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A meshless method using global radial basis functions
for creating 3-D wind fields from sparse meteorological data
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An efficient, global meshless method has been developed for creating 3-D wind fields utilizing sparse
meteorological tower data. Meshless methods do not require the need for a mesh in order to connect
node points. In this study, node points are placed within the computational domain based on topological
features. Wind speeds and directions are obtained from a set of instrumented meteorological towers.
Inverse weighting is used to initially establish wind vectors at all nodal points. The Kansa technique,
employing global basis functions, is then used to create a mass-consistent, 3-D wind field. The meshless
method yields close approximations to results obtained with a high-order finite element technique. The
method was implemented using MATLAB.
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1. INTRODUCTION

The need for accurate, realistic 3-D wind fields is critically important when encountering issues
involving atmospheric releases, assessing wind energy sites and placement of wind turbines, and
weather forecasting. However, obtaining sufficient wind data is difficult, costly, and especially prob-
lematic when the terrain is complex. Such sparse amounts of data often lead to inaccuracies in
depicting and predicting important regional flow features. Reliance on sparse meteorological data
in numerical models has been employed for many years, and continues to be a pressing problem
Meteorological models are typically based on conventional numerical methods (e.g., finite dif-

ference, finite volume) employing large mesh arrays. These models are commonly run on high-end
workstations and supercomputers with massive storage capabilities. In order to accurately resolve
regions where topography or high winds exist, a refined mesh is typically required. A finite ele-
ment model with local mesh adaptation was used by Pepper and Wang [24] to more accurately
model atmospheric winds over complex terrain, common to the state of Nevada, USA, at reduced
computational cost.
Meshless (also known as mesh-free) methods have become popular for solving problems in applied

mechanics and engineering (see [2, 3, 14]. The reasons for their popularity stem from the fact
that a computational mesh is not required, programming is simple (allowing models to be run on
PCs), and accuracies comparable to higher-order, conventional numerical methods. The placement
of nodes within the computational domain can be uniform or randomly scattered; this issue is
addressed in greater detail in Gewali and Pepper [10], Choi and Kim [4], and Atluri and Zhu [2].
Efforts to numerically model 3-D wind fields using the governing equations for atmospheric

motion have been undertaken by numerous researchers over many years. Examples of such simula-
tions are discussed in Lange [17], Sherman [31], Goodin et al. [11], Pepper [23], Ratto et al. [27],
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Finardi et al. [8], Montero and Sanin [21], and Pepper and Wang [25]. However, problems dealing
with mesh resolution (resulting in excessive storage requirements) and the inability to accurately re-
solve terrain hindered many of these early simulations. Even with local mesh refinement techniques
used today, such calculations can still become excessive.
In this study, we apply a simple mass consistent approach to minimize the differences between

observed (towers) and adjusted (interpolated) nodal values using a meshless method with global
radial basis functions. Using USGS Digital Elevation Map (DEM) data for the Nevada Test Site,
located near Las Vegas, NV, a nodal pattern is created for the computational domain. Meteoro-
logical data recorded in 1993 from 15 towers is used to initialize the wind field. Wind field results
from the meshless model are compared with results obtained using an h-adaptive finite element
model [24].

2. MASS CONSISTENT WIND FIELD

The equation for conservation of mass is used to create a diagnostic wind field that is mass consis-
tent. This technique incorporates actual data obtained from meteorological towers to create fixed
nodal values at the tower locations. The procedure has been shown to be very effective in estab-
lishing micro- and mesoscale wind fields [26]. Early research work on mass consistent models was
undertaken by Sherman [31] and later applied by Pepper [23]. The main idea of the technique is to
match simulation values with measured meteorological data, using weighted averaging around the
sparse data points to fill in values to all the nodes within the computational domain.
Inverse squared weighting (1/r2, where r is the radial distance between the node points and the

tower locations) is used to interpolate values to all node points within the computational domain.
A fixed radius is used to limit the distance beyond a tower’s influence is felt. This technique was
used by Goodin et al. [12], Kitada et al. [16], and Pepper [23].
When vertical velocities are either not measured or unavailable, the equation for conservation

of mass is used to calculate the vertical velocity, w, based on the divergence correction, i.e.

w = −

z
∫

0

(

∂u

∂x
+

∂v

∂y

)

dz, (1)

where u, v, w are velocities in x, y, z directions.
Much of the early work dealing with the generation of 3-D mass-consistent wind fields stems

from Lange [17], Sherman [31], and Dickerson [5], who developed the ADPIC pollutant transport
model at the Lawrence Livermore National Laboratory. Their model employed an objective analysis
procedure using a variational technique first developed by Sasaki [29]. Schaefer and Doswell [30]
describes the use of interpolation for creating vector wind fields for atmospheric simulations over
regional scales. Warner et al. [33] discusses the accuracy and short comings attributed to the use
of observed winds with predicted outcomes. Mathur and Peters [20] later adapted this approach
for air pollution modeling. Pepper [23], using a similar approach with finite elements, modeled
mesoscale winds over Vandenberg Air Force Base. Ratto el al. [27] gives an overview of these early
mass consistent models along with descriptions of the parameters and computational techniques.
An improvement to the method was made by Montero et al. [22] using local tetrahedral mesh
refinement. In this study, we use the technique from Sherman [31] and Pepper [23] due to its
simplicity and easy formulation.
The variance of the difference between an observed (measured) velocity and an analyzed (pre-

dicted) velocity can be minimized using an Euler-Lagrange function. This relation was first estab-
lished by Sasaki [29]. The function is written as

E (u, v, w, λ) =
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where u0, v0, w0 are observed velocity value in x, y, z direction, Ω is physical domain (dΩ ≡

dxdydz), and αi are Gauss precision moduli where α
2
i ≡ 1/(2σ2

i ). In this approach, the σi denote
the observation tower errors (i.e., the deviations of the observed field from the desired adjusted
field). These moduli are used to account for nondivergence over irregular terrain. Sherman [31]
suggested that (α1/α2)

2 be determined from the magnitude of (w/u)2. This was later employed
by Kitada et al. [16] where minimum residual divergence occurred when (α1/α2)

2 = 0.01. We set
α1 = 0.01 (horizontal variation) and α2 = 0.1 (vertical variation). The ratio of α1/α2 can be
adjusted, if needed.
The corresponding Euler-Lagrange relations that minimize Eq. (2) can be written as:

u = u0 +
1

2α2
1

∂λ

∂x
, (3)

v = v0 +
1

2α2
1

∂λ

∂y
, (4)

w = w0 +
1

2α2
2

∂λ

∂z
, (5)

where λ is the Lagrange multiplier. If Eqs. (3)–(5) are substituted into the continuity equation
(assuming constant air density),

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (6)

a Poisson equation can be obtained for λ(x, y, z)
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. (7)

Open, or flow-through boundaries, are assumed by setting λ = 0. When ∂λ/∂n = 0, a closed, or
no-flow, boundary is assumed.
The application of this simple procedure yields a diagnostic technique based on 15 minute

averaged wind velocities. As new meteorological data is obtained, the wind velocities at the towers
are updated and a new 3-D wind field is produced. Both Sherman [31] and Dickerson [5] showed
that this procedure could produce wind fields that were within a factor of 2 around 50% of the
time. Although they used a fairly coarse mesh (compared with today’s computational capabilities),
the results were impressive. More recent efforts employing localized mesh adaptation significantly
improved the results and provided more detailed flow patterns (see [24]).

3. MESHLESS APPROACH

Traditional numerical methods (e.g., finite difference, finite volume, and finite element) typically
require detailed mesh generation. However, a meshless method does not require this initial step.
Figure 1 shows the difference in nodal spacing for a meshed vs. meshless approach (using random
nodal positioning). Optimal placement of node points is addressed in more detail in Gewali and
Pepper [10] and Li et al. [18].
The roots of the development of meshless methods began in the 1970’s; however, interest began

to develop in the late 1990’s for solving applied mechanics problems, and began to see wider use
in the 2000’s. They have attracted notice for their ease in implementation, compared to the more
traditional numerical techniques that rely on a mesh consisting of interconnected node points to
calculate values of interest. Although there are a variety of meshless method implementations, most
have one property in common: they need not rely on a structured or unstructured mesh (there are
some that claim to be meshless, but still rely on a mesh foundation). Strengths of a non-structured
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Fig. 1. Structured meshed domain versus meshless domain with random spacing.

mesh become apparent when the problem of complex geometries or time-varying boundaries is
considered.
An extensive explanation of the procedure involved in implementing a meshless method is given

in Liu [19]. To begin, nodes are placed within the problem domain and on the boundaries. The
nodes do not have to be distributed in a uniform manner and can be denser in regions where
the greatest changes in variable values occur [10]. Next, shape functions are used to relate the
influence of each node to the other nodes in the domain. This is particularly necessary when the
nodes are especially unevenly distributed. Shape functions are generally referred to as the support
domain for the node of interest with weighted influence. The support domain can take a circular
or rectangular shape. The field variable, e.g., U is then interpolated using the displacements at its
nodes within the support domain. The shape functions can be used to write a PDE in nodal matrix
form, and global matrices can be assembled for the entire problem domain. All that remains is to
solve the matrices to obtain solutions to the PDE.
There are various categories of meshless methods. These include smoothed particle hydrody-

namics method, reproducing kernel particle method, meshless Petrov-Galerkin method, local radial
point interpolation method, finite point method, and the finite difference method with arbitrary ir-
regular grids. Each of the methods has benefits and drawbacks. In this study, radial basis functions
were used as this did not require special consideration for nodal placement.

3.1. The RBF method

One of the simplest implementations of a meshless method is the RBF method. Specifically, Kansa’s
approach [1] is followed in this study. In this method, a basis function relates the influence of
surrounding nodes on the node of interest. The nodes closest to the node of interest have the
greatest influence. Nodes increasingly farther away have decreasing influence. For example, the
distance, d, between radial position, r, can be defined as:

di =
[

(r − ri)
2
]1/2

. (8)

The most commonly used basis function is the multiquadric (MQ), proposed by Hardy [13].
Other basis functions include Gaussian, thin plate spline, and logarithmic forms (see [34]).
The MQ form has been widely used in constructing approximate solutions to PDEs, and we have

elected to use the MQ approach. Upon substitution of the distance formula, the basis function, φ,
is described as:

φj =
[

(r − rj)
2 + c2j

]β
, j = 1, 2...N, (9)

where β ≡ 1/2 and N is the total number of nodes.
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Upon defining the domain, Ω, the continuous function U(x) is:

U(x) =
N
∑

j=1

φj(x)αj , (10)

where αj is a series of coefficients. These coefficients must be determined at each continuous function
value.
In order to solve partial differential equations (PDEs), we apply a linear operator (L) on the

interior, Ω to the continuous function. This gives

LU(x) =
N
∑

j=1

Lφj(x)αj . (11)

From this relation, the linear operator (the PDE) is applied to the basis function. This requires
calculation of the first and second derivatives of the basis functions. PDE’s are also subject to
boundary conditions. These are taken into account by applying the boundary operator (B) on the
boundary ∂Ω as:

BU(x) =

N
∑

j=1

Bϕj(x)αj . (12)

By applying a boundary operator, Dirichlet, Neumann, or Robin conditions can be used for the
problem.

3.2. Radial-polynomial basis

The use of pure radial functions tends to be inconsistent and so for further accuracy, polynomials
added to the basis functions can ensure consistency. However, addition of the polynomials compli-
cates the solution matrices making them difficult to implement. They are, however, accounted for
in the following manner:

U(x) =

N
∑

j=1

φj(x)αj +

M
∑

k=1

pk(x)γk, (13)

where pk(x) is a polynomial of degree k, and the expansion is subject to the constraint:

N
∑

j=1

pj(x)αj = 0. (14)

This constraint guarantees unique approximation (see [19]). The interior operator and boundary
operator have similar expansions:

LU(x) =

N
∑

j=1

Lφj(x)αj +

M
∑

k=1

Lpk(x)γk = f,

BU(x) =
N
∑

j=1

Bφj(x)αj +
M
∑

k=1

Bpk(x)γk = g.

(15)
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These are also subject to the constraints:

N
∑

j=1

Lpk(x)αj = 0,

N
∑

j=1

Bpj(x)αj = 0.

(16)

As stated previously, the addition of polynomials can be beneficial for increasing solution accu-
racy. It does, however, increase the computation time and complexity of implementation. Also, the
solution still relies on well-chosen shape parameters.

3.3. Shape parameters

The shape parameter, c, is critical for determining the accuracy of PDE solutions when applying
the radial basis functions. Because of this, careful attention should be given for determining values
of the shape parameter. Detailed discussions regarding values for the shape parameter can be found
in Fasshauer [6], Franke [9], Hardy [13], and Kansa [15].
Most of the shape parameter formulations rely on the distance, d, and number of nodes, N .

Other formulations show a changing shape parameter based on the node position. In summary, the
shape parameter can depend on many factors including (see [28]: number and distribution of nodes,
the basis function, and computer precision.
Hardy [13] suggested the formulation for the shape parameter, c = 0.815d, where d is defined

by Eq. (8). Kansa [15] recommended an alternative form where

c2j = C1

[

1 + C2(−1)
j
]

with j being even or odd. The parameter, C1, was defined as the ideal shape parameter for the
interior domain and C2 was used to determine the amplitudes of C1, depending on whether j is even
or odd. In this formulation, 0.25 < C2 < 0.33 for the interior values and 0.49 < C2 < 0.55 for the
boundary values. More detailed discussions regarding the values for c can be found in Fasshauer [7]
and Acres [1].

3.4. The Euler-Lagrange equations

To illustrate the application of the meshless method with RBF, Eq. (7) can be expressed as:

∇
2λ = f(x), x ∈ Ω,

λ = g(x), x ∈ Γ,
(17)

where x = (x, y, z) and f(x) and g(x) denote the divergence of the observed velocity values. Now
approximate λ assuming

λ(x) =

N
∑

j=1

φ(rj)λj , (18)

where r is defined, assuming MQ as the basis function, as

φ(rj) =
√

r2j + c2 =
√

(x− xj)2 + (y − yj)2 + (z − zj)2 + c2. (19)
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Likewise, the derivatives can be expressed as:

∂φ

∂x
=

x− xj
√

r2j + c2
,

∂φ

∂y
=

y − yj
√

r2j + c2
,

∂φ

∂z
=

z − zj
√

r2j + c2
,

∂2φ

∂x2
=
(y − yj)

2 + (z − zj)
2 + c2

3

√

r2j + c2
,

∂2φ

∂y2
=
(x− xj)

2 + (z − zj)
2 + c2

3

√

r2j + c2
,

∂2φ

∂z2
=
(x− xj)

2 + (y − yj)
2 + c2

3

√

r2j + c2
.

(20)

Substituting into the original equation set, one obtains

N
∑

j=1

∇
2φ(rj)λj = f(x), i = 1, 2, · · · , NI ,

N
∑

j=1

φ(rj)λj = g(x), i = NI+1, NI+2, · · · , N,

(21)

which produces an N ×N linear system of equations for the unknown λj .

3.5. Global versus local RBFs

There are essentially two ways to formulate a meshless approach using radial basis functions:
global and local. Each has advantages and disadvantages. The global method, as used in this
study, is easy to setup and uses all node points in the domain, but suffers from potential poor
conditioning (matrix) and can result in large matrices that need to be efficiently solved. Since our
global domain consisted of approximately 625 node points, the global method worked effectively
well using simple matrix solution routines found in MATLAB. The local method, which uses only
those nodes surrounding the point of interest, requires only small matrices to be inverted per node
point, and eliminates the ill-conditioning problem. However, one must repeatedly solve these series
of small linear equations. Discussions regarding the use of both approaches is given in Trobec
et al. [32], Yao et al. [35], and Waters and Pepper [34].

4. SIMULATION RESULTS

The Nevada Test Site (NTS) was established in 1950 as the United States’ nuclear weapons testing
area. The location of the NTS shown in Fig. 2a, is about 65 miles northwest of Las Vegas. A total
of 26 meteorological towers were placed within the NTS to support atmospheric nuclear testing;
today there are only 15 operational towers. Figure 2b shows the locations of the towers A set of
four terrain following layers (10 m, 50 m, 300 m and 1000 m) was initially used to establish node
locations utilizing the USGS digital elevation map. A 3-D view of an equivalent mesh generated
by an h-adaptive finite element model is shown in Fig. 3a. Wind velocities obtained at the tower
locations are shown in Fig. 3b. In the earlier study conducted by Pepper and Wang [24], their
adaptive finite element model created a mesh consisting of 10,392 elements and 12,508 nodes.
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a) b)

Fig. 2. a) Nevada Test Site and b) location of meteorological towers (from Pepper and Wang [24]).

a) b)

Fig. 3. a) 3-D equivalent mesh and b) measured wind velocities (from Pepper and Wang [24]).

Three-dimensional, mass consistent wind fields were constructed utilizing the data obtained from
the tower network. The recorded averaged measured data for each tower utilized velocities averaged
over 15 minute intervals. There are many times when many of the individual towers were offline due
to equipment failure or weather extremes. Wind speeds and directions associated with the fifteen
towers during this period of time are shown in Table 1. The averaged wind velocity vectors at each
tower location for one period of time are shown in Fig. 3b.
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Table 1. Average wind speed records of NTS towers on Jan, 1, 1993.

Tower U [m/s] V [m/s]

2 −3.07 4.76

5 0.13 −0.62

6 −0.27 −0.98

9 1.53 2.44

11 0.93 −0.059

14 −5.42 2.57

15 6.18 −0.35

17 0.46 3.65

18 1.22 4.06

20 0.43 −0.90

23 3.22 3.32

24 8.91 −3.25

25 4.93 5.59

26 9.20 −0.52

27 6.21 5.54

Mass consistent wind fields generated by the meshless method are compared to the h-adapted
finite element results for the 10 m and 50 m levels in Figs. 4 and 5. As can be seen, the meshless
results appear close in values and pattern compared with the high resolution finite element model.
While both methods produce realistic wind fields, the computational work utilizing the meshless
approach was significantly less, and was run using MATLAB on a PC, versus the h-adaptive finite
element model that was run on a supercomputer employing FORTRAN. While other numerical
schemes are commonly used to produce mass consistent, 3-D wind fields, typically finite difference

a) b)

Fig. 4. a) Meshless results for 10 m level and b) hp-fem results.
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a) b)

Fig. 5. a) Meshless results for 50 m level and b) hp-fem results.

or finite volume methods such schemes can be time consuming and generally demand large storage
requirements [24].

5. CONCLUSION

A meshless method using global radial basis functions has been used to create a mass consistent,
3-D wind fields utilizing a Sasaki variational approach and sparse meteorological tower data. Wind
fields are presented for the Nevada Test Site. Model results obtained with the meshless method are
in good agreement with results obtained from an h-adaptive finite element model. The application of
the meshless method permits the rapid construction of localized high resolution wind field estimates
in regions where conventional numerical methods would require a dense, refined mesh demanding
large storage and computational times. The method appears useful in refining meteorological tower
locations and quickly determining potential wind turbine sites in wind energy assessment studies.
A local RBF meshless approach is under development, and shows promise in reducing the overall
computational effort.
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