the form of the
components of this deformation equation, the generalized Taylor expansion is involved including
an auxiliary parameter controlling and adjusting the convergence region of the series.
Let us present the details of this approach. We seek the solution of the following operator

equation:

N(u(z)) = 0, z ∈ Ω, (3)

where N is the operator (in particular, it can be a nonlinear one), while u is the unknown function
and Ω is any domain of variable z.
We start the procedure with defining the so-called zero-order deformation equation

(1 − p)L (Φ(z;p) − u0(z)) = phN (Φ(z;p)) , (4)

where p ∈ [0,1] is an embedding parameter, h ≠ 0 denotes the convergence control parameter [28,
29, 34, 46], u0 represents the initial approximation of the solution of problem (3), and L describes
the auxiliary linear operator (let us notice that certainly L(0) = 0). In the investigated method, the
linear operator L can be arbitrarily selected. The most common practice is to choose L so that the
equations, obtained in the next stages of the procedure, would be as simple to solve as possible.
Substituting p = 0, we get L(Φ(z; 0) − u0(z)) = 0, which means that Φ(z; 0) = u0(z). However,

when we assume p = 1, we get N(Φ(z; 1)) = 0, which means that Φ(z; 1) is the searched solution
of Eq. (3) (u(z) = Φ(z; 1)). Thus, the change of parameter p value from zero to one involves a
change from the trivial problem to the original problem (and thus the change of the solutions form
u0 to the sought solution u). If the operator N has a one-element kernel, then Eq. (3) has one
solution that can be determined by the described method. If the kernel consists of a larger number
of elements, the method allows to specify one of the existing solutions of Eq. (3).
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Let us consider the function Φ(z;p) ∶ Ω × [0,1] → R. Taking the Maclaurin series of function
Φ(z;p), with respect to the parameter p, we obtain

Φ(z;p) = u0(z) + ∞

∑
m=1

um(z)pm, (5)

where u0(z) = Φ(z; 0) and
um(z) = 1

m!

∂mΦ(z;p)
∂pm

∣
p=0

, m = 1,2,3, . . . . (6)

If the above series converges for p = 1, we obtain the required solution
u(z) = ∞

∑
m=0

um(z). (7)

In order to determine the function um we differentiate m-times, with respect to parameter p, the
left- and right-hand side of formula (4), then the obtained result is divided by m! and substituted
with p = 0 which gives the so-called mth-order deformation equation (m > 0):

L (um(z) − χm um−1(z)) = hRm(um−1, z), (8)

where um−1 = {u0(z), u1(z), . . . , um−1(z)},
χm = { 0 m ≤ 1,

1 m > 1 (9)

and

Rm (um−1, z) = 1(m − 1)! ( ∂m−1

∂pm−1
N (∞∑

i=0

ui(z)pi)) ∣
p=0

. (10)

If we are not able to determine the sum of series in (7), then as the approximate solution of
considered equation we can accept the partial sum of this series

ûn(z) = n

∑
m=0

um(z). (11)

Choosing in appropriate way the convergence control parameter h we can influence the conver-
gence region of the created series and the rate of this convergence [29, 32, 43] (therefore, the name
of parameter h is the convergence control parameter). One of the methods to select the value of
this parameter is the so-called “optimization method” [6, 29, 50]. In this method, we define the
squared residual of the governing equation

En(h) = ∫
Ω

(N[ûn(z)])2 dz. (12)

The optimum value of the convergence control parameter is obtained by determining the minimum
of this squared residual. The effective region of the convergence control parameter is additionally
defined by

Rh = {h ∶ lim
n→∞

En(h) = 0} . (13)

Choosing a different value of the convergence control parameter than the optimal one, but still
belonging to the effective region, we also obtain the convergent series, only the rate of convergence
is lower. A version of the method with the above described selection of optimal value the convergence
control parameter is called the basic optimal HAM [29].
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To accelerate the calculations Liao includes in [29] a suggestion to approximate the integral in
formula (12) by applying the quadrature rules. Liao shows in his examples that the optimal values
of the convergence control parameter obtained by using this approximation do not differ much from
the values obtained by applying formula (12).
Another way of selecting the value of convergence control parameter is the application of the

so-called h-curve. In order to determine this curve the behavior of a certain quantity of the exact
solution as a function of parameter h is analyzed [26, 45]. This method enables to determine the
effective-region of the convergence control parameter; however, it gives no possibility to determine
its optimal value ensuring the fastest convergence [29].

4. LINEAR INTEGRAL EQUATION

We start with considering Eq. (1), in which Rk ∶ C(D) → C(D), k = 1,2,3, are the bounded
linear operators, that is, ∥Rk∥ < ∞, k = 1,2,3. As we mentioned before, set D is a rectangle
D ∶= [a1, b1] × [a2, b2] and C(D) is the class of continuous functions on D. Operators L and N can
be defined in the following way:

L(v) = v,
N(v) = v(x, y) − F (x, y) − g1(x)

∫
f1(x)

K1(x, y, t)R1(v(t, y))dt

−
g2(y)

∫
f2(y)

K2(x, y, s)R2(v(x, s))ds −
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3(v(t, s))dsdt,
where fk, gk ∈ C[ak, bk], for k = 1,2, and moreover a1 ⩽ f1(x) ⩽ g1(x) ⩽ b1, a2 ⩽ f2(y) ⩽ g2(y) ⩽ b2.
Operator Rm is of the following form (if only the series converges, which will be discussed later):

Rm(um−1, x, y)= 1(m − 1)! ( ∂m−1

∂pm−1
N (∞∑

i=0

ui(x, y)pi))
p=0

= 1(m − 1)! ∂m−1

∂pm−1
[ ∞∑
i=1

ui(x, y)pi − F (x, y)
−

g1(x)

∫
f1(x)

K1(x, y, t)R1 (∞∑
i=1

ui(t, y)pi) dt −
g2(y)

∫
f2(y)

K2(x, y, s)R2 (∞∑
i=1

ui(x, s)pi) ds

−
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3 (∞∑
i=1

ui(t, s)pi) dsdt]
p=0

= 1(m − 1)! ∂m−1

∂pm−1
[ ∞∑
i=1

ui(x, y)pi −F (x, y)

−
∞

∑
i=1

g1(x)

∫
f1(x)

K1(x, y, t)R1(ui(t, y)pi)dt − ∞∑
i=1

g2(y)

∫
f2(y)

K2(x, y, s)R2(ui(x, s)pi)ds

−
∞

∑
i=1

g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3(ui(t, s)pi)dsdt]
p=0

= um−1(x, y) − 1 − χm(m − 1)!F (x, y)

−
g1(x)

∫
f1(x)

K1(x, y, t)R1(um−1(t, y))dt −
g2(y)

∫
f2(y)

K2(x, y, s)R2(um−1(x, s))ds

−
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3(um−1(t, s))dsdt = { N(u0(x, y)) for m = 1,
N(um−1(x, y)) +F (x, y) for m ⩾ 2.
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Hence, we obtain the following formulae for the functions um:

u1(x) = hN(u0(x, y)) = h ⎛⎜⎝u0(x, y) −F (x, y) −
g1(x)

∫
f1(x)

K1(x, y, t)R1 (u0(t, y)) dt

−
g2(y)

∫
f2(y)

K2(x, y, s)R2 (u0(x, s)) ds −
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3 (u0(t, s)) dsdt⎞⎟⎠, (14)

where u0 ∈ C(D), and for m ⩾ 2:
um(x) = (1 + h)um−1(x) − h (N(um−1(x, y)) +F (x, y)) = (1 + h)um−1(x, y)

− h
⎛⎜⎝

g1(x)

∫
f1(x)

K1(x, y, t)R1 (um−1(t, y)) dt +
g2(y)

∫
f2(y)

K2(x, y, s)R2 (um−1(x, s)) ds

+
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3 (um−1(t, s)) dsdt⎞⎟⎠ . (15)

Let us prove now that the sum of the series is the solution of the considered integral equation.

Theorem 1. Let Rk be the bounded linear operators and let the functions um, m ≥ 1, be defined
by relations (14) and (15), where u0 ∈ C(D). Then, if the series in (7) converges, its sum is the
solution of Eq. (1).

Proof. By using the condition necessary for convergence of the series it occurs for any (x, y) ∈ D
that

lim
m→∞

um(x, y) = 0.
We have also

n

∑
m=1

L (um(x, y) − χm um−1(x, y)) = u1(x, y) + (u2(x, y) − u1(x, y))
+ (u3(x, y) − u2(x, y)) + . . . + (un(x, y) − un−1(x, y)) = un(x, y).

The two last dependencies give us the equality

∞

∑
m=1

L (um(x, y) − χm um−1(x, y)) = 0.
Thus, from Eq. (8) we have

∞

∑
m=1

Rm(um−1, x, y) = 0.
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After some transformations we obtain

0 =
∞

∑
m=1

Rm(um−1, x, y) = N(u0(x, y)) + ∞

∑
m=2

(N(um−1(x, y)) + F (x, y))
=
∞

∑
m=1

(N(um−1(x, y)) + F (x, y))−F (x, y) = ∞

∑
m=1

⎛⎜⎝um−1(x, y) −
g1(x)

∫
f1(x)

K1(x, y, t)R1 (um−1(t, y)) dt

−
g2(y)

∫
f2(y)

K2(x, y, s)R2 (um−1(x, s)) ds −
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3 (um−1(t, s)) dsdt⎞⎟⎠ −F (x, y)

= u(x, y) − F (x, y) − g1(x)

∫
f1(x)

K1(x, y, t)R1 (u(t, y)) dt

−
g2(y)

∫
f2(y)

K2(x, y, s)R2 (u(x, s)) ds −
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3 (u(t, s)) dsdt.
Let us now give the condition ensuring the convergence of the series under consideration.

Theorem 2. If the following inequality is satisfied:

M ∶= ∥K1∥ ∥R1∥ (b1 − a1) + ∥K2∥ ∥R2∥ (b2 − a2) + ∥K3∥ ∥R3∥ (b1 − a1) (b2 − a2) < 1, (16)

then the value of the convergence control parameter can be selected so that the series occurring
in (7) converges uniformly in region D = [a1, b1] × [a2, b2].
Proof. Let u0 be a function of class C(D). Now, we look for the constraints for the function um,
m ⩾ 1, in region D. Sequentially computing, we get for m = 1:

∣u1(x, y)∣ = RRRRRRRRRRRh
⎛⎜⎝u0(x, y) − F (x, y) −

g1(x)

∫
f1(x)

K1(x, y, t)R1 (u0(t, y)) dt

−
g2(y)

∫
f2(y)

K2(x, y, s)R2 (u0(x, s)) ds −
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3 (u0(t, s)) dsdt⎞⎟⎠
RRRRRRRRRRR

⩽ ∣h∣ (∥F ∥ + ∥u0∥ (1 + ∥K1∥ ∥R1∥ (b1 − a1) + ∥K2∥ ∥R2∥ (b2 − a2)
+ ∥K3∥ ∥R3∥ (b1 − a1) (b2 − a2))) ⩽ ∣h∣ (∥F ∥ + ∥u0∥ (1 +M)) < ∞,

for m = 2:

∣u2(x, y)∣ = RRRRRRRRRRR(1 + h)u1(x, y) − h
⎛⎜⎝

g1(x)

∫
f1(x)

K1(x, y, t)R1(u1(t, y)) dt +
g2(y)

∫
f2(y)

K2(x, y, s)R2(u1(x, s))ds

+
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3(u1(t, s)) dsdt⎞⎟⎠
RRRRRRRRRRR ⩽ ∣1 + h∣ ∥u1∥ + ∣h∣ (∥K1∥ ∥R1∥ ∥u1∥ (b1 − a1)

+ ∥K2∥ ∥R2∥ ∥u1∥ (b2 − a2) + ∥K3∥ ∥R3∥ ∥u1∥ (b1 − a1) (b2 − a2))) = βh ∥u1∥,
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where

βh ∶= ∣1 + h∣ + ∣h∣ (∥K1∥ ∥R1∥ (b1 − a1) + ∥K2∥ ∥R2∥ (b2 − a2)
+ ∥K3∥ ∥R3∥ (b1 − a1) (b2 − a2)) = ∣1 + h∣ + ∣h∣M.

Using the above, it can be inductively shown that for m ⩾ 1 we have
∥um∥ ⩽ βm−1

h ∥u1∥.
Thus, for the considered series (7) we obtain

∞

∑
m=0

um(x) ⩽ ∞

∑
m=0

∣um(x)∣ ⩽ ∥u0∥ + ∥u1∥ ∞∑
m=1

βm−1
h = ∥u0∥ + ∥u1∥ (1 − βh)−1,

if only βh < 1 (certainly that is βh > 0). Therefore, by virtue of the comparative criterion, the
discussed series will be uniformly convergent in region D.
Let us now consider if it is possible to choose the value of parameter h so that βh < 1, that is,
∣1 + h∣ + ∣h∣M < 1.

The above inequality is equivalent to the following inequality (because h ≠ 0):

M < 1 − ∣1 + h∣∣h∣ . (17)

For the right-hand side of this inequality we have

1 − ∣1 + h∣∣h∣ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 − 2

h
for h < −1,

1 for h ∈ [−1,0),
−1 for h > 0.

Thus, if condition (16) is satisfied, the value of parameter h can be chosen so that the inequality (17)
is true (for this purpose, it is sufficient to choose any h ∈ [−1,0)) and thereby βh < 1.
Remark 1. In the case of the Volterra equation which we obtain for f1(x) = a1, g1(x) = x, f2(y) =
a2, g2(y) = y, the equation has a unique solution (see [30]), and the series (7) is always convergent.
By using the estimations derived in the last proof it is easy to prove the following theorem.

Theorem 3. If the inequality (16) is satisfied and n ∈ N, then the error of approximate solution
can be estimated as follows:

∥u − ûn∥ ⩽ βn
h

1 − βh ∥u1∥, (18)

where βh = ∣1 + h∣ + ∣h∣M and
∥u1∥ ⩽ ∣h∣ (∥F ∥ + ∥u0∥ (1 +M)).

Proof. For any (x, y) ∈ D we have
∣u(x, y) − ûn(x, y)∣ = ∣ ∞∑

m=0

um(x, y) − n

∑
m=0

um(x, y)∣ ⩽ ∞

∑
m=n+1

∣um(x, y)∣
⩽

∞

∑
m=n+1

∥um∥ ⩽ ∥u1∥ ∞

∑
m=n+1

βm−1
h = βn

h

1 − βh ∥u1∥.
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5. NONLINEAR INTEGRAL EQUATION

Let us now proceed to the case of nonlinear equations. We assume that the operators Rk, k = 1,2,3,
occurring in Eq. (1), are nonlinear and they satisfy the Lipschitz condition

∥Rk(v1) −Rk(v2)∥ ⩽ sk ∥v1 − v2∥, for every v1, v2 ∈ C(D),
for some sk > 0, k = 1,2,3.
Defining, as before, the operators L and N and after using the HAM we get the following formula

for the function um:

um(x, y) = χm um−1(x, y) + hRm(um−1, x, y), (19)

where χm is determined by (9) and operator Rm is defined by relationship (10).
By using the definitions of appropriate operators we obtain

u1(x, y) = h ⎛⎜⎝u0(x, y) − F (x, y) −
g1(x)

∫
f1(x)

K1(x, y, t)R1 (u0(t, y)) dt

−
g2(y)

∫
f2(y)

K2(x, y, s)R2 (u0(x, s)) ds −
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3(u0(t, s))dsdt⎞⎟⎠ , (20)
where u0 ∈ C(D), and for m ⩾ 2:

um(x, y) = (1 + h)um−1(x, y) − h(m − 1)!
⎛⎜⎝

g1(x)

∫
f1(x)

K1(x, y, t)( ∂m−1

∂pm−1
R1 (∞∑

i=0

ui(t, y)pi))
p=0

dt

+
g2(y)

∫
f2(y)

K2(x, y, s)( ∂m−1

∂pm−1
R2 (∞∑

i=0

ui(x, s)pi))
p=0

ds

+
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s) ( ∂m−1

∂pm−1
R3 (∞∑

i=0

ui(t, s)pi))
p=0

dsdt
⎞⎟⎠ . (21)

Let us show that if the created series is convergent then its sum is the searched solution of the
nonlinear integral equation under consideration.

Theorem 4. Let um, m ≥ 1, be the functions defined by relationships (20) and (21), where u0 ∈
C(D). Then, if sk < 1 for k = 1,2,3 and the series in (7) converges, the sum of this series is the
solution of Eq. (1).

Proof. Let the series in (7) be convergent. For any (x, y) ∈ D, according to the necessary condition
for convergence of the series, we have limm→∞ um(x, y) = 0. Let us introduce the following notation:

Hk,m(x, y) = 1

m!
( ∂m

∂pm
Rk (∞∑

i=0

ui(x, y)pi)) ∣
p=0

.

If Rk are the contraction mappings (sk < 1) and the series in (7) converges to u(x, y), then the
series

∞

∑
m=0

Hk,m(x, y), k = 1,2,3, are respectively convergent to Rk(u(x, y)) (see [14]).
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By applying the definition of operator L we can write
n

∑
m=1

L (um(x, y) − χm um−1(x, y)) = n

∑
m=1

(um(xv) − χm um−1(x, y)) = un(x).
Hence

∞

∑
m=1

L (um(x) − χm um−1(x)) = lim
n→∞

un(x) = 0.
From Eq. (8) we get

h
∞

∑
m=1

Rm (um−1, x) = ∞

∑
m=1

L (um(x) − χm um−1(x)) .
And because h ≠ 0, we have

∞

∑
m=1

Rm (um−1, x) = 0.
After some transformations we obtain

0 =
∞

∑
m=1

Rm (um−1, x, y) = ∞∑
m=1

( 1(m − 1)! ∂m−1

∂pm−1
[ ∞∑
i=1

ui(x, y)pi −F (x, y)
−

g1(x)

∫
f1(x)

K1(x, y, t)R1 (∞∑
i=1

ui(t, y)pi)dt −
g2(y)

∫
f2(y)

K2(x, y, s)R2 (∞∑
i=1

ui(x, s)pi)ds

−
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3 (∞∑
i=1

ui(t, s)pi) dsdt]
p=0

⎞⎟⎠ =
∞

∑
m=1

⎛⎝um−1(x, y) − 1 − χm(m − 1)! F (x, y)

−
g1(x)

∫
f1(x)

K1(x, y, t)[ 1(m − 1)! ∂m−1

∂pm−1
R1 (∞∑

i=1

ui(t, y)pi)]
p=0

dt

−
g2(y)

∫
f2(y)

K2(x, y, s)[ 1(m − 1)! ∂m−1

∂pm−1
R2 (∞∑

i=1

ui(x, s)pi)]
p=0

ds

−
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)[ 1(m − 1)! ∂m−1

∂pm−1
R3 (∞∑

i=1

ui(t, s)pi)]
p=0

dsdt
⎞⎠

=
∞

∑
m=1

⎛⎝um−1(x, y) − 1 − χm(m − 1)!F (x, y) −
g1(x)

∫
f1(x)

K1(x, y, t)H1,m−1(t, y)dt

−
g2(y)

∫
f2(y)

K2(x, y, s)H2,m−1(x, s)ds−
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)H3,m−1(t, s)dsdt⎞⎠=
∞

∑
m=1

um−1(x, y)−F (x, y)

−
g1(x)

∫
f1(x)

K1(x, y, t) ∞∑
m=1

H1,m−1(t, y)dt −
g2(y)

∫
f2(y)

K2(x, y, s) ∞∑
m=1

H2,m−1(x, s)ds

−
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s) ∞∑
m=1

H3,m−1(t, s)dsdt = u(x, y) −F (x, y) −
g1(x)

∫
f1(x)

K1(x, y, t)R1(u(t, y))dt

−
g2(y)

∫
f2(y)

K2(x, y, s)R2(u(x, s))ds −
g1(x)

∫
f1(x)

g2(y)

∫
f2(y)

K3(x, y, t, s)R3(u(t, s))dsdt.
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Remark 2. In the above proof we used the fact that Rk are the contraction mappings in order to

ensure the convergence of series
∞

∑
m=0

Hk,m(x, y) to Rk(u(x, y)), in the case when the series in (7)
converges to u(x, y). The same convergence can be obtained under other assumptions, for example,
when Rk are of class C

∞ and they fulfil some additional conditions.

It is easy to prove the sufficient condition for the convergence of the series under consideration.

Theorem 5. If h is chosen so that there exist the constants γh ∈ (0,1) and m0 ∈ N such that for
every m ⩾M0 the inequality

∥um+1∥ ⩽ γh ∥um∥, (22)

is satisfied, then the series appearing in (7) converges uniformly in region D.

Remark 3. The above theorem can be generalized as follows.
If parameter h is chosen so that there exists a constant m0 ∈ N, such that for every m ⩾ M0

there exists γh,m ∈ (0,1) satisfying the conditions
∞

∏
m=m0

γh,m = 0 and ∥um+1∥ ⩽ γh,m ∥um∥,
then the series appearing in (7) converges uniformly in region D.

We proceed now to estimate the error of approximate solution.

Theorem 6. If the assumptions of Theorem 5 are satisfied and, moreover, n ∈ N and n ⩾m0, then
we have the following estimation of the error of approximate solution:

∥u − ûn∥ ⩽ γn+1−m0

h

1 − γh ∥um0
∥. (23)

Proof. Let n ∈ N and n ⩾m0. Then we get

∥u − ûn∥ = sup
(x,y)∈D

RRRRRRRRRRRu(x, y) −
n

∑
m=0

um(x, y)RRRRRRRRRRR = sup
(x,y)∈D

RRRRRRRRRRR
∞

∑
m=n+1

um(x, y)RRRRRRRRRRR ⩽ sup
(x,y)∈D

( ∞

∑
m=n+1

∣um(x, y)∣)
⩽

∞

∑
m=n+1

sup
(x,y)∈D

∣um(x, y)∣ = ∞

∑
m=n+1

∥um∥ ⩽ ∞

∑
m=n+1

γm−m0

h
∥um0

∥ = γn+1−m0

h

1 − γh ∥um0
∥.

6. EXAMPLES

Example 1

We begin with the solution of a linear equation for which K1(x, y, t) = 1

16
(x + y t), K2(x, y, s) =

1

16
(xs + y), K3(x, y, t, s) = 1

16
(xs + y t), Ri(u) = u, i = 1,2,3, F (x, y) = 1

192
(x (175 − 24y) − 6x2 +

y (175 − 6y)) and fi(x) = 0, gi(x) = 1 for i = 1,2, where x, y ∈ [0,1]. The solution of Eq. (1) is then
the function ue(x, y) = x + y. In the discussed equation we have
∥Ki∥ = 1

8
, ∥Ri∥ = 1, i = 1,2,3.
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Hence

M = 3

8
,

that is, the sum of generated series is the solution of the equation under consideration.
Assuming the initial approximation u0(x, y) = F (x, y) we get in the first step
u1(x) = 1

36864
(−2855hx − 954hx2 + 36hx3 − 2855hy − 3912hxy

+72hx2 y − 954hy2 + 72hxy2 + 36hy3) .
Figure 1 presents the graph of the logarithm of squared residual E5. Numerically determined,
the optimal value of the convergence control parameter is equal to −1.1255. All the necessary
calculations were carried out with the aid of Mathematica software.
Table 1 compiles the errors of reconstruction of the exact solution for the successive approximate

solutions ûn, n ∈ {1,2, . . . ,10}. As revealed by the above results, together with the increasing number
of components in sum (7) the errors quickly decrease. The error decrease is the fastest for the optimal
value of parameter h. For this value, the approximate solution û5 provides the approximation of the
sought function with the error not higher than 8.363 ⋅ 10−8. Whereas the solution û10 approximates
the exact solution with the error not higher than 2.554 ⋅10−13 . Moreover, the further we move away
from that optimal value, the more slowly the errors decrease. This last fact is illustrated in Table 2.

Fig. 1. Logarithm of the squared residual E5.

Table 1. Values of errors in the reconstruction of the exact solution (∆n = ∥ue − ûn∥).

n ∆n ∆(18)

1 1.915 ⋅ 10−2 0.418

2 5.528 ⋅ 10−4 0.229

3 3.735 ⋅ 10−5 0.125

4 6.410 ⋅ 10−7 6.863 ⋅ 10−2

5 8.363 ⋅ 10−8 3.758 ⋅ 10−2

6 5.460 ⋅ 10−9 2.058 ⋅ 10−2

7 2.311 ⋅ 10−10 1.127 ⋅ 10−2

8 4.289 ⋅ 10−11 6.170 ⋅ 10−3

9 3.605 ⋅ 10−12 3.378 ⋅ 10−3

10 2.554 ⋅ 10−13 1.850 ⋅ 10−4
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Table 2. Values of errors in the reconstruction of the exact solution for various values
of the convergence control parameter (∆n = ∥ue − ûn∥).

h ∆5 ∆10

−0.2 0.145 5.756 ⋅ 10−2

−0.5 2.358 ⋅ 10−2 1.506 ⋅ 10−3

−1.0 2.902 ⋅ 10−5 2.052 ⋅ 10−9

−1.1255 8.363 ⋅ 10−8 2.554 ⋅ 10−13

−1.2 1.499 ⋅ 10−6 5.990 ⋅ 10−11

−1.5 3.339 ⋅ 10−4 4.644 ⋅ 10−6

−1.8 2.334 ⋅ 10−2 4.989 ⋅ 10−4

In Table 1 there is also included the estimation of error resulting from inequality (18). In the
considered example, we have βh = 0.547563 and ∥u1∥ = 0.345429 for the optimal value of the
convergence control parameter h = −1.1255. Hence, the inequality (18) takes the form

∆n ∶= ∥u − ûn∥ ⩽∆(18) = 0.763485 ⋅ (0.547563)n .
The above formula presents the estimation of error of the approximate solution (the worst possi-
ble case). In fact, the errors of approximate solutions are generally much smaller than the value
determined on the right-hand side of this inequality.
The difference ∣ue(x)− ûn(x)∣ for n = 3 and n = 10 is plotted in Fig. 2. The results show that the

method converges rapidly and counting only few first components of the generated series provides
a very good approximation of the exact solution.

a) b)

Fig. 2. Distribution of error of the exact solution approximation for: a) n = 3 and b) n = 10.

Example 2

We consider now the equation defined by functions K1(x, y, t) = x t, K2(x, y, s) = y s, K3(x, y, t, s) =
xs − y t, Ri(u) = u, i = 1,2,3, F (x, y) = xy

3
(3 − x3 − y3) and fi(x) = 0, gi(x) = x for i = 1,2, where

x, y ∈ [0,1]. This time the solution of Eq. (1) is given by function ue(x, y) = xy. This is an example
of the Volterra equation for which, despite the fact that inequality (16) is not satisfied (M = 3),
the series (7) still converges (see Remark 1).
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Assuming, as before, the initial approximation u0(x, y) = F (x, y) we get in the first step

u1(x) = 1

180
hxy (10x6 − x5 y2 + x2 y5 + 10y3 (y3 − 6) + 20x3 (2y3 − 3)) .

Figure 3 shows the graph of the logarithm of squared residual E5. Numerically determined, the
optimal value of convergence control parameter is equal to −1.087.

Fig. 3. Logarithm of the squared residual E5.

In Table 3 the errors of successive approximate solutions ûn, n ∈ {1, . . . ,10}, are presen-
ted. And similarly as in the previous case, we can state that together with the increasing num-
ber of components in sum (7) the errors quickly decrease. The variability of the error size with
respect to the changes of the value of parameter controlling the convergence is illustrated in Ta-
ble 4. The graph of the error ∣ue(x) − ûn(x)∣ for n = 3 and n = 10 is displayed in Fig. 4. Again,
the analysis confirms that the method is rapidly convergent, thanks to which the sum of only
few first components of the generated series provides a very good approximation of the exact
solution.

Table 3. Values of errors in the reconstruction
of the exact solution (∆n = ∥ue − ûn∥).

n ∆n

1 0.304

2 8.791 ⋅ 10−2

3 1.597 ⋅ 10−2

4 1.681 ⋅ 10−3

5 6.363 ⋅ 10−5

6 5.383 ⋅ 10−6

7 4.570 ⋅ 10−7

8 2.938 ⋅ 10−8

9 6.819 ⋅ 10−10

10 2.175 ⋅ 10−10
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Table 4. Values of errors in the reconstruction of the exact solution for various values
of the convergence control parameter (∆n = ∥ue − ûn∥).

h ∆5 ∆10

−0.2 0.382 0.206

−0.5 0.124 1.583 ⋅ 10−2

−1.0 1.761 ⋅ 10−3 9.983 ⋅ 10−8

−1.087 6.363 ⋅ 10−5 2.175 ⋅ 10−10

−1.2 1.160 ⋅ 10−4 2.552 ⋅ 10−8

−1.5 3.999 ⋅ 10−3 5.735 ⋅ 10−5

−1.8 2.337 ⋅ 10−2 3.298 ⋅ 10−3

a) b)

Fig. 4. Distribution of error of the exact solution approximation for: a) n = 3 and b) n = 10.

Example 3

Let us consider now the two-dimensional Fredholm integral equation of the second kind, in which

K1(x, y, t) = 0, K2(x, y, s) = 0, K3(x, y, t, s) = 1

20
(xy − s t), Ri(u) = u, i = 1,2,3, F (x, y) = x + y +

1

1920
(48π + π5

− 96xy − 12π3 xy − 96) + cos y sinx and fi(x) = 0, gi(x) = π/2 for i = 1,2, where

x, y ∈ [0, π/2]. The solution of Eq. (1) is in this case the function ue(x, y) = sinx cos y + x + y.
Assuming the initial approximation u0(x, y) = F (x, y) we obtain in the first step
u1(x) = − 1

7372800
h(π9

+ 32π6
− 3984π5

− 184320π

+xy (12π7
+ 48384π3

− 4608π2) + (1 − xy) (288π4
− 368640)) .

Figure 5 presents the graph of the logarithm of squared residual E5. Numerically determined, the
optimal value of the convergence control parameter is equal to −0.9955.
Let us compare the obtained approximate solutions ûn, for few n, with the exact solution by

taking the difference of these functions. Thus we obtain

û3 − ue = −3.780 ⋅ 10−5 − 5.633 ⋅ 10−6 xy,
û5 − ue = 1.980 ⋅ 10−7 − 2.059 ⋅ 10−8 xy,
û6 − ue = −1.240 ⋅ 10−8 + 2.266 ⋅ 10−8 xy,
û8 − ue = 4.659 ⋅ 10−11 − 9.894 ⋅ 10−11 xy,
û10 − ue = −1.532 ⋅ 10−13 + 4.124 ⋅ 10−13 xy.
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Fig. 5. Logarithm of the squared residual E5.

In Table 5 the errors (∥ue − ûn∥ = sup(x,y)∈D ∣ue(x, y) − ûn(x, y)∣) of approximate solutions ûn,
n ∈ {1,2, . . . ,10} are presented. Whereas the distributions of error for n = 3 and n = 10 in the entire
domain D are displayed in Fig. 6. And certainly the error decrease is the fastest for the optimal
value of the parameter controlling the convergence (see Table 6).

Table 5. Values of errors in the reconstruction of the exact solution (∆n = ∥ue − ûn∥).

n ∆n ∆(18)

1 1.553 ⋅ 10−2 0.191

2 1.994 ⋅ 10−3 5.861 ⋅ 10−2

3 5.170 ⋅ 10−5 1.802 ⋅ 10−2

4 9.409 ⋅ 10−6 5.543 ⋅ 10−3

5 1.980 ⋅ 10−7 1.705 ⋅ 10−3

6 4.352 ⋅ 10−8 5.243 ⋅ 10−4

7 9.992 ⋅ 10−10 1.612 ⋅ 10−4

8 1.972 ⋅ 10−10 4.958 ⋅ 10−5

9 4.899 ⋅ 10−12 1.525 ⋅ 10−5

10 8.630 ⋅ 10−13 4.689 ⋅ 10−6

a) b)

Fig. 6. Distribution of error of the exact solution approximation for: a) n = 3 and b) n = 10.
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Table 6. Values of errors in the reconstruction of the exact solution for various values
of the convergence control parameter (∆n = ∥ue − ûn∥).

h ∆5 ∆10

−0.2 0.128 3.917 ⋅ 10−2

−0.5 9.639 ⋅ 10−3 2.030 ⋅ 10−4

−0.7 5.090 ⋅ 10−4 1.687 ⋅ 10−6

−0.9955 1.980 ⋅ 10−7 8.630 ⋅ 10−13

−1.3 9.565 ⋅ 10−4 2.782 ⋅ 10−6

−1.5 1.532 ⋅ 10−2 1.886 ⋅ 10−4

−1.8 0.166 3.479 ⋅ 10−2

Table 5 includes also the error estimations resulting from the inequality (18). In the considered
example, we have βh = 0.307534, ∥u1∥ = 0.429133 for the optimal value of the convergence control
parameter h = −0.9955. Hence, the inequality (18) takes the form

∆n ∶= ∥u − ûn∥ ⩽∆(18) = 0.619717 ⋅ (0.307534)n .
Example 4

As the next example we consider the two-dimensional nonlinear Volterra integral equation of the
second kind, in which: K1(x, y, t) = 0, K2(x, y, s) = 0, K3(x, y, t, s) = t2 + sx, R3(u) = u2, F (x, y) =
x+y−

1

180
x2 y (36x3+75x2 y+80xy2+45y3) and fi(x) = 0, gi(x) = x for i = 1,2, where x, y ∈ [0,1].

The solution of Eq. (1) is now given by the function ue(x, y) = x + y.
Assuming the initial approximation u0(x, y) = F (x, y) we get in the first step
u1(x) = − hx2 y

1167566400
(518918400xy2 + 1197504x11 y2 + 291891600y3 + 5115474x10 y3

+ 11351340x9 y4 − 13899600x2 y (2y5 − 35) + 16750734x8 y5 + 54054x4 y4 (27y5 − 2488)
− 540540x3 (161y5 − 432) + 32175x6 y2 (389y5 − 2556) + 8580x5 y3 (695y5 − 15363)

+2860x7 y (6059y5 − 9072)) .
In Fig. 7 the logarithm of squared residual E5 is plotted. Numerically determined, the optimal value
of the convergence control parameter is equal to −1.131. Table 7 presents the errors of the successive
approximate solutions ûn, n ∈ {1,2, . . . ,10}. And in this case, the theoretical error estimation

Fig. 7. Logarithm of the squared residual E5.
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Table 7. Values of errors in the reconstruction
of the exact solution (∆n = ∥ue − ûn∥).

n ∆n

1 0.233

2 3.981 ⋅ 10−2

3 3.142 ⋅ 10−3

4 6.646 ⋅ 10−4

5 1.916 ⋅ 10−5

6 1.367 ⋅ 10−5

7 1.315 ⋅ 10−6

8 4.092 ⋅ 10−7

9 6.829 ⋅ 10−8

10 1.498 ⋅ 10−8

resulting from the inequality (23) is not submitted, because the formula defining the constant γ is
unknown in the nonlinear case. The graph of error ∣ue(x) − ûn(x)∣ for n = 5 and n = 10 is shown in
Fig. 8.

a) b)

Fig. 8. Distribution of error of the exact solution approximation for: a) n = 5 and b) n = 10.

Example 5

In the last theoretical example, we consider the two-dimensional nonlinear Fredholm integral equa-
tion of the second kind defined by the functionsK1(x, y, t) = 0,K2(x, y, s) = 0,K3(x, y, t, s) = xs/10,
R3(u) = u3, F (x, y) = 1 +

67

150
x + y and fi(x) = 0, gi(x) = 1 for i = 1,2, where x, y ∈ [0,1]. The

solution of Eq. (1) is represented by the function ue(x, y) = x + y + 1.
Assuming the initial approximation u0(x, y) = F (x, y) we obtain in the first step
u1(x, y) = −96567263hx

270000000
,

and

û1(x, y) = u0(x, y) + u1(x, y) = 1 + 67

150
x + y−

96567263hx

270000000
.
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In Fig. 9, the graph of the logarithm of squared residual E20 is shown. Numerically determined,
the optimal value of the convergence control parameter is equal to −1.50182.

Fig. 9. Logarithm of the squared residual E20.

The obtained approximate solutions ûn can be compared with the exact solution by taking the
differences of these functions. Thus we get

ue − û1 = 1.620 ⋅ 10−2 x, ue − û17 = 3.193 ⋅ 10−7 x,
ue − û3 = 2.958 ⋅ 10−3 x, ue − û18 = 3.485 ⋅ 10−7 x,
ue − û5 = 6.821 ⋅ 10−4 x, ue − û19 = 9.348 ⋅ 10−8 x,
ue − û10 = 8.228 ⋅ 10−5 x, ue − û20 = 9.360 ⋅ 10−8 x,
ue − û15 = 1.096 ⋅ 10−6 x, ue − û25 = 2.413 ⋅ 10−9 x.

Table 8 presents the errors of successive approximate solutions ûn, n ∈ {1, . . . ,30}. Let us notice that,
in this case, at the beginning the error of approximate solution does not decrease monotonically
as it occurred in the previous examples. At first, the decrease of error oscillates but starting from
n = 21 it behaves monotonically. The graph of error ∣ue(x)− ûn(x)∣ for n = 5 and n = 20 is presented
in Fig. 10.

a) b)

Fig. 10. Distribution of error of the exact solution approximation for: a) n = 5 and b) n = 20.
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Table 8. Values of errors in the reconstruction
of the exact solution (∆n = ∥ue − ûn∥).

n ∆n n ∆n

1 1.620 ⋅ 10−2 16 1.320 ⋅ 10−6

2 4.824 ⋅ 10−2 17 3.193 ⋅ 10−7

3 2.958 ⋅ 10−3 18 3.485 ⋅ 10−7

4 7.923 ⋅ 10−3 19 9.360 ⋅ 10−8

5 6.821 ⋅ 10−4 20 9.360 ⋅ 10−8

6 1.585 ⋅ 10−3 21 2.756 ⋅ 10−8

7 1.750 ⋅ 10−4 22 2.549 ⋅ 10−8

8 3.502 ⋅ 10−4 23 8.142 ⋅ 10−9

9 4.746 ⋅ 10−5 24 7.030 ⋅ 10−9

10 8.228 ⋅ 10−5 25 2.413 ⋅ 10−9

11 1.329 ⋅ 10−5 26 1.960 ⋅ 10−9

12 2.016 ⋅ 10−5 27 7.166 ⋅ 10−10

13 3.792 ⋅ 10−6 28 5.516 ⋅ 10−10

14 5.095 ⋅ 10−6 29 2.133 ⋅ 10−10

15 1.096 ⋅ 10−6 30 1.566 ⋅ 10−10

Example 6

Let us consider the horizontal bar of length l, the axis of which lies in the x-axis (it matches
with segment [0, l]). Deflection of point x in the bar at time t, in direction perpendicular to the
x-axis, is expressed by function z. The transverse oscillations of this bar is then described by the
integro-differential equation of the form (see [42]):

z(x, t) = l

∫
0

G(x, s)(p(s) − µ(s) ∂2z

∂t2
(x, s)) ds, 0 ⩽ x ⩽ l, (24)

where p(s)ds describes the load acting on the subsegment (s, s + ds) of the bar in direction per-
pendicular to the x-axis and µ(s)ds denotes the mass of this subsegment. The function G(x, s) in
the above equation is called the influence function defining the displacement of the bar at point of
coordinate x caused by the unit loading in direction perpendicular to the bar at some other point
of coordinate s.
By transforming, Eq. (24) can be written in the form

z(x, t) = F (x, t) − l

∫
0

K2(x, t, s)R2(z(x, s))ds, 0 ⩽ x ⩽ l, (25)

where

F (x, t) = l

∫
0

G(x, s)p(s)ds,
K2(x, t, s) = G(x, s)µ(s)

and

R2(z(x, s)) = ∂2z

∂t2
(x, s).
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The obtained integro-differential equation must be completed with the initial conditions

z(x,0) = ϕ0(x), ∂z

∂t
(x,0) = v0(x), 0 ⩽ x ⩽ l.

Taking l = π/2, ϕ0(x) = 0, v0(x) = x/8, K2(x, t, s) = (x + s)/10 and
F (x, t) = 1

160
(2(x2 + sin(π x

2
) + 10 sin(x t)) − x (2x + π) cos (π x

2
)) ,

we get the equation, the exact solution of which is given by function

z(x, t) = 1

8
sin(x t).

The best choice is to take as the initial approximation the function satisfying the assumed initial
conditions. Therefore we may take

z0(x, t) = ϕ0(x) + t v0(x) = t x

8
.

Then, in the first step of the method we obtain

z1(x, t) = 1

160
h (x(π + 2x) cos (π x

2
) − 2 (x2 − 10x t + sin(π x

2
) + 10 sin(xy))) .

Figure 11 shows the graph of the logarithm of squared residual E10. This time the optimal value of
convergence control parameter is equal to −1. Substituting the obtained value h = −1 in the derived
formulas we get in turn

z1(x, t) = 1

160
(−x (π + 2x) cos (π x

2
) + 2(x2 − 10x t + sin(π x

2
) + 10 sin(xy))) ,

z2(x, t) = 1

160
(x (π + 2x) cos (π x

2
) + 2(−x2 − sin(π x

2
))) ,

zm(x, t) = 0, m ⩾ 3.
By adding the determined functions we receive the exact solution of the discussed equation

z(x, t) = ∞

∑
m=0

zm(x, t) = z0(x, t) + z1(x, t) + z2(x, t) = 1

8
sin(x t).

Fig. 11. Logarithm of the squared residual E10.
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7. CONCLUSION

This paper presents the use of the HAM in solving the two-dimensional linear and nonlinear integral
equations of the second kind. In the discussed method, the solution is sought in the form of a series.
It is shown that if this series is convergent, its sum is the solution of the considered equation. The
sufficient condition for the convergence of this series is also presented. Additionally, the error of
approximate solution, taken as the partial sum of generated series, is estimated.
Presented examples show that the investigated method is effective in solving the equations of

considered kind. The results indicate that the method converges very rapidly and the optimal
selection of the convergence control parameter provides a very good approximation of the sought
exact solution by the sum of first few components of the series.
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