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One of the major common assaults in the current Internet of things (IoT) network-based
healthcare infrastructures is distributed denial of service (DDoS). The most challenging
task in the current environment is to manage the creation of vast multimedia data from
the IoT devices, which is difficult to be handled solely through the cloud. As the software
defined networking (SDN) is still in its early stages, sampling-oriented measurement tech-
niques used today in the IoT network produce low accuracy, increased memory usage, low
attack detection, higher processing and network overheads. The aim of this research is to
improve attack detection accuracy by using the DPTCM-KNN approach. The DPTCM-
KNN technique outperforms support vector machine (SVM), yet it still has to be improved.
For healthcare systems, this work develops a unique approach for detecting DDoS assaults
on SDN using DPTCM-KNN.
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1. Introduction

For a long time, DDoS attacks have been a major challenge for Internet
users and researchers. Recently, DDoS attacks have increased drastically. When
resources or bandwidth of a targeted system are flooded by attack traffic, this
is known as a DDoS attack. Although conventional DDoS attacks have well-
described traffic patterns, it is difficult to fight against them in real time. Rather
than directly flooding victims, these types of attacks flood Internet service provi-
der (ISP) backbone lines, resulting in a large number of attack flows across the
victims’ Internet connections. The isolation of victim networks from the Internet
occurs due to the congestion of the connections. Distinct bots are used by the
attackers to create low-rate traffic having actual IP addresses, making identifica-
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tion difficult. These attacks have attracted researchers’ attention, and motivated
several plausible approaches to deal with them [17–19]. However, the authors of
this article are not aware of any traditional deployment that can successfully pro-
tect against these DDoS attacks at this time. Anomaly and signature-oriented
methods categorize DDoS attack detection methods [6]. This enables the dis-
tinction between legitimate and malicious (or aberrant) traffic. The conventional
DDoS protection techniques [1, 3] have a variety of drawbacks. To begin with,
they frequently need expensive hardware appliances, resulting in additional im-
plementation costs and sophisticated routing hacks [14, 15, 26]. Such attacks
are assumed to be stealthy, and the attack traffic might resemble harmless traf-
fic characteristics, and therefore enforcing real-time security against identified
assaults is exceedingly challenging [14, 17].

The use of SDN switches to gather and provide essential flow information
to the SDN controller is a natural design choice. A software-defined networking
administration relies on the network controller. A role of a highly-scalable server
is to manage, configure, monitor, and troubleshoot digital network infrastructure
from a central, programmable point of control. An SDN-oriented strategy can be
theoretically useful in detecting and defending against DDoS attacks by leverag-
ing the network-wide flow characteristics, and such approaches have already been
presented in [12, 15, 17, 27]. Although the implementation specifics for detecting
attacks vary, they all follow an identical design philosophy and architecture. One
of the most important aspects of the design is determining which flow data is
required and should be given to the controller. Even though these deployments
have offered a variety of benefits, they face certain basic difficulties [20]. First,
an SDN switch can simply report flow counter information and is not meant to
do complex activities such as flow information pre-processing [28]. As a result,
one must rely on other components (such as appliances) to finish them with the
help of unmodified commercial off-the-shelf (COTS) SDN switches, which adds
to implementation costs. Second, switch flow pre-processing may lose essential
original information, causing the controller to exclude attack flows by mistake.
This is extremely dangerous when non-link-flooding attacks take place. As a re-
sult, such techniques may not be capable of detecting specific assaults, and the
accuracy of detection is uncertain.

By examining how DDoS assaults operate, DDoS attack techniques in an
SDN environment vary from those in existing networks [22]. DDoS detection and
protection technologies are established in a conventional network context [9]. In
SDN, the network intrusion detection technique based on the machine learning
(ML) may also be used to identify DDoS attacks. ML algorithms can catego-
rize traffic based on flow characteristics and automatically create classification
methods based on training data. Approach processes switch information using
a NOX controller and handle traffic analysis using a self-organizing map (SOM).



Detection of distributed denial of service attacks. . . 169

SOM represents a lightweight DDoS detection artificial neural network (ANN)
that is unsupervised and competitive learning. Furthermore, the k-nearest neigh-
bor method (KNN) describes an efficient and simple ML technique for classifying
flows [23]. Another abnormal traffic detection method called DPTCM-KNN can
increase the accuracy of abnormal flow identification while lowering the false
alarm rate in the DDoS detection process and the SDN controller’s workload
while also improving detection accuracy and efficiency. ML algorithms can clas-
sify traffic based on flow parameters and automatically generate classification
techniques based on training data. Such an approach uses a NOX controller to
handle switch knowledge and an AutoMap to assess SOM. This allows security
systems to examine and learn from trends in order to detect and prevent similar
assaults and adapt to changing behaviour.

The healthcare business is beset by many cyber security vulnerabilities [24].
These challenges vary from ransomware that impugns system stability and pa-
tient confidentiality to DDoS assaults that impair institutions’ capacity to deliver
healthcare services. Fog computing is a new trend in the healthcare industry for
emergency patient care. By enhancing the quality of services in the software
defined network, fog computing improves healthcare outcomes [13].

While similar assaults occur in other relevant sectors, the architecture of the
healthcare system presents distinct obstacles. Cyber-attacks in the medical field
can have far-reaching consequences outside monetary loss and data leaks. For
example, ransomware is an especially dangerous type of malware since the loss of
medical data can endanger lives [26]. This research article is organized as follows.
Section 1 discusses the model along with various DDOS detection techniques,
and Sec. 2 describes the related works. The methodology is described in Sec. 3.
Section 4 presents a DPTCM-KNN-based DDoS attack detection. Section 5 sum-
marizes the outcomes and research findings. Section 6 concludes with some re-
marks, and Sec. 7 describes future research.

2. Related works

In 2020, Pérez-Díaz et al. [1] demonstrated a flexible modular architecture for
detecting and mitigating LR-DDoS attacks in SDN environments. The intrusion
detection system IDS was trained with the help of six ML models (J48, random
tree, REP tree, random forest, multi-layer perceptron (MLP), and support vec-
tor machines (SVM)), and their performance was assessed by using the Canadian
Institute of Cybersecurity (CIC) DoS dataset. Apart from the difficulties of iden-
tifying LR-DoS attacks, the results of the study showed that this technique had
a detection rate of 95%. The open network operating system (ONOS) controller
was also utilized in the deployment. This proved the architecture’s usefulness in
detecting and mitigating LR-DDoS attacks.
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In 2018, Zheng et al. [2] suggested reinforcing anti-DDoS actions in real-
time (RADAR) to detect and control DDoS attacks. It was a realistic solution
that could fight against a variety of flooding-oriented DDoS attacks, such as
link flooding (including Crossfire), SYN flooding, and UDP-based amplification
attacks. It effectively identified attacks by detecting attack characteristics in
unusual flows and locating attackers using an adaptive correlation analysis to
restrict attack traffic. This technique was shown to be capable of detecting and
efficiently defending against a variety of DDoS attacks while having a reasonable
overhead.

In 2020, Tan et al. [3] presented a system for detecting and defending DDoS
attacks in the SDN context. The controller would take appropriate defensive
steps in response to the attacks. A novel framework of data plane detection
and cooperative control plane approaches was developed, which substantially
enhanced detection efficiency and accuracy while also preventing DDoS attacks
on SDN.

In 2020, Ujjan et al. [4] presented adaptive polling-oriented and sFlow sam-
pling with Snort IDS and deep learning-oriented method, which helped to reduce
various types of DDoS attacks within the IoT network. SDN’s flexible decou-
pling property enabled network devices to be programmed for needed parame-
ters without the use of proprietary hardware or software from third parties. In
control-plane, Snort IDS was used together with the stacked autoencoders (SAE)
deep learning method to improve detection accuracy. Moreover, after applying
performance measurements in obtained traffic streams, the trade-off between
resource overhead and attack detection accuracy was quantitatively examined.
When compared to adaptive polling, the suggested system exhibited greater de-
tection accuracy in the sFlow-oriented implementation.

In 2019, Bawany and Shamsi [5] described SEAL (SEcure and AgiLe) –
a unique SDN-oriented adaptive architecture for defending smart city applica-
tions from DDoS attacks. To improve the security, the SEAL architecture used
important SDN properties such as “global visibility, centralized control, and pro-
grammability”. Furthermore, the SEAL framework’s naturally distributed design
assured the smart city’s “fault tolerance, scalability, and reliability”. “D-Defense,
A-Defense, and C-Defense” were the three modules that made up the SEAL
structure. SEAL’s adaptability was accomplished using a modified form of “esti-
mated-weighted moving average (EWMA) filters”. To calculate the dynamic
threshold in real time, three forms of filters, “proactive filter, active filter, and
passive filter”, were suggested and developed. An experimental assessment was
undertaken. The SEAL framework was designed to secure smart city applica-
tions, although it may be used in a variety of other systems.

In 2020, Harikrishna and Amuthan [6] suggested a “convolution recursively
enhanced self-organizing map and software defined networking-based mitigation
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scheme (CRESOM-SDNMS)” for ensuring a better detection rate of preventing
DDoS attacks in clouds. The presented CRESOM-SDNMS provided a predomi-
nant alternative in handling the conflict of vector quantization with the superior
initialization method and increased topology preservation. The simulation tests
and findings of the suggested CRESOM-SDNMS revealed a higher classification
accuracy.

In 2018, Bhushan and Gupta [7] discussed some key aspects of SDN that
make it a good networking solution for cloud computing. A mathematical model
based on queuing theory was also used to depict the flow table space of a switch.
In addition, a unique flow-table sharing technique was developed to safeguard
the SDN-oriented cloud against DDoS attacks caused by flow table overloading.
To protect the switch’s flow-table from overloading, this technique used the idle
flow-tables of various OpenFlow switches present in the network. With minimum
participation from the SDN controller, this method enhanced the cloud system’s
resistance to DDoS assaults. As a result, the communication overhead was rel-
atively low. The claims were backed up by the extensive simulation-oriented
tests.

In 2018, Kalkan et al. [8] described and tested a joint entropy-based secu-
rity strategy (JESS) to improve SDN security in order to build a stronger SDN
architecture that can withstand DDoS attacks. The suggested approach, in spe-
cific, offered a statistical strategy to detect and minimize these risks. As it was
based on a statistical model, it was able to neutralize both known and unknown
threats.

2.1. Problem definition

Despite significant research, DDoS attacks remain a challenging subject [21].
Existing methods are incapable of identifying DDoS attacks. In specific, the novel
sophisticated DDoS attacks based on “low-rate and short-lived” “benign” traffic
are difficult to detect. For healthcare systems, this research develops a unique ap-
proach for detecting DDoS assaults on SDN using DPTCM-KNN. The proposed
DPTCM-KNN classifier efficiency to define its improvement is assessed in the
final phase by comparing it to current techniques presented in numerous exist-
ing studies. Existing techniques have less efficiency with respect to the proposed
technique. As the attack traffic might be masked as harmless traffic, enforcing
real-time protection to restrict these discovered assaults is challenging [25]. SDN
provides a new way to handle these problems. Table 1 shows the features and
challenges of traditional DDoS attack detection on SDN.

ML [1] reduces the entire identified attacks, and the outcomes are migrated
to the real-world production environment. However, newer deep learning and
ML approaches are not involved. Adaptive correlation analysis [2] does not re-
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quire extra appliances to detect the attacks and effectively detects several attacks
within fewer delays. Still, the effort of the controller rises with larger-scale net-
work traffic. K-means and KNN [3] use the respective attack defense measures,
and the controller resources are saved by the detection trigger mechanism. Yet,
the burden of a single controller is not minimized by the streaming comput-
ing technology. SAE [4] offers efficient and flexible data handling for the DDoS
classification and is better with respect to network overhead, low CPU, and
accuracy. But, the real-time traffic streams are not implemented for reducing
the crucial overhead. EWMA [5] models the framework in modular form and is
more customizable for attaining the security needs of several applications. Still,
the legitimate traffic is not protected against the malicious traffic. CRESOM-
SDNMS [6] accurately investigates the data traffic flows and also minimizes
a local minimum in the quantization error. Yet, SDN and neighborhood func-
tion are not combined for better malicious data traffic flow detection. Cloud
computing [7, 29] approximates a mathematical model’s used and unused flow
table space and enhances the resistance of the SDN against attacks. However,
the unsupervised deep learning models are not considered for the mitigation
process. JESS [8] returns a better success rate for an unfamiliar generic attack
and can function effectively with less processing needs and storage. Still, it does
not consider the extensive scale-up for the very large-scale networks. Security
protocols may be conceived as a collection of principals that communicate with
one another. The protocol’s security aims are hoped to be met by forcing agents
to provide a chain of structured and encrypted messages [10]. Machine learning
allows security systems to examine and learn from trends in order to detect and
prevent similar assaults and adapt to changing behavior. Therefore, it is neces-
sary to develop new deep learning approaches for mitigating and detecting DDoS
attacks in SDN in an efficient way.

3. Methods and methodology

3.1. Proposed architecture

The primary data is transmitted at a very fast speed through the OpenFlow
switch in the SDN architecture. The SDN handles substantial network traffic by
locating entries in the flow table, where the packet is sent to many interfaces
by the flow entry. The actions, counts, and header field form each entry. Every
flow table has several flow entries. The entries in the flow table give the rules for
forwarding the data. Figure 1 depicts the suggested DDoS detection architecture
using SDN.

Collecting flow states, characteristic value extraction, and classifier judgment
constitute the attack detection flow. The collection of flow state delivers a flow
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Central controller 

Module for flow collection 

Module for feature extraction 

DDoS detection mechanism 

Module for pre-processing 

Module for DDoS detection 

Detected attack 

DPTCM
-KNN 

OpenFlow switches 

Fig. 1. Introduced architectural model.

table request to the OpenFow switch, and the switch replies to the collection
of flow state. Thanks to the SDN architecture, an SDN controller can handle
a wide range of data plane resources. There are various data planes, and SDN
has the ability to unify and optimize the setup of these disparate resources.
The six-tuple characteristic values matrix is used to extract the characteristic
values from the characteristic values extraction related to the DDoS attack [11].
The characteristic values information is classified using a DPTCM-KNN-based
technique to distinguish between attacking abnormal traffic and normal traffic.

3.2. Dataset description

The dataset used to identify DDoS attacks on SDN is derived from two
standard benchmark datasets: the NSL KDD 2000 and the BSUET 2020.
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3.2.1. NSL KDD 2000. This dataset is comprised of internet traffic records
that have been examined using a simple ID framework. It is referred to as “ghost
traffic” and is encountered by traces and real IDS.

3.2.2. BSUET 2020. The data collection is composed of both normal and
captured attack traffic. It has six classifications and 1081633 records, 1001984 of
which are classified DDoS attacks.

3.3. Extraction of characteristic values from the dataset

The network generates a large number of source IP addresses at random
in order to transmit a specified packet size [16]. While detecting the attack,
the fluctuation of the source port speed is not always characterized. When the
traffic characteristic values are retrieved, the attack procedure generates a large
number of new port addresses at random. The DDoS attack strategies in an
SDN context differ from those used in traditional networks. DDoS control and
prevention technologies are well-established in a traditional network context. In
SDN systems, DDoS attack detection and protection mechanisms are often built
by repurposing techniques from existing networks. Several conventional SDN
investigations are studied and differentiated, and data processing and analysis
are carried out using information extracted from the flow status based on the
previous studies. For identifying the DDoS attack, the six tuple characteristic
values listed below were obtained.

3.3.1. SSIP. It is described as the count of source IP addresses per time
unit, as shown in Eq. (1):

SSIP =
Sm_IPsrcb

TB
, (1)

where the source IP number is Sm_IPsrcb and the sampling interval is TB .
When an attack happens, an attacker generates a large number of attacks in
order to transmit data packets in a random order, and the source IP address
count rapidly increases.

3.3.2. SSP. It is described as the count of source ports per time unit, as
shown in Eq. (2):

SSP =
Sm_portsrcb

TB
, (2)

where the attack source port count is Sm_portsrcb. When a large number of
attack requests are received, a large number of port counts are created at random.
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3.3.3. SDFP. It is described as the standard deviation of the number of
packets in the TA period, as shown in Eq. (3):

SDFP =

√√√√ 1

NB

NB∑
ib=1

(packetsib −Mean_packets)2, (3)

where the period is TB and the average packet count is

Mean_packets =

(
1

NB

) NB∑
ib=1

packetsib.

When an attack happens, the overall flow entry count per period is determined
by NB . For generating the attack effect, the general attack data packets are very
tiny, and the SD associated with the flow packets is smaller than the regular flow.

3.3.4. SDFB. It is described as the count of bits in the TA period, as shown
in Eq. (4):

SDFB =

√√√√ 1

NB

NB∑
ib=1

(bytesib −Mean_bytes)2, (4)

where the average o6f the bit count is

Mean_bytes =

(
1

NB

) NB∑
ib=1

bytesib.

When a certain event happens, the packet load is reduced by delivering fewer
data packets.

3.3.5. SFE. It is described as the count of flow entries per time of unit, as
shown in Eq. (5):

SFE =
NB

TB
. (5)

3.3.6. RPF: It is described as the ratio of interactive to total flow entries,
as shown in Eq. (6):

RPF =
2 ∗ Pair_Sm

NB
, (6)

where the interactive flow entry count is Pair_Sm. The source host passes a re-
quest to the destination site that includes the requirements listed below.
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The source IP of pkt_ib is similar to the destination IP of pkt_jb. The desti-
nation port count of pkt_ib is identical to the source port count of pkt_jb. The
destination IP of pkt_ib is identical to the source IP of pkt_jb and the source
port count of pkt_ib is identical to the destination port count of pkt_jb”. There
exist two interactive flow entries, and they fulfil Eq. (7):

SceIPib
= DesIPjb

,

Sceportib = Desportjb ,

SceIPjb
= DesIPib

,

Desportjb = DesIPib
.

(7)

When an attack occurs, the flow entries increase dramatically. The destina-
tion host is unable to reply to the interactive flow in a timely manner. Normally,
the attacker employs large fake source addresses during the attack procedure.

4. DPTCM-KNN-based DDoS attack detection

This work develops architecture for identifying anomalous flows in an SDN
environment and presents the DPTCM-KNN anomaly flow detection algorithm
to address the shortcomings of SDN-based flow detection techniques. It uses the
notion of transductive confidence machines (TCM) to obtain the level of confi-
dence of a detecting point, and it uses the probability to decide if the detecting
point is subjected to the group, according to stochastic algorithm theory. The
higher the p value, the more probable the detection point corresponds to the cate-
gory. The technique increases the accuracy of anomalous flow detection by using
strangeness and independence as its dual inspection standards, which are the
TCM-KNN algorithm’s detection loopholes.

The primary drawback of KNN-oriented algorithms is that they are lazy
learners, meaning that they do not learn anything from the training data and
hardly classify the training data. The KNN method will locate the k-nearest
neighbors to the new instance from the training data and set the anticipated
class label as the most frequent label among the k-nearest surrounding points to
forecast the label of a new instance. The primary downside of this technique is
that for each prediction, the algorithm must compute the distance and sort all
of the training data, which may be time-consuming if there are many training
instances. Another downside of this technique is that the algorithm does not learn
anything from the training data, which can lead to problems with generalization
and robustness to noisy data. Furthermore, altering k affects the projected class
label. It makes sense to use eager learning to solve the fundamental challenge of
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anomaly identification in SDN networks because patterns of abnormal behavior
change rapidly.

As a result, we consider integrating the DPTCM (strangeness and indepen-
dence as an inspection standard) with eager learning algorithms such ANN,
SVM, and random forest. The main advantage of employing an eager learning
approach, such as ANN, is that the objective function is estimated globally dur-
ing the process of training, which saves a lot of space compared to a lazy learning
system. Eager learning algorithms are also much better at dealing with noise in
the training data. Eager learning is an instance of offline learning, where post-
training queries to the system do not affect the system, and thus the same query
to the system always produces the same result. Figure 2 depicts the process of
detecting DDoS attacks using a DPTCM-KNN classifier.

Network initialization 

Collection of data

Begin 

Six tuple characteristic value 
extraction 

DPTCM-KNN 

If attack is 
identified

Yes No 

Collection of flow table 

Extract characteristic value 

DDoS attacks 

End 

Fig. 2. A DDoS attack detection in SDN by the DPTCM-KNN classifier.

5. Results and discussions

The suggested model was implemented using the DPTCM-KNN in MATLAB
2020a, and the results were obtained. Consequently, the DPTCM-performance
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KNN’s analysis was clearly better in detecting DDoS assaults on SDN. This
study also accomplishes outstanding DDoS attack detection because of the ef-
ficient features of DPTCM-KNN. MathWorks’ MATLAB represents a numeric
computing environment and proprietary multi-paradigm programming language.
It allows for the design of user interfaces, algorithm development, data and func-
tion graphing, matrix operations, and interfaces with programs written in a va-
riety of languages. The performance was conducted in terms of TPR for the
BUET dataset. Table 2 reveals the simulation parameters that were used to run
the suggested attack detection model.

Table 2. Simulation parameters.

Parameters Values
Number of primary users 5
Number of secondary users 10
Number of malicious users 4
Number of iterations 100
Number of samples 4000

5.1. Performance metrics

The different measures used here are as follows.

5.1.1. Accuracy. It is defined as the discrepancy in the recognized outcome
to the ground value:

Acry =
TPT + TNT

TPT + TNT + FPT + FNT
, (8)

where the terms TPT, TNT, FPT, and FNT represent the true positive, true
negative, false positive, and false negative, respectively.

5.1.2. TPR. It is described as the probability that an actual positive will
test positive:

TPR =
TPT

TPT + FNT
, (9)

where the terms TPT and FNT represent the true positive and false negative,
respectively.

5.1.3. FPR. It refers to the total positive results within the negative output:

FPR =
FPT

FPT + TNT
. (10)
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5.2. Analysis of TPR

The TPR analysis of the BEUT and NSL KDD dataset in the case of 4000 sam-
ples for the proposed and existing methods is shown in Fig. 3a. For 1000 samples,
in the case of the BUET dataset, the TPR of DPTCM-KNN is 15.85%, 11.76%,
6.74% and 4.40% higher than ABTSVM, KNN-ACO, TCM-KNN, and DPTCM-
SVM, respectively. When considering 2000 samples, the TPR of DPTCM-KNN is
improved by 11.76%, 9.20%, 6.74%, and 4.40% for ABTSVM, KNN-ACO, TCM-
KNN, and DPTCM-SVM, respectively. In the case of 3000 samples, the TPR of
DPTCM-KNN is 11.36%, 7.69%, 5.38%, and 4.26% better than ABTSVM, KNN-
ACO, TCM-KNN, and DPTCM-SVM, respectively. While considering the NSL
KDD dataset as shown in Fig. 3b, for 4000 samples, the TPR of the DPTCM-
KNN is 1.55%, 3.14%, 5.91%, and 8.84% more advanced than DPTCM-SVM,
TCM-KNN, KNN-ACO, and ABTSVM, respectively. Thus, it is clear that the
TPR analysis provides better outcomes using the DPTCM-KNN method than
the traditional approaches when it is estimated with TPR for both datasets.

a) b)

Sample size Sample size

TP
R 

[%
]

TP
R 

[%
]

Fig. 3. The TPR analysis of the proposed and existing DDoS attack detection on SDN for
a) BEUT dataset and b) NSL KDD dataset.

5.3. Analysis of FPR

The FPR analysis of the proposed and existing methods for the DDoS attacks
on SDN considering 4000 samples on two datasets is given in Fig. 4. In Fig. 4a,
for the BEUT dataset, the FPR of the DPTCM-KNN for 3000 samples is 4.26%,
5.95%, 7.69%, and 12% more advanced than DPTCM-SVM, TCM-KNN, KNN-
ACO, and ABTSVM, respectively. While considering Fig. 4b, for the NSL KDD
dataset, the FPR of DPTCM-KNN for the 4000th sample is 46.15%, 70.83%,
68.18%, and 66.67% higher than DPTCM-SVM, TCM-KNN, KNN-ACO, and
ABTSVM, respectively. Thus, the FPR analysis produces good outcomes with
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Fig. 4. The FPR analysis of the proposed and existing DDoS attack detection on SDN for
a) BEUT dataset and b) NSL KDD dataset.

the proposed method compared to other techniques for the DDoS attacks on
SDN for both datasets.

5.4. Analysis of accuracy

The accuracy analysis for the DDoS attacks on SDN for the proposed and
conventional techniques for both datasets is given in Fig. 5. In Fig. 5a, for the
BEUT dataset, the accuracy of the DPTCM-KNN at the 3000th sample is 5.26%,
7.53%, 8.11%, and 12.36% better than DPTCM-SVM, TCM-KNN, KNN-ACO,
and ABTSVM respectively. When considering Fig. 5b, for the NSL KDD dataset,
the accuracy of DPTCM-KNN at 4000th sample is 1.52%, 4.17%, 5.82%, and
8.11% better than DPTCM-SVM, TCM-KNN, KNN-ACO, and ABTSVM, re-

a) b)

Sample size Sample size
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[%
]
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C 
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Fig. 5. Accuracy analysis of the proposed and existing DDoS attack detection on SDN for
a) BEUT dataset, and b) NSL KDD dataset.
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spectively. Hence, the outcomes of the accuracy analysis are better with the
DPTCM-KNN than other methods for the DDoS attack detection on SDN in
both datasets. This model is more accurate in terms of working efficiency, al-
though using the DPTCM-KNN enhanced attack detection accuracy, the DPTCM-
KNN approach has a better results than SVM, which has to be improved.

5.5. Classifier analysis

The classifier analysis in terms of accuracy for different classifier algorithms is
depicted in Fig. 6. Here, the DPTCM-KN and SVM achieved a high accuracy of
0.98% followed by ABTSVM, KNN-ACO, and TCM-KNN with 0.95%, 0.93%,
and 0.92%, respectively. Thus, it is clear that the classifier analysis produces
better outcomes than the other methods in terms of accuracy for the DDoS
attack detection on SDN.

Fig. 6. Classifier analysis of the proposed and existing DDoS attack detection on SDN.
∗ SVM was run on ∼100k instances, others only on 4000.

6. Conclusions

This research produced a novel method for detecting DDoS attacks on SDN
using DPTCM-KNN for healthcare systems. In the last phase, the efficiency
of the proposed DPTCM-KNN classifier was determined by comparing it to
existing approaches in terms of several analyses for defining its improvement.
From the analysis, for 1000 samples, in the case of the BUET dataset, the TPR
of DPTCM-KNN was 15.85%, 11.76%, 6.74% and 4.40% higher than ABTSVM,
KNN-ACO, TCM-KNN, and DPTCM-SVM, respectively. The complexity of this
method is that it requires the algorithm to compute the distance and sort all
of the training data for each prediction, which might take a long time if there
are a lot of them. As a result, it was apparent that the DPTCM-performance
KNN’s analysis was superior in terms of identifying DDoS attacks on SDN.
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Due to the efficient features of DPTCM-KNN, this study also achieved excellent
DDoS attack detection. It had a high level of attack detection accuracy and
did not require training datasets containing malicious data. In the future, new
types of attacks can be identified to further improve the IoT-based health sector.
Although this study produced an increased attack detection accuracy by using
the DPTCM-KNN method, and the DPTCM-KNN technique has a superior
performance compared to SVM, it still needs to be improved.

7. Future research

Future research on preventing DDoS attacks on SDN might go in one of those
directions. Anomaly detection methods for SDN currently available have limited
accuracy and are less real-time effective. In addition, they do not facilitate grad-
ual learning. As a result, improving and optimizing the conventional method
and establishing real-time identification and high precision models for anoma-
lous flows are critical for SDN-oriented flow detection to adapt to large-scale
networks. While individual client flows may be insignificant, traffic abnormal-
ities using aggregated traffic may be catched. As the identified abnormalities
do not alert the controller, it is unable to detect attack activity. The most fre-
quent benefits of SDN include healthcare programmability, agility, the ability
to build policy-driven network monitoring, and the ability to apply methods
to control. Its most significant advantage is that it enables the development of
a framework to accommodate more data-intensive applications such as big data
and virtualization. Cluster analysis is an unsupervised learning technique that
does not need any training, yet there is no discernible difference in the proba-
bility density distribution within aberrant and normal data, particularly hidden
worms and sluggish DDoS. When abnormal points serve as a dividing line within
abnormal and normal points, a decision must be made based on the relative de-
viation. The algorithm’s precision must be enhanced further since it contains
flaws in anomaly detection of the detection sites. The controllers are put under
a lot of stress by the SDN-oriented flow detection approach. The future scope of
this research will focus on new types of assaults that may be discovered in the
future, allowing the IoT-based health sector to improve even more. Although
using the DPTCM-KNN approach enhanced attack detection results, and the
DPTCM-KNN approach outperforms SVM, it still has to be improved. With
more network flows, controllers must monitor the whole network environment,
and identify flow abnormalities in the controllers’ workload. They are also lim-
ited in scalability, accuracy, and efficiency when it comes to detecting huge and
fast data flows As a result, more precise detection architectures for SDN anoma-
lies are required, and therefore, in recent years, SDN-oriented anomalous flow
detection has become a popular topic in recent years.
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