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In this paper, a meshless pseudospectral method is applied to solve problems possessing
weak discontinuities on interfaces. To discretize a differential problem, a global inter-
polation by radial basis functions is used with the collocation procedure. This leads to
obtaining the differentiation matrix for the global approximation of the differential opera-
tor from the analyzed equation. Using this matrix, the discretization of the problem is
straightforward. To deal with the differential equations with discontinuous coefficients on
the interface, the meshless pseudospectral formulation is used with the so-called subdo-
main approach, where proper continuity conditions are used to obtain accurate results.
In the present paper, the differentiation matrix for this method is derived and the choice
of a proper value of the shape parameter for radial functions in the context of the subdo-
main approach is studied. The numerical tests show the effectiveness of the method when
using regular or unstructured node distribution. They confirm that the approach preserves
well-known advantages of the radial basis function collocation method, i.e., rapid conver-
gence, simplicity of the implementation and extends its usage for problems with weak
discontinuity.
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1. Introduction

In recent years, many formulations of meshless methods for solving differen-
tial equations have been developed [1, 2]. This is the result of their useful features,
the most important of which is the possibility of the domain discretization by us-
ing scattered nodes. This simplifies the discretization of complex geometries and
accelerates remeshing procedures. Among these methods, there is a wide variety
of collocation techniques based on global radial basis function (RBF) interpola-
tion. It was proved by several researchers [3, 4] that this type of base functions
is particularly useful in scattered data interpolation and can be conveniently
applied in higher dimensions.
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Moreover, the global RBF collocation methods can exhibit exponential con-
vergence [5], which is not achievable for low-order approximation techniques
such as the finite difference method and finite element one. The global RBF col-
location methods can be divided into two main categories: the so-called Kansa
approach [6, 7] and the RBF pseudospectral method (RBF-PS) [8]. The first one
solves the differential problem by giving the interpolant that approximates the
solution, and therefore it can be considered an analytical-approximate approach.
The second one gives numerical values of the solution at the nodes and is consi-
dered a purely numerical approach. There are many examples of applying these
methods for solving engineering as well as scientific problems in several areas.
A comprehensive overview can be found in [9].

Since the mentioned methods take advantage of infinitely smooth global base
functions, they are dedicated to problems possessing smooth solutions. Many
problems in science and engineering do not possess such solutions, e.g., diffusion
in an element composed of different materials linked by an interface. Such a prob-
lem is modeled by a differential equation with discontinuous coefficients on the
interface and is characterized by a non-smooth, continuous solution with a dis-
continuous derivative, which is called weak discontinuity.

Several numerical methods have been developed for such problems. Among
them, some methods employ RBF interpolation. In [10], a localized version of
the RBF method is presented, where the polynomial term of enriched RBF inter-
polant is adjusted to properly reflect the interface conditions. In other meshless
methods [11, 12], a generalized moving least-squares approximation is combined
with the visibility criterion technique to solve more general (nonhomogeneous)
interface problems. All these methods can be classified as localized discretization
techniques in contrast to the ones mentioned above.

To allow the Kansa method to be applicable to problems with weak discon-
tinuity, the method has been combined with the so-called subdomain approach
and successfully applied to a heat conduction problem as well as elasticity one
[13, 14].

In some cases, it is more convenient to have purely numerical results at
imposed nodes than to evaluate global interpolation function to obtain the value.
This situation arises, for example, in non-linear problems, where some iterations
of the discrete system are needed to obtain the approximate solution. In this case,
many evaluations of global interpolant slow down the computational procedure,
and therefore the pseudospectral method is a better choice. In the present paper,
the formulation of the RBF-PS method for problems with a weak discontinuity
is developed. To this end, the RBF-PS is combined with a subdomain approach.
In the approach, the domain is divided into subdomains, in which the problem
is homogeneous and proper continuity conditions are imposed at the interface
nodes to accurately reflect a non-smooth solution. The procedure for determining
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the differentiation matrix, which approximates the differential operator from the
equation, is shown. With this matrix, the discretization of the problem is carried
out. When one uses the RBF, careful attention has to be paid to the system’s
conditioning. The latter can be controlled by a shape parameter contained in
the RBF. Two main algorithms for choosing a good parameter value are tested
in the present paper in the context of the subdomain approach. The concluding
remarks on the accuracy, stability and convergence are drawn based on results
from the solution of ordinary and partial differential equations.

2. Radial basis function-based pseudospectral approach

Let us consider a boundary-value problem in a general form:

Lu = f in Ω, Bu = g on ∂Ω, (1)

where L and B denote linear differential operators imposed on the sought func-
tion u in the domain Ω and on the boundary ∂Ω, respectively, and f , g are
known functions. In the RBF-PS method, the domain of the problem, including
the boundary, can be represented by scattered nodes xi, i = 1, ..., N . Among
them, one can distinguish between interior nodes xIi , i = 1, ..., NI and the nodes
imposed on the boundary xBi , i = 1, ..., NB. Using these nodes, the sought func-
tion is interpolated with the RBF as follows:

uh(x) =
N∑
j=1

αjϕ (‖x− xj‖), (2)

where ϕj(x) = ϕ (‖x− xj‖) is the RBF centered at the j-th node, and αj is the
interpolation coefficient.

In order to determine the differentiation matrix for the approximation of
operators L and B two steps are needed. In the first one, the interpolation
coefficients are expressed in terms of unknown function values u at the nodes.
To this end, the interpolation conditions are introduced:

uh(xi) =

N∑
j=1

αjϕ (‖xi − xj‖) = ui, i = 1, ..., N, (3)

and solved with respect to coefficients αj . It can be conveniently written in the
matrix notation as:

α = Φ−1u, (4)

where α =
[
α1 · · · αN

]T , u =
[
u1 · · · uN

]T and Φij = ϕ(‖xi − xj‖),
i, j = 1, ..., N .
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In the second step, the differential operators are imposed on interpolant (2) and
evaluated at respective nodes, which yields:

uLB = ΦLBα, (5)

where the left-hand side of the above equation denotes the discrete values of the
derivatives at respective nodes in the domain as well as on the boundary, and
the ΦLB matrix (the so-called Kansa matrix) has the structure:

ΦLB =

[
ΦL

ΦB

]
,

(ΦL)i j = [Lϕ (‖x− xj‖)]x=xIi
, i = 1, ..., NI , j = 1, ..., N,

(ΦB)i j = [Bϕ (‖x− xj‖)]x=xBi
, i = 1, ..., NB, j = 1, ..., N.

Finally, Eq. (4) is introduced into Eq. (5), yielding:

uLB = ΦLBΦ−1u. (6)

Matrix ΦLBΦ−1 is called the differentiation matrix in the nomenclature of the
pseudospectral method. It contains the weights for the approximation of the dif-
ferential operators, and with the aid of the vector of function values, it discretizes
the left-hand sides of Eq. (1). The discrete form of Eq. (1) is as follows:

ΦLBΦ−1u = q, (7)

where q =
[
f g

]T is the vector of function values at the interior and boundary
nodes.

The numerical solution at the nodes is obtained from Eq. (7) as:

u = Φ Φ−1
LBq. (8)

It is clearly seen that the solution is conditioned by the invertibility of the ΦLB

matrix. This issue has involved researchers’ attention in several papers [9, 15].
From this information follows that although the invertibility is not guaranteed,
the cases where the matrix is singular are very rare, and the method has been
successfully applied to many problems in science and engineering. To ensure the
solvability of the problem, the so-called symmetric collocation approach should
be used [16].
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3. Application to the interface problems

As with all pseudospectral approaches, the RBF-PS is well suited for prob-
lems possessing smooth solutions. To use the method’s advantages in problems
possessing weak discontinuities on interfaces, the method is implemented with
the subdomain approach.

Let us assume that the domain of a heterogeneous problem can be divided
into several subdomains, in the way that the problem is homogeneous in each of
them. Without loss of generality we assume two such subdomains, as presented
in Fig. 1.

n–

W+ W–

∂Ω+

 ∂Ω–

Γ

n+

Fig. 1. The domain of the problem with node discretization.

Now the boundary-value problem (1) can be written as a subdomain problem
in the following form:

L+u+ = f+ in Ω+, B+u+ = g+ on ∂Ω+,

L−u− = f− in Ω−, B−u− = g− on ∂Ω−.
(9)

To make the problem well-posed, some continuity conditions on interface Γ
have to be defined.

To accurately address the problem, two continuity conditions that ensure the
continuity of the solution as well as the continuity of the flux or traction, depen-
dently on the analyzed physical problem, have to be imposed on the interface
[13, 14]. They can be put in general form as:

u+ − u− = 0,

T+u+ · n+ + T−u− · n− = 0, on Γ,
(10)

where T denotes the respective differential operator, and n is the normal outward
vector to the interface.

Next, the differentiation matrices have to be determined for each subdomain
as well as for the interface, following the procedure from Sec. 2. The interpolation
function takes the form:
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u(x) =


u+(x) =

N+∑
j=1

α+
j ϕ

+
j

(∥∥∥x− x+
j

∥∥∥) x+
j ∈ Ω

+
,

u−(x) =
N−∑
j=1

α−j ϕ
−
j

(∥∥∥x− x−j

∥∥∥) x−j ∈ Ω
−
,

(11)

where Ω
+

= Ω+ ∪∂Ω+ ∪Γ and Ω
−

= Ω− ∪∂Ω− ∪Γ represent the closed subdo-
mains. Taking into account that the collocation procedure is used at the stage
of determination of the differentiation matrices, two degrees of freedom should
exist at the same position on the interface due to Eq. (10). It is fulfilled by the
fact that this position is occupied by one node from Ω

+ as well as from Ω
−, as

shown in Fig. 1.
The global discrete system can be written in the form of Eq. (7) but the

matrices and vectors included in this equation have the following structure in
the subdomain approach:

ΦLB =


Φ+
LB 0

0 Φ−LB

Φ+
Γ −Φ−Γ

, Φ =

[
Φ+ 0

0 Φ−

]
,

u =

[
u+

u−

]
, q =



f+

g+

f−

g−

0


,

(12)

where Φ+
LB and Φ−LB are the Kansa type matrices combined with differential

operators L+, B+ and L−, B−, respectively. They are generated by the colloca-
tion at the internal (xI+i , xI−i ) as well as the boundary nodes (xB+

i , xB
−

i ) from
respective subdomains Ω+ ∪ ∂Ω+ and Ω− ∪ ∂Ω−, i.e.,

Φ+
LB =

[
Φ+
L

Φ+
B

]
, Φ−LB =

[
Φ−L

Φ−B

]
,

where(
Φ+
L

)
i j

=
[
L+ϕ+

(∥∥∥x− x+
j

∥∥∥)]
x=xI

+
i

, i = 1, ..., N+
I , j = 1, ..., N+,

(
Φ+
B

)
i j

=
[
B+ϕ+

(∥∥∥x− x+
j

∥∥∥)]
x=xB

+
i

, i = 1, ..., N+
B , j = 1, ..., N+,
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Φ−L
)
i j

=
[
L−ϕ−

(∥∥∥x− x−j

∥∥∥)]
x=xI

−
i

, i = 1, ..., N−I , j = 1, ..., N−,

(
Φ−B
)
i j

=
[
B−ϕ−

(∥∥∥x− x−j

∥∥∥)]
x=xB

−
i

, i = 1, ..., N−B , j = 1, ..., N−.

Matrices Φ+
Γ , Φ−Γ are the Kansa type matrices reflecting the interface conditions

included in Eq. (10). They are generated by the collocation at the interface
nodes (xΓ

i ), i.e.,

Φ+
Γ =

[
Φ+

Φ+
T

]
, Φ−Γ =

[
Φ−

Φ−T

]
,

where(
Φ+
)
i j

= ϕ+
(∥∥∥xΓ

i − x+
j

∥∥∥), i = 1, ..., NΓ, j = 1, ..., N+,

(
Φ+
T

)
i j

=
[
T+
n ϕ

+
(∥∥∥x− x+

j

∥∥∥)]
x=xΓ

i

, i = 1, ..., NΓ, j = 1, ..., N+,

(
Φ−
)
i j

= ϕ−
(∥∥∥xΓ

i − x−j

∥∥∥), i = 1, ..., NΓ, j = 1, ..., N−,

(
Φ−T
)
i j

=
[
T−n ϕ

−
(∥∥∥x− x−j

∥∥∥)]
x=xΓ

i

, i = 1, ..., NΓ, j = 1, ..., N−.

In the above equation, the projection along the normal outward vector, according
to Eq. (10), is included in differential operators T+

n and T−n .
Matrices Φ+ and Φ− are the interpolation matrices that are generated using

the nodes (x+
i , x−i ) from the appropriate closed subdomains Ω

+ and Ω
−, i.e.,(

Φ+
)
i j

= ϕ+
(∥∥∥x+

i − x+
j

∥∥∥), i, j = 1, ..., N+,

(
Φ−
)
i j

= ϕ−
(∥∥∥x−i − x−j

∥∥∥), i, j = 1, ..., N−.

Vector u includes unknown function values from respective closed subdomains
and q is the right-hand-side vector. The above objects are complemented by zero
matrices of appropriate size. It is the main structural difference of the discretized
equation compared to the full matrices in conventional RBF-PS [8].

The solution of the interface problem can be represented by Eq. (8), where the
objects from Eq. (12) are introduced. It is obvious that the existence and unique-
ness of the solution are associated with the non-singularity of the ΦLB matrix.
Although, as mentioned in Sec. 2, the non-singularity of the Kansa type matrix is
not guaranteed, the previous and present works do not indicate the cases where
singularity appears.
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4. Choice of the shape parameter in radial basis function

Most RBFs include a constant parameter that controls their flatness (shape
parameter). The values of this parameter that cause the functions to be flattened
theoretically increase the accuracy. Therefore, these functions have an advantage
over other RBFs without this parameter. On the other hand, the system matrix
generated with the use of flattened RBF has rows or columns almost linearly
dependent, which means that the matrix is almost singular and the system is
difficult to be solved numerically. This phenomenon is known as the uncertainty
principle. Several papers have been devoted to this issue [17] and some algorithms
for estimating a proper value of the shape parameter have been developed.

Among these algorithms, two most often used are tested in the present paper
in the context of the subdomain approach. One of them takes into account the
problems of numerical stability to estimate the value of the shape parameter,
while the other focuses on accuracy of the problem under consideration.

4.1. Tracking of the condition number

To obtain the appropriate value of the parameter, a heuristics approach that
relates numerical accuracy and stability with the number of significant digits
assumed for computation is used. This approach, along with an observation that
the most accurate results in computation with the RBF are achieved when the
value of the condition number of the system matrix is sufficiently high, leads to
the following expression:

log10 κ(ΦLB) ∈ [rl, ru]⇒ ε∗, (13)

which is the base for estimating the proper value of the shape parameter ε∗. In
Eq. (13), κ denotes the condition number, and rl and ru are the lower and upper
bounds of the range based on the number of significant digits (computational
precision). Usually, ru is 16 when one operates double precision and rl is a little
less. The algorithm determines the value of the shape parameter that makes
the condition number of the system matrix sufficiently large while preserving
stable computation. The details of the approach are explained in [18].

4.2. Leave-one-out algorithm

The leave-one-out approach comes from interpolation problems, but it was
also used in RBF collocation techniques [3]. In this algorithm, an optimal value
of the parameter is obtained by minimizing the error of the interpolant based on
the data from which one of the nodes was “left out”. The error at the k-th node,
which was left out, can be obtained as:

Ek = uk − u[k](xk), (14)
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where uk is the function value at this node and

u[k](xk) =
N∑
j=1
j 6=k

α
[k]
j ϕ (‖x− xj‖)

is the RBF interpolant to the data u = [u1, ..., uk−1, uk+1, ..., uN ].
By removing, in turn, each of the nodes, the vector of errors E=

[
E1 · · · EN

]T
can be composed. The norm of this vector indicates the quality of the fit, which
depends on the shape parameter. By repeating calculations for different values of
the parameter, one can choose the optimal one, which minimizes the norm ‖E‖.

Since the implementation of this strategy is rather expensive, Rippa [19]
showed that Ek could be computed in a simpler way as:

Ek =
αk

(Φ−1)kk
, (15)

where αk is the k-th coefficient in the interpolant u based on the full set of
nodes and Φ−1

kk is the k-th element in the diagonal of the inverse of the interpola-
tion matrix.

The adaptation of this strategy to the RBF-PS is shown, e.g., in [20]. Ac-
cording to this, the error presented by Eq. (15) is computed as:

Ek =
αk(

Φ−1
LB

)
kk

=

(
Φ−1
LB · q

)
k(

Φ−1
LB

)
kk

. (16)

For the RBF-PS subdomain, the objects included in the above equation come
from Eq. (12).

5. Numerical results

Several examples are solved to examine the usefulness of the presented method
in solving the problems possessing weak discontinuities on interfaces. The results
obtained lead to similar conclusions. Two of these examples are presented below.
In the computation, the multiquadric RBF ϕj(x) =

√
ε2 ‖x− xj‖22 + 1 is used,

where ε is the shape parameter.

5.1. Diffusion between concentric cylinders

The first example describes diffusion in a cylindrical annulus with prescribed
surface potential. The governing equation in cylindrical coordinates (r, θ, z) is
as follows [21]:

D

r

∂

∂r

(
r
∂φ

∂r

)
+
D

r2

∂2φ

∂ϑ2
+D

∂2φ

∂z2
= 0, φ(r1) = 1, φ(r2) = 2, (17)
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where r1 = 0.025 and r2 = 1. Assuming the axisymmetry and uniformity along
the z coordinate, the equation can be simplified to ordinary differential one as
follows:

D
∂2φ

∂r2
+
D

r

∂φ

∂r
= 0 (18)

and viewed as a steady, one-dimensional convection-diffusion problem.
It is assumed that the problem possesses two interfaces, where the diffusion

parameter has some jumps. Its value is as follows:

D =


D(1) = 1 for r ∈ [0.025, 0.25],

D(2) = 0.1 for r ∈ (0.25, 0.5],

D(3) = 0.01 for r ∈ (0.5, 1].

(19)

The domain of the problem is shown in Fig. 2.

r
2

D
1

D
2

D
3

r
1

Fig. 2. The domain of the problem with two interfaces.

The continuity conditions at the interfaces are put in the following way:

φ(1) − φ(2) = 0, D(1)φ(1)′ −D(2)φ(2)′ = 0 at r = 0.25,

φ(2) − φ(3) = 0, D(2)φ(2)′ −D(3)φ(3)′ = 0 at r = 0.5.
(20)

They ensure the continuity of the solution at the interface nodes as well as the
continuity of the flux across the interfaces.

Since D coefficient has different values in adjacent subdomains, one can ex-
pect a non-smooth solution with a discontinuous derivative. The numerical so-
lution and the exact one are presented in Fig. 3.

Since the method provides the solution as numerical values at the nodes
a derivative of the solution can be obtained using Eq. (6) by inserting the ma-
trix that discretizes the respective derivative instead of ΦLB. The numerically
computed first-order derivative of potential function ϕ and the exact one are
shown in Fig. 4.
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Fig. 3. Solution of the 1D convection-diffusion problem: numerical solution with N = 23 nodes
uniformly distributed in each subdomain (N (1) = 6, N (2) = 6, N (3) = 11) – discrete line, exact

solution – solid line.

Fig. 4. Derivative of the solution: numerically obtained with N = 23 nodes uniformly dis-
tributed in each subdomain (N (1) = 6, N (2) = 6, N (3) = 11) – discrete line, exact one – solid

line.

From Figs. 3 and 4, one can conclude that a few nodes in each subdomain
ensure acceptable accuracy. Due to the proper continuity conditions at the in-
terfaces, accuracy is not destroyed near interface nodes.

The accuracy and stability of the solution process are strongly dependent
on the number of nodes as well as on the value of the shape parameter. The
influence of these factors on the accuracy is shown in Fig. 5a, where the root
mean square error (RMS) of the solution vs. shape parameter is presented for
certain node distributions. Figure 5b shows the influence of the shape parameter
on the condition number of the system matrix for these node distributions.

The figures show that a larger number of nodes leads to higher accuracy.
The highest accuracy for each of the assumed node distributions is achieved
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a) b)
ε

ε

κ

Fig. 5. Accuracy and stability of the solution of the 1D convection-diffusion problem: a) RMS
vs. shape parameter; b) condition number of the system matrix vs. shape parameter; solid
line: N = 23 nodes (N (1) = 6, N (2) = 6, N (3) = 11), dash line: N = 42 nodes (N (1) = 10,

N (2) = 11, N (3) = 21).

in different regions of ε. It is strongly connected with the conditioning of the
system.

Similarly, as in conventional use of the RBS-PS [3], also in the subdomain
approach small values of the shape parameter that theoretically should provide
the most accurate results lead to high inaccuracy due to a highly ill-conditioned
system. In Fig. 5a there is a range of ε for a given number of nodes, where the
results are the most accurate. In this range, the values of the condition number
are close to the number of computational digits assumed for the computation
(herein 16 – double precision). It indicates that the algorithm presented in Sub-
sec. 4.1 can be successfully applied to estimate the proper value of the shape
parameter also in the subdomain approach. The results of the application of
the algorithms from Sec. 4 for the estimation of the proper value of ε are pre-
sented in Table 1. The table shows that these algorithms give values that lead
to good accuracy, although the algorithm from Subsec. 4.1 exhibits better per-
formance.

Table 1. Values of the shape parameter for the 1D convection-diffusion problem obtained
by the algorithms from Sec. 4, corresponding RMS error and rate of convergence.

N εopt
RMS

with εopt

ε1

(Subsec. 4.1)
RMS
with ε1

ε2

(Subsec. 4.2)
RMS
with ε2

23 0.6 0.9752e-3 1.1 0.9972e-3 0.6 0.9752e-3
rate – – –

42 1.5 0.6374e-4 3.3 0.2444e-3 1.1 0.5835e-3
rate 4.38 2.26 0.82

55 5.4 0.1833e-4 4.7 0.6142e-4 2.8 0.1014e-3
rate 4.52 5.01 6.35
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5.2. 2D elliptic equation

As the second example, a two-dimensional elliptic equation of the form:

∇ · (β(x)∇u(x)) = f(x), x = (x, y) ∈ Ω,

u(x) = g(x), x ∈ ∂Ω
(21)

is solved, where the diffusion coefficient has the following discontinuity:

β(x) =

{
β+ = 10, x ∈ Ω+,

β− = 1, x ∈ Ω−.
(22)

In this case, the interface conditions that ensure the continuity of the solution
on the interface and the continuity of the flux across the interface assume the
form:

u+ − u− = 0,

β+∂u
+

∂n
− β−∂u

−

∂n
= 0, on Γ,

(23)

where the derivative is computed in the direction of the normal outward vector
to the interface.

The configuration of the subdomains with sample node distribution is pre-
sented in Fig. 6.

Fig. 6. The domain configuration with an irregular (pseudorandom) node distribution.

The solution of the problem by the subdomain RBF-PS method is presented
in Fig. 7, along with the exact solution. The figure confirms that by using the
method with proper interface conditions one can expect good accuracy.
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Fig. 7. Numerical solution of the 2D elliptic equation with N = 285 irregularly distributed
nodes (N+ = 216, N− = 69) along with the exact solution.

The influence of the shape parameter and the number of nodes on the accu-
racy as well as on the stability is presented in Fig. 8.

a) b)

ε

ε

κ

Fig. 8. Accuracy and stability of the solution of the 2D elliptic equation: a) RMS vs. shape
parameter; b) condition number of the system matrix vs. shape parameter; solid line: N = 285
pseudo randomly distributed nodes (N+ = 216, N− = 69), dash line: N = 349 pseudo-

randomly distributed nodes (N+ = 267, N− = 82).

The main conclusions from the analysis of the results presented in Fig. 8 are
similar to those drawn from the 1D example. Table 2 shows values of the shape
parameter determined for the 2D elliptic problem by the algorithms mentioned
in the present paper.
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Table 2. Values of the shape parameter for the 2D elliptic problem obtained by the algorithms
from Sec. 4, corresponding RMS error and rate of convergence.

N εopt
RMS

with εopt

ε1

(Subsec. 4.1)
RMS
with ε1

ε2

(Subsec. 4.2)
RMS
with ε2

285 irregular 1.5 0.1550e-4 1.1 0.2490e-4 1.7 0.2569e-4
rate – – –

349 irregular 1.7 0.6540e-5 1.3 0.1575e-4 2.1 0.8960e-5
rate 4.25 2.26 5.19

285 uniform 2.1 0.1731e-4 1.1 0.3053e-4 1.5 0.2153e-4
rate – – –

349 uniform 1.5 0.1180e-4 1.3 0.1520e-4 1.3 0.1520e-4
rate 1.90 3.44 1.50

The results presented in Table 2 indicate that both algorithms are effective
when estimating the proper value of the shape parameter for the RBF-PS method
in the subdomain approach, leading to similar accuracy.

6. Conclusions

In this study, the formulation of the RBF-PS method used in the subdomain
approach was developed. The method can handle the problems possessing weak
discontinuity on the interface, maintaining the main advantages of the global
RBF collocation methods, such as: meshless character, high rate of convergence
(a few nodes are sufficient to achieve high accuracy), simplicity of the implemen-
tation. Due to physically justified interface conditions, the method gives very
accurate results. An important issue when applying RBF collocation methods is
estimating the proper value of the shape parameter for the RBF. In the RBF-PS
subdomain method, the structures of the matrices in discretized equation differ
from those in the classical method. They possess some blocks of zero matrices,
and therefore they are not as dense as in the conventional method. Therefore,
an important question arises whether the algorithms used in conventional RBF
collocation methods for estimating the shape parameter value are also effective
in the subdomain RBF-PS. Based on the examples of one- and two-dimensional
equations, it was found that these algorithms can also be successfully applied in
the subdomain approach.
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