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The paper is devoted to calculation of effective orthotropic material parameters for trabecular bone tissue.
The finite element method (FEM) numerical model of bone sample was created on the basis of micro-
computed tomography (µCT) data. The buffer zone surrounding the tissue was created to apply the
periodic boundary conditions. Numerical homogenization algorithm was implemented in FEM software
and used to calculate the elasticity matrix coefficients of the considered bone sample.
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1. INTRODUCTION

Trabecular bone is a bone tissue located mainly inside the epiphyses of long bones, for example
at the end of human femur (Fig. 1). Trabecular bone is an orthotropic material because of its
microstructure geometry that is the spatial organization of bone trabeculas at the micro scale [21].
The orthotropic character of the bone plays a crucial role in understanding of the mechanical be-
havior of the whole bone at the macro scale. Material parameters of bone can be obtained on the
basis of experimental tests (usually compression test), fabric measurements (e.g., mean intercept
length – MIL) or numerical simulations using models taking into account the microstructure of
the bone sample. In work [20] the authors used FEM numerical models of trabecular bone mi-
crostructure and compared obtained material parameters with values calculated on the basis of
fabric measurements, finding a good correlation (R2 > 0.92).

Fig. 1. Structure of human femur epiphysis.

Experimental evaluation of the bone material parameters, both at micro and macro scales is
very difficult and usually subjected to large errors. At the macro scale, experimental errors are
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related mainly to boundary artifacts caused by extraction of the bone sample from its environment
– the surrounding bone tissue. At the micro scale, the experimental errors are related to a small
size of single trabecula. These difficulties are reflected by a very wide range of tissue modulus (from
1 GPa to even 20 GPa) reported in [10]. To overcome problems related micro-scale experimental
measurements, the numerical simulations and the effective isotropic tissue modulus concept can be
used. Although the trabecular tissue – the bone’s trabeculas – is heterogeneous and anisotropic,
the influence of these characteristics on the effective orthotropic elastic properties of the bone at
the macro level is negligible [7]. At the macro-scale the boundary artifacts can be reduced using
µFEM models of bone sample and numerical simulations of experimental tests. In case of com-
pression test simulations, although the bending of trabeculas cut at the boundary of the sample
can be eliminated by applying the appropriate boundary conditions, the structure can still freely
expand in directions perpendicular to the compression axis. In this study, to ensure the conditions
close to the bone in vivo environment, the periodic boundary conditions (PBC) are applied to the
numerical model of trabecular bone’s cubical sample. Use of periodic boundary conditions for the
locally periodic trabecular bone structure can reduce the boundary artifacts and eliminate under-
estimation or overestimation of the elastic properties occurring when using other BCs. Periodic
boundary conditions can simulate the actual environment of considered bone sample which in vivo
is surrounded by bone tissue.
The use of FEM numerical models built on the basis of micro-tomography data segmentation

allows one to take into account the real microstructure of bone tissue. By using such numerical
models, one can calculate macro-scale orthotropic parameters of the bone using homogenization
methods and periodic boundary conditions. The orthotropic material parameters of bone can be
used in the design of the optimized, patient specific hip joint endoprosthesis and bone scaffolds [4, 5].

2. MULTISCALE MODELING OF STRUCTURES

Biological and engineering materials exhibit different structure depending on the observation scale.
At the micro scale, trabecular bone is a heterogeneous structure composed of interconnected bone
trabeculas. At the macro scale (at least five inter-trabecular lengths), trabecular bone can be
considered as a homogeneous structure with effective material parameters. In the case of multiscale
modeling, the analyses are performed at different scales (Fig. 2) – for example at the micro and the
macro scale, to obtain the relationship between the microstructure and the macro-scale effective
material parameters of the structure. The orthotropic character of trabecular bone is an effect of
trabecular alignment – the microstructure of the bone.

Fig. 2. Idea of Multiscale modeling.

Multiscale modeling can be performed using bridging techniques or homogenization methods [2,
3, 11]. The idea behind the homogenization is the replacement of a heterogeneous material by an
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equivalent homogenous material with effective material parameters (Fig. 3). This method utilizes
the concept of representative volume element (RVE) which is considered as the smallest volume
of the medium comprising all the needed information about the structure and parameters of the
whole material. In this study, the FEM numerical model of trabecular bone sample is considered
as an RVE model of the bone structure.

Fig. 3. Homogenization.

Trabecular bone is a locally periodic structure (Fig. 4). The periodic boundary conditions (PBC)
are applied in the RVE model, so periodic displacements u (1) and anti-periodic tractions t (2) are
enforced on the opposite boundaries of the RVE model (Fig. 5).

u+ = u−, (1)

t+ = −t−. (2)

a) b)

Fig. 4. Example of a) locally periodic structure, b) globally periodic structure.

Fig. 5. Periodic boundary conditions.

The transition from the micro scale (RVE model) to the macro scale (effective material param-
eters) is based on averaging of the stresses (3) and strains (4) in the RVE model.

〈σij〉 =
1

VRVE

∫

ΩRVE

σij dΩRVE, (3)
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where 〈σij〉 – averaged stress at the macro scale, σij – stresses at the micro scale (RVE), VRVE –
RVE volume

〈εij〉 =
1

VRVE

∫

ΩRVE

εij dΩRVE, (4)

where 〈εij〉 – averaged strain at the macro scale, εij – strains at the micro scale (RVE), VRVE –
RVE volume.
The averaged stresses are calculated through numerical integration over finite elements Gauss

points. In the case of 3D linear elastic problems, calculating the material parameters of the equiv-
alent homogeneous material (effective material parameters) requires solving six boundary value
problems for the RVE model subjected to six unit strains with periodic boundary conditions. The
result of these calculations is the elasticity matrix C of the equivalent homogeneous material,
binding the averaged stresses and strains.
The constitutive relationship for linear elastic orthotropic material in Voigt notation is formu-

lated as

〈σij〉 = C〈εij〉, (5)




〈σ11〉
〈σ22〉
〈σ33〉
〈σ12〉
〈σ23〉
〈σ31〉




=




c11 c12 c13 0 0 0

c22 c23 0 0 0

c33 0 0 0

sym. c44 0 0

c55 0

c66







〈ε11〉
〈ε22〉
〈ε33〉
〈ε12〉
〈ε23〉
〈ε31〉




. (6)

For orthotropic materials, there are nine non-zero independent coefficients of elasticity matrix
due to its symmetry. Elasticity matrix C can be then applied as an effective material parameter
of the homogenized structure in any commercial FEM software. The engineering constants can be
obtained on the basis of Eq. (7):

S = C−1 =




1

E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1

E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1

E3
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G31
0

0 0 0 0 0
1

G12




, (7)

where S – compliance matrix, Ei – Young’s modules, Gij – shear modules, νij – Poisson’s ratios.

3. DISCRETE NUMERICAL MODEL OF BONE TISSUE

The orthotropic character of bone results from the tissue microstructure – spatial arrangement of
bone trabeculas. Although scanning of human femur epiphysis with the use of microtomograph is
possible, the process of µCT data segmentation and further remeshing of FEM model is not only
difficult, but also time consuming. More importantly, time needed for calculating such a numerical
model will make further identification and optimization tasks impossible. Calculation time, however,
can be significantly reduced using multiscale approach and RVE models [13].
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The cubical sample of trabecular bone with edge length value 10 mm was extracted from the
head of human femur with accordance to anatomical axes – the characteristic patterns of trabecular
alignment and density. Bone sample was scanned with use of Phoenix v|tome|x microtomograph [1].
The bone volume to total volume (BT/TV) value calculated on the basis of µCT data is equal
to 45% – a relatively high value for trabecular bone. The FEM numerical model of the bone
sample microstructure (Fig. 6) was created using Materialise MIMICS software. The final model,
after remeshing, consists of about 800 thousand four-node, linear shape function tetrahedral finite
elements (Fig. 6). The modeling of the whole bone, interaction with implants and scaffolds, however,
cannot be performed with such a high level of details.

Fig. 6. Numerical model of trabecular bone sample and one of the cross sections.

After the µCT scanning the considered bone sample was tested experimentally [8, 9] (compres-
sion test using MTS Insight test machine). Compression test was then simulated with boundary
conditions as close as possible to the experimental setup. Then isotropic material parameters of
bone trabeculas (micro-scale parameters) constituting the structure of sample were identified with
the evolutionary identification methods using experimental data and simulation results [14]. Ob-
tained results of identification – Young’s modulus and Poisson’s ratio of trabeculas – were validated
using nanoindentation method, finding a good correlation between them [8].

4. PERIODIC BOUNDARY CONDITIONS FOR NON-PERIODIC MESHES

The RVE can be analyzed with the use of displacement, traction or periodic boundary conditions.
The displacement boundary conditions overestimate and traction boundary conditions underes-
timate the calculated values of effective material parameters. The use of the periodic boundary
conditions gives most accurate estimates of effective stiffness, bounded always between values ob-
tained using other boundary conditions [16].

The application of the periodic boundary conditions with the use of multi-point constraints
(MPC), in the case of RVE models with similar, regular meshes on the opposite sides of RVE,
can be easily performed. However, applying of PBCs to irregular and porous, complicated RVE
models of the real trabecular bone microstructure is not possible. This problem can be overcome
by building the buffer zone [15] that surrounds the specimen model (Fig. 7). The buffer zone is the
place of the transition from irregular tissue mesh to the regular boundary mesh. Use of the buffer
zone allows one to obtain identical meshes on the opposite boundary faces of RVE model and to
apply the periodic boundary conditions.
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Fig. 7. Idea of Buffer zone.

The large size of the zone buffer zone results in error of calculated effective material parame-
ters [15], but on the other hand the thickness should be sufficient to allow the mesh transition. The
buffer zone thickness for the bone sample considered in this paper was chosen to be 10% of the
size of RVE. The numerical model of bone microstructure surrounded by the buffer zone (Fig. 8)
with applied periodic boundary conditions is used to calculate effective material parameters of bone
tissue.

Fig. 8. Half of the RVE model with surrounding buffer zone.

5. EFFECTIVE MATERIAL PARAMETERS OF THE BONE TISSUE

First, the isotropic material model for buffer zone is used with values of elastic parameters based on
the performed compression test experiment (E = 1148 MPa). The trabeculas material properties
were identified for the considered sample [14], Young’s modulus and Poisson’s ratio are respectively
ETRAB = 7895 MPa and νTRAB = 0.36. The parameters of a single trabecula are isotropic but
due to the geometrical structure of the RVE, the effective material properties are orthotropic. Six
unit strains are applied into tissue area to calculate effective material parameters of bone using
numerical homogenization method.
The analyses and simulations were performed using the MSC.Marc FEM software. Numerical

homogenization algorithm was implemented in MSC.Marc software using user subroutines coded
in Fortran [12]. The calculations time for each case of unit strain applied to RVE model was
approximately 2.5 hours on a computer with processor Intel i3 3 Ghz, 4 GB RAM.
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The result of calculations is the elasticity matrix C of bone sample:

C =




1896.975 510.523 566.842 55.171 −9.371 −22.603

1684.765 513.809 35.655 −25.572 0.454

2453.461 20.115 −48.886 −35.507

sym. 443.817 −3.688 −10.968

466.048 15.899

490.968




. (8)

Coefficients with values of at least one order of magnitude lower than the average value of parameters
are listed in grey. Because trabecular bone is not a perfectly orthotropic material, these non-zero
coefficients will remain. Moreover, sample was extracted with accordance to main anatomical axes
(patterns of trabecular alignment and density visible on X-ray images) in femur epiphysis, which
are supposed to be aligned with main directions of orthotropy, but the small error in specimen
extraction will always remain.

To reduce the inevitable error in specimen extraction, the coordinate transformation that yields
best orthotropic representation CORT (9) of the elasticity matrix was performed.

CORT =




c11 c12 c13 δ14 δ15 δ16
c22 c23 δ24 δ25 δ26

c33 δ34 δ35 δ36
sym. c44 δ45 δ46

c55 δ56
c66




, (9)

where δij is small number.

The initial coordinate system is rotated by three angles about x, y and z axis. The elasticity
matrices, before and after transformation, are related by the transformation matrix R shown in
Eq. (10) (summation notation used) [19]:

C̃ijkl = RiαRjβRkγRlδC̃αβγδ, (10)

where C̃αβγδ – initial elasticity matrix in tensor notation, C̃ijkl – transformed elasticity matrix in
tensor notation, R – transformation matrix containing transformation angles.

Evolutionary algorithm is used to minimize the objective function (11) to find the best or-
thotropic representation of bone sample elasticity matrix (8).

F (ch) =

6∑
i=1

6∑
j=1

δ2ij

6∑
i=1

6∑
j=1

c2ij

, (11)

where ch = [ζ, η, θ] is a chromosome with floating point genes representing transformation angles
ζ, η and θ.

Calculated Euler angles are very low – 0.03, 0.78 and 2.32 degrees. Low values of transforma-
tion angles indicate that the considered specimen was extracted properly and main directions of
orthotropy are at least roughly aligned with main anatomical axes in the human femur epiphysis.
Low values of the transformation angles result in small changes in the elasticity matrix (12), but
in case of bone samples extracted not properly, the procedure will noticeably improve the result.
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CORT1 =




1894.121 506.982 567.333 54.833 −25.734 −18.961

1682.723 516.523 39.405 −25.161 2.677

2459.042 7.634 −10.718 −36.137

sym. 445.404 −6.089 −12.251

465.482 15.435

489.611




. (12)

Buffer zone is used only to apply the periodic boundary conditions. To reduce the influence of the
buffer zone on the calculated effective material parameters of the bone sample, the δij elements
of matrix (12) are set to zero, then matrix C is applied as a material parameters in buffer zone
region [17] and bone structure is again homogenized. Calculations are repeated until there is no
change in the resulting matrix C.

After four iterations, the final result is obtained:

CORT4 =




1865.218 494.783 593.234 56.230 −10.282 −25.591

1615.209 526.613 36.488 −27.120 −0.162

2570.908 22.191 −54.685 −41.609

463.521 −4.246 −12.898

505.883 19.515

552.863




. (13)

The engineering constants calculated on the basis of elasticity matrix components using Eq. (7) are
as follows:

E1 = 1631.245 MPa, E2 = 1424.951 MPa, E3 = 2284.254 MPa.

These results can be compared with the experimental study [8]. The highest anisotropy ratio
(E3/E2) is equal to 1.6, a relatively low value related to high BV/TV of the considered bone sample.

The compression experiment was performed for a second axis. The effective Young’s modulus
obtained from experiment was equal to 1148 MPa and the one obtained in numerical analysis is
equal to 1424.951 MPa.

The difference between the homogenized and experimental parameters is a result of periodic
boundary conditions applied in RVE model (the model is more stiff than in the experimental setup)
and confirms the 20 to 40% underestimation [18] of laboratory test results. In vivo, fragment of
tissue behaves in a way that is similar to the model with periodic boundary conditions (which is
surrounded by tissue). This can led to an assumption that these higher values are closer to actual
parameters of bone tissue as a real periodic structure.

6. CONCLUSIONS

Numerical FEM models of trabecular bone microstructure obtained on the basis of micro- tomog-
raphy data segmentation along with numerical homogenization method allow to calculate effective
material parameters of bone tissue. Periodic boundary conditions can be applied for RVE models
with irregular boundary meshes with the use of buffer zone. The use of periodic boundary condi-
tions resulted in higher stiffness of calculated effective parameters than the parameters obtained
trough experimental compression test. Low values of calculated transformation angles indicate that
anatomical axes in head of the human femur are coincident with main directions of orthotropy. The
obtained orthotropic effective material parameters of bone may be used in future analyses in the
areas pertaining to tissue engineering.
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