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This paper uses artificial neural network (ANN) technique for the identification of structural parameters of
multistorey shear buildings. First, the identification has been done using response of the structure subject
to ambient vibration with interval initial condition. Then, forced vibration with horizontal displacement
in interval form has been used to investigate the identification procedure. The neural network has been
trained by a methodology so as to handle interval data. This is because, in general we may not get
the corresponding input and output values exactly (in crisp form) but we may only have the uncertain
information of the data. These uncertain data are assumed in term of interval and the corresponding
problem of system identification is investigated. The model has been developed for multistorey shear
structure and the procedure is tested for the identification of the stiffness parameters of simple example
problem using the prior values of the design parameters.

Keywords: identification, inverse vibration, modeling, interval neural network, shear buildings, struc-
tures.

1. INTRODUCTION

Dynamic behaviour of complicated systems often needs to be investigated by system identifica-
tion, since it usually has to meet certain requirements. System identification methods in structural
dynamics, in general solve inverse vibration problems to identify properties of a structure from
measured data. Rapid progress in the field of computer science and the use of efficient mathe-
matical tools allow for identification of the process dynamics by evaluating the input and output
signals of the system. System identification (SI) techniques play an important role in investigating
and reducing gaps between the structural systems and their structural design models. This is also
true in structural health monitoring for damage detection. A great amount of research has been
conducted in SI. Modal-parameter SI and physical-parameter SI are two major branches in SI. The
SI methods are generally used to extract dynamic characteristics of structures, to know current
behaviour of complicated systems against dynamic loads such as earthquake, etc. The SI tech-
niques are also applied to determine vibration characteristics, modal shapes and damping ratios of
complex structural systems so as to frame knowledge for modelling and assessing current design
procedures. The result of such process identification is usually a mathematical model by which the
dynamic behaviour can be estimated or predicted. As regards [1–6] gave various methodologies for
different type of problems in system identification. Various techniques for improving structural dy-
namic models were reviewed in [7, 8]. Also studies related to system identification of buildings using
different methods have been done by [9, 10]. Some of the related publications may be mentioned as
those of [11–13]. Recent publications on system identifications were given by [14, 15]. A unique re-
search program that investigates the dynamic behaviour of a full scale 13-storey reinforced concrete
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building under forced vibration, ambient vibration and distal earthquake excitation is described
in [16].

When the systems are generally modeled as linear identification problem, it often turns out to
be a non-linear optimization problem and difficulties are faced while calculating for a large number
of parameters. So as to overcome these difficulties, researchers have developed various identification
methodologies for the said problem by using powerful technique of artificial neural network (ANN).
A number of studies [17, 18] and the references mentioned below have used ANN for solving
structural identification problems. An application of neural networks for detection of changes in
nonlinear systems has been given by [19]. Identification of substructures using neural networks
has been proposed by [20]. A decentralized stiffness identification method with neural networks
for a multi-degree- of- freedom structure has been developed in [21]. A localized identification
strategy with neural networks and its application to structural health monitoring was proposed in
[22]. In particular, [17] presented a novel procedure for identifying the dynamic characteristics of
a building using a back propagation neural network technique. A new soft-computing technique
to identify dynamic systems was proposed in [23]. System identification of linear structures based
on Hilbert-Huang spectral analysis by using normal modes has been given in [12]. Another novel
neural network based approach has been presented in [24] for detecting structural damage. Neural
network based strategy was also developed in [25] for direct identification of structural parameters
from the time domain dynamic responses of a structure without any eigen-value analysis. A novel
procedure for identification of structural parameters of two storey shear buildings by an iterative
training of neural networks was presented in [26]. A multistage identification scheme for structural
damage detection with the use of modal data using a hybrid neural network strategy has been
proposed in [27]. Parameter identification of torsionally coupled shear buildings from earthquake
response records was given in [14].

Identification of dynamic models of a building structure using multiple earthquake records has
been developed in [28]. An approach to detect structural damage using ANN method with progres-
sive substructure zooming was presented in [29]. This method also uses the substructure technique
together with a multi-stage ANN models to detect the location and extent of the damage. The
application of neural networks to damage detection in structures is studied in [30]. Model updat-
ing of multistorey shear buildings for simultaneous identification of mass, stiffness and damping
matrices using two different soft-computing methods have been developed in [15]. System iden-
tification using frequency response functions with the help of artificial neural networks (ANN)
has been studied in [31] for single-input, single-output and multiple-input single-output (MISO)
system. The application of artificial neural networks and wavelet analysis to develop the intel-
ligent and adaptive structural damage detection system has been investigated in [32]. A struc-
tural parameter identification and damage detection approach using displacement measurement
time series has been proposed in [33] and the performance of this approach has been validated
experimentally with a frame structure model in a healthy condition and with joint connection
damages. The approach also provides an alternative way for damage detection of engineering struc-
tures by direct use of structural dynamic displacement measurements. A process for predicting
the recyclable amount of concrete and reinforcement residential buildings based on artificial neu-
ral network has been provided in [34]. It may be seen from the above that artificial neural net-
works (ANNs) provide a fundamentally different approach to system identification problems. They
have been successfully applied for identification and control of dynamic systems in various field
of engineering because of its excellent learning capacity and high tolerance to partially inaccurate
data.

It is revealed from the above literature review that various authors developed different iden-
tification methodologies using ANN. They supposed that the data obtained are in exact or crisp
form. But in actual practice the experimental data obtained from equipments are with errors that
may be due to human or equipment errors thereby giving uncertain form of the data. Although
one may also use probabilistic methods to handle such problems, but the probabilistic method
requires huge quantity of data which may not be easy or feasible. As such [35] presented a robust
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converging mathematical procedure and applied selective sensitive excitations to identify essen-
tial structural parameters. As regards, few research works have been done using interval neural
networks in different fields. [36] defined Interval neural network and categorized general three-
layer neural network training problems into two types, i.e., type1 and type2 according to their
mathematical model. Using these general algorithms one can develop specific software which can
efficiently solve interval weighted neural network problems. These techniques can be applied to
traditional non-interval neural networks as well. In this respect an algorithm for interval neural
networks was presented in [37]. An application of interval valued neural networks to a regres-
sion problem has been presented in [38]. The work was concerned with exploiting uncertainty in
order to develop a robust regression algorithm for a pre-sliding friction process based on a non-
linear auto-regressive with exogenous inputs neural network. In addition to this, it has also shown
that an interval-valued neural network allows a trade-off between the model error and the interval
width of the network weights or a ‘degree of uncertainty’ parameter. An interval GA (Genetic
Algorithm) for evolving neural networks with interval weights and biases was developed in [39],
where an extension of genetic algorithm for neuro evolution of interval-valued neural networks
was proposed. In order to handle the interval-valued genotypes, interval-valued GA (IvGA) ex-
tends its processes of initialization of populations, fitness evaluation, crossover and mutation. The
IvGA was applied to approximate modeling of interval functions with interval-valued neural net-
works.

As such, the uncertainty may sometimes be modeled by considering the data in term of interval.
In this paper, minimum numbers of data are taken in interval form to have the essence of the uncer-
tainty. Although the interval data requires complex interval arithmetic to handle the problem, here
a simple back propagation neural network has been used. Identification methodologies for multi-
storey shear buildings have been proposed using the powerful technique of artificial neural network
(ANN) models which can handle interval data. It was already mentioned that identification with
crisp data is known and also neural network method has already been used by various researchers
for this case. Here the input and output data may be in interval form.

In this paper, forward problem for each time step is solved for a given input to the system,
rather than solving the inverse vibration problem. Thus, the solution vector is generated. The ini-
tial design parameters viz. stiffness, mass and so the responses of the said problem are known.
The initial values of the physical parameters of the system are used to obtain the interval re-
sponses. Responses and the corresponding parameters are used as the input/output in the neural
net. Next, the interval artificial neural network (IANN) model is trained by the proposed interval
error back propagation training algorithm (IEBPTA) scheme. After training of the model, phys-
ical parameters may be identified in interval form if new maximum response data is supplied as
input to the net which are also in interval form. The procedure has been demonstrated for multi-
storey structures and the structural parameters are identified in interval form using the response
of the structure subject to initial condition and horizontal displacement all are in interval form.
Corresponding methodology is demonstrated for multistorey structure and example problem of two-
storey shear structures are solved. Results are reported to show the reliability and powerfulness of
the model.

2. ANALYSIS AND MODELING

System identification refers to the branch of numerical analysis which uses the experimental input
and output data to develop mathematical models of systems which finally identify the parameters.
Let us consider a multi- degree- of- freedom system (shear building) with n storey as shown in Fig. 1.
The floor masses for this application problem are assumed to be [m1, m1], [m2, m2], ..., [mn, mn]
and the stiffness parameters [k1, k1], [k2, k2], ..., [kn, kn] are the structural parameters which are
to be identified. It may be seen that all the mass and stiffness parameters are taken in interval
form. As such for each mass mi we have mi as the lower value and mi as the upper value of the
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Fig. 1. Multi-storey shear structure with n-levels having interval structural parameters.

interval. Similarly for the stiffness parameter for each ki we have ki as the left value and ki as the
right value of the interval. Corresponding dynamic equation of motion for n-storey (supposed as n
degrees of freedom) shear structure without damping [40] may be written as

[M̃ ]
{
¨̃
X
}
+ [K̃]

{
X̃
}
=
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}
, (1)
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{
F̃ (t)

}
=

{
F (t) , F (t)

}
is assumed as n× 1 interval horizontal displacement forcing vector

{
F̃ (t)

}
=




[
f
1
(t), f1(t)

]

[
f
2
(t), f2(t)

]

· · ·[
f
n
(t), fn(t)

]



.

Let us consider that the initial conditions in interval form are given by Eqs. (2) and (3) as

{x̃(0)} = {x (0) , x (0)} = {x̃1(0) x̃2(0) · · · x̃n(0)}T , (2)

{
˙̃x(0)

}
=

{
ẋ (0) ẋ (0)

}
=

{
˙̃x1(0) ˙̃x2(0) · · · ˙̃xn(0)

}T
. (3)

Solution of Eq. (1) for free vibration, with given interval values of mass and stiffness, gives

the corresponding interval eigenvalues and eigenvectors. These are denoted respectively by λ̃i and{
Ã
}
i
=

{
A, A

}
i
, i = 1, . . . , n where ω̃2

i

(
= λ̃i

)
are the system’s interval natural frequency. It

may be noted that the free vibration equation will be an interval eigenvalue problem. The interval
eigenvalue and vector are obtained then by considering different sets of lower and upper stiffness
and mass values. Although there exist different methods to handle interval eigenvalue problems but
here the above procedure has been used so that we may handle the inverse of the matrices in crisp
form separately as lower and upper value. And that is why now we will replace the ‘∼’ from all
notations and will consider the case for lower form first and simultaneously for upper form. Hence,
the modal matrix for lower form {A} may be written as

[A] = [{A}1 {A}2 · · · {A}n]. (4)

Denoting the diagonal matrix made up of the eigenvalues in lower form as λi, as [λ]n×n, a new set

of coordinates in lower form
{
y
}
related to the coordinates {X} is introduced by the well-known

transformation

{X} = [A]
{
y
}
. (5)

If the system (1) is subjected to an initial velocity only then substituting Eq. (5) into Eq. (1) for
ambient vibration, the following equation is obtained for the response in lower form as:

{X} = [A] [D] [ω]−1 [A]−1 {ẋ(0)} , (6)

whereas for the horizontal displacement in lower form we have the equation

{
ÿ
}
+ [λ]

{
y
}
= [P ]−1 [A]T {F (t)} , (7)

where

[P ] = [A]T [M ] [A]. (8)

In order to obtain the final response in term of the original coordinates {X}, we solve Eq. (7)
foryand then it is substituted in Eq. (5). In the similar manner we can compute the upper form.
The patterns are now trained using interval error back propagation training algorithm (IEBPTA)
of generalized delta learning rule.
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2.1. Interval computation

An interval defined on real line R is said to be a subset of R. For instance, if an interval is denoted
as A = [a, a] where a, a ∈ R, a < a we may regard this as one kind of set. Expressing the interval
as membership function we may get

µA(x) =





0, x < a,

1, a ≤ x ≤ a,

0, x > a.

If a = a, this interval indicates a point [41].

2.2. Interval arithmetic

Let us assume A and B as numbers expressed as interval. For all a, a, b, b ∈ R where
A = [a, a] , B =

[
b, b

]
, the main operations of intervals may be written as [41],

1. addition

[a, a] (+)
[
b, b

]
=

[
a+ b, a+ b

]
,

2. subtraction

[a, a] (−)
[
b, b

]
=

[
a− b, a− b

]
,

3. multiplication

[a, a] (×)
[
b, b

]
=

[
min(a× b, a× b, a× b, a× b), max(a× b, a× b, a× b, a× b)

]
,

4. division

[a, a] (÷)
[
b, b

]
=

[
min(a÷ b, a÷ b, a÷ b, a÷ b), max(a÷ b, a÷ b, a÷ b, a÷ b)

]

excluding the case b = 0 or b = 0.

3. INTERVAL ARTIFICIAL NEURAL NETWORK (IANN) AND INTERVAL ERROR BACK
PROPAGATION TRAINING ALGORITHM (IEBPTA)

Traditional ANN and EBPTA are well known but here for the sake of completeness those are
developed for interval case. In ANN, the first layer is considered to be input layer and the last
layer is the output layer. Between the input and output layer, there may be more than one hidden
layer. Each layer will contain number of neurons or nodes (processing elements) depending upon
the problem. These processing elements operate in parallel and are arranged in patterns similar to
the patterns found in biological neural nets. The processing elements are connected to each other by
adjustable weights. The input/output behaviour of the network changes if the weights are changed.
So, the weights of the net may be chosen in such a way so as to achieve a desired output. To satisfy
this goal, systematic ways of adjusting the weights have to be developed to handle the interval data
which are known as training or learning algorithm as in [37]. Neural network basically depends upon
the type of processing elements or nodes, the network topology and the learning algorithm. Here,
interval error back propagation training algorithm and feed forward neural network has been used
to handle the uncertain system. Following IANN is computed based on the interval computation
defined above. The interval weights and interval biases are also computed based on above interval
computations. A typical network is shown in Fig. 2.



Interval response data based system identification of multi storey shear buildings. . . 129

Fig. 2. Generalized feed-forward interval neural network.

In Fig. 2, Z̃i, P̃j and Õm are considered to be the input, hidden and output layer respectively.
The weights between input and hidden layers are denoted by (ṽji) =

[
vji, vji

]
and the weights

between hidden and output layers are denoted by (w̃mj) =
[
wmj , wmj

]
which are all in intervals.

The inputs Z̃i = X̃i =
[
X i, X i

]
are responses in interval and the outputs Õm = k̃m =

[
km, km

]

are stiffness parameters in interval.

Given R training pairs,
{
Z̃1, d̃1; Z̃2, d̃2; ..., Z̃R, d̃R

}
where Z̃i (I × 1) are inputs and d̃i (M × 1)

are desired values for the given inputs, the total input to the j-th hidden unit in the second layer
can be calculated as

P̃j =
[
P j , P j

]
=

[
vji, vji

]
·
[
Zi, Zi

]
+

[
θj, θj

]
,

where

P j =

I∑

i=1
vji≥0

vjiZi +

I∑

i=1
vji≺0

vjiZi + θj , (9)

P j =

I∑

i=1
vji≥0

vjiZi +

I∑

i=1
vji≺0

vjiZi + θj . (10)
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Here,
[
θj, θj

]
are the bias weights of the hidden layer. Then the output of the hidden unit can be

evaluated as

Ũj =
[
f
(
P j

)
, f

(
P j

)]
=

[
U j , U j

]
,

where f is the unipolar activation function defined by f(net) = 1/ [1 + exp(−γ net)].
Similarly the total input from hidden to the output unit is calculated as

Ỹm =
[
Y m, Y m

]
=

[
wmj , wmj

]
·
[
U j , U j

]
+

[
θm, θm

]
,

Y m =
M∑

m=1
wmj≥0

wmjU j+
M∑

m=1
wmj≺0

wmjU j + θm, (11)

Y m =
M∑

m=1
wmj≥0

wmjU i+
M∑

m=1
wmj≺0

wmjU j + θm, (12)

where
[
θm, θm

]
are the bias weights of the output layer. Finally, the response of the net is given as

Õm =
[
f (Y m) , f

(
Y m

)]
=

[
Om, Om

]
.

The error value is computed as

Ẽ =
1

2

[
(dm −Om)2 +

(
dm −Om

)2]
, m = 1, 2, ...,M (13)

for the present neural network as shown in Fig. 2. From the cost function (13), a learning rule
can be derived for the interval weight (ṽji) between the hidden and the input layer. The interval
weights are updated as

ṽ
(New)
ji =

[
v
(New)
ji , v

(New)
ji

]
=

[
v
(old)
ji , v

(old)
ji

]
+

[
∆vji, ∆vji

]
,

j = 1, 2, . . . , J and i = 1, 2, . . . , I,
(14)

where change in weights are calculated as

∆ṽji =
[
∆vji, ∆vji

]
=

[
−η

∂Ẽ

∂vji
, −η

∂Ẽ

∂vji

]
,

j = 1, 2, ..., J and i = 1, 2, ..., I.

(15)

Consequently, output layer weights (w̃mj) between the output layer and the hidden layer are
adjusted as

w̃
(New)
ji =

[
w

(New)
ji , w

(New)
ji

]
=

[
w

(old)
ji , w

(old)
ji

]
+

[
∆wji, ∆wji

]
,

m = 1, 2, ...,M, and j = 1, 2, ..., J,
(16)

where change in weights are now calculated as

∆w̃mj =
[
∆wmj , ∆wmj

]
=

[
−η

∂Ẽ

∂wmj

, −η
∂Ẽ

∂wmj

]
,

m = 1, 2, ...,M, and j = 1, 2, ..., J

(17)
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and η is the learning constant. While modifying vji, vji and wmj , wmj by Eqs. (14)–(17), it is
undesirable but possible sometimes that vji > vji and wmj > wmj . In order to cope with this
situation, the interval weights from input to hidden layer and from hidden to output layer are
determined as

v
(New)
ji =

[
min

{
v
(New)
ji , v

(New)
ji

}
, max

{
v
(New)
ji , v

(New)
ji

}]
, (18)

w
(New)
mj =

[
min

{
w

(New)
mj , w

(New)
mj

}
, max

{
w

(New)
mj , w

(New)
mj

}]
. (19)

In the similar fashion the interval biases θ̃j and θ̃m are also updated.

4. RESULTS AND DISCUSSION

Although the developed method has been used for different storey shear structure but here only
two-storey shear structure has been reported to understand the methodology. To investigate the
present method numerical experiment has been shown for two-storey lumped mass structure to
identify interval stiffness parameters. So, we consider the floor masses for two-storey shear structure
in interval form as [m1, m1] and [m2, m2]. Similarly the stiffness parameter may also be written in
interval form as

[
k1, k1

]
and

[
k2, k2

]
. For the present investigation, the masses are assumed to be

constant i.e., m1 = m1, m2 = m2. One may note for identifying the interval stiffness parameters,
we need to have interval responses in the input nodes. In practical application due to error in
measurements, we may have the response data in interval form. It is worth mentioning that the
response may actually be obtained from some experiments. But here the analyses have been shown
by numerical simulations only. In this respect one may also see that the procedure has been discussed
with constant masses but with interval stiffness parameters. In order to get the set of data of interval
responses and interval stiffness parameters, the problem has to be solved first as forward vibration
problem. For this the initial design (structural) parameters in interval form are randomized [26]
and training sets of initial interval stiffness parameters are generated. For the above sets of initial
interval stiffness parameters, the set of corresponding responses in interval form are generated from
Eq. (6) for ambient vibration and from Eq. (5) for the other case (after solving Eq. (8) for y or
y). Now, the mentioned neural net is trained with the interval responses that are generated from
the structural parameters. When the neural net is converged (or trained) the converged neural
weight matrices ṽji and w̃mj for hidden and output layer are stored. In order to get the interval
responses for ambient vibration problem, Eq. (6) is used and for forced vibration problem Eqs. (5)
and (8) are used. The neural network training is done till a desired accuracy is achieved. Now,
we will identify the stiffness parameters in interval form using the interval form of the maximum
absolute response. The methodology has been discussed by giving the results for following five
cases.
Case (i): ambient vibration: interval response with crisp initial condition.
Case (ii): ambient vibration: interval response with initial condition in interval form.
Case (iii): forced vibration: interval response with the forcing function in crisp form.
Case (iv): forced vibration: interval response with the forcing function in interval form.
Case (v): ambient and forced vibration: for testing of the method with the data which are not

used (seen) in the training.
A set of computer programs have been written and tested for variety of experiments for different

cases and it is a gigantic task to incorporate all the results. But few of them are reported to
understand the methodology. All the parameters are taken in consistent units and the data for the
initial interval stiffness parameters are considered for the academic illustrations. The input layer
will have the maximum absolute interval responses for ambient as well as for forced vibration and
output layer contains the corresponding interval stiffness parameters of the system. As such, the
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input layer will have the nodes as
{
X̃1 =

[
X1, X1

]
and X̃2 =

[
X2, X2

]}
output layer will have

the nodes as
{
k̃1 =

[
k1, k1

]
and k̃2 =

[
k2 , k2

]}
for two-storey shear structure. This neural

network architecture has been maintained for all the cases.

As mentioned earlier for case (i), the system is subjected first to crisp initial condition expressed

by the vector (with zero displacement) as {ẋ(0)} = {10 − 10}T . Two examples in case (i) have
been solved. For the first example, a double-storey shear structure is taken where the masses
are m1 = m1 = 1 and m2 = m2 = 1 and the initial stiffness parameters are within the range

k̃1 = [1000, 2000] and k̃2 = [1000, 2000]. In the second problem the masses are taken to be the

same as that of the first one and the stiffness parameters vary within the range k̃1 = [2200, 3200]

and k̃2 = [1100, 2100]. From these initial interval stiffness parameters we have generated 40 data
for both stiffness and responses in interval form. These 40 numbers of data are used as training
patterns. Here the input layer contains two (interval) input neurons and output layer contains two
(interval) output neurons. Various numbers of hidden nodes were considered and the program was
executed. After few runs it can be seen that six hidden nodes are sufficient to get the desirable
result. As such for the first problem, with accuracy of 0.001, the desired and ANN results for 10
numbers of data chosen from 40 data have been plotted in Figs. 3a and 3b. For the second problem,
again 10 data are summarized in Table 1.

a)

b)

Fig. 3. Comparison of Desired and ANN value for ambient vibration with crisp initial condition for:
a) k1, k1, b) k2, k2, for case (i), eg. (1).
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Table 1. Comparison of Desired and ANN value for ambient vibration with crisp initial condition
for k1, k1, k2, k2 for case (i), eg. (2).

Data no

1 2 3 4 5 6 7 8 9 10

k1 (Ann) 2415 2300 2925 2290 2567 2575 2427 2803 2693 2361

k1 (Des) 2416 2297 2982 2286 2566 2569 2439 2798 2694 2362

Deviation [%] 0.04 −0.13 1.91 −0.17 −0.04 −0.23 0.49 −0.18 0.04 0.04

k1 (Ann) 2936 3125 3018 2398 2625 2784 2844 2848 3036 2564

k1 (Des) 2935 3171 3067 2416 2598 2762 2885 2852 2989 2568

Deviation [%] −0.03 1.45 1.6 0.75 −1.04 −0.8 1.42 0.14 −1.57 0

k2 (Ann) 1401 1202 1393 1340 1637 1193 1495 1210 1215 1874

k2 (Des) 1402 1201 1394 1337 1631 1191 1505 1205 1212 1884

Deviation [%] 0.07 −0.08 0.07 −0.22 −0.37 −0.17 0.66 −0.41 −0.25 0.53

k2 (Ann) 1890 1710 2013 1517 1845 1878 1555 1758 1227 2004

k2 (Des) 1882 1714 2074 1542 1805 1868 1543 1765 1220 2044

Deviation [%] −0.43 0.23 2.94 1.62 −2.22 −0.54 −0.78 0.4 −0.57 1.96

In case (ii), two problems have been solved for two-storey shear structure. Here, the system is
subjected to initial condition expressed by the vector (with zero displacement) in interval form

as
{
ẋ(0) ẋ(0)

}
= {(8, 10) (−10, −8 )}T . The masses are kept constant for both the prob-

lems and are taken as m1 = m1 = 1 and m2 = m2 = 1. The initial interval stiffness pa-

rameter for the first problem is considered as k̃1 = [1000, 2000] and k̃2 = [1000, 2000] and for

the second example the initial interval stiffness parameters are taken as k̃1 = [2200, 3200] and

k̃2 = [1100, 2100]. In this case, 50 numbers of data for both responses and structural parameters
are generated from these initial interval stiffness parameters. The neural network architecture is
similar to case (i). Again various numbers of hidden nodes are taken as per the desired accuracy
and finally eight hidden nodes are found to be sufficient to get an accuracy of 0.001. After train-
ing with 50 numbers of data, we incorporate 10 numbers of data for comparison of the desired
and ANN values for the first problem in Table 2. For the second problem, comparison between
the desired and ANN values for 10 data chosen from 50 numbers of data are plotted in Figs. 4a
and 4b.

Similarly for the problem with the considered horizontal displacement function, the identifica-
tion of interval stiffness from interval responses with zero initial condition and the forcing func-
tion in crisp form are considered in case (iii). The forcing function vector in crisp form is de-

fined as F (t) = {100 sin(1.6πt+ π)100 sin (1.6πt)}T . Again, two problems have been considered
for this case. The initial interval stiffness parameter used to train the first problem have val-
ues as k̃1 = [2000, 3000] and k̃2 = [1000, 2000] and for the second problem, the initial interval

stiffness parameters are considered as k̃1 = [2200, 3200] and k̃2 = [1100, 2100]. The masses are
kept constant as that of the above cases. Here, 60 data for both responses and stiffness param-
eters have been generated using these initial interval structural parameters. These 60 data are
used for training with 10 hidden nodes so as to get an accuracy of 0.001. After training, 10 data
chosen from 60 data are again plotted in Figs. 5a and 5b in order to compare the desired and
ANN values for the first problem. Similarly the results for second example are included in Ta-
ble 3.

Next, in case (iv) the forcing function vector in interval form with zero initial condition is defined

as F̃ (t) = {(80 sin(1.6πt+ π) , 100 sin(3.2πt+ π)) (80 sin(1.6πt) , 100 sin(3.2πt))}T . Again two
problems have been solved considering the masses and stiffnesses as the previous cases. Here, 80 data
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Table 2. Comparison of Desired and ANN value for ambient vibration with interval initial condition
for k1, k1, k2, k2 for case (ii), eg. (1).

Data no

1 2 3 4 5 6 7 8 9 10

k1 (Ann) 1144 1451 1063 1349 1513 1420 1075 1223 1129 1184

k1 (Des) 1145 1427 1060 1351 1513 1402 1076 1240 1123 1184

Deviation [%] 0.09 −1.68 −0.28 0.15 0 −1.28 0.09 1.37 −0.53 0

k1 (Ann) 1251 1836 1617 1953 1930 1493 1496 1360 1850 1378

k1 (Des) 1250 1853 1622 1913 1955 1501 1499 1348 1910 1379

Deviation [%] −0.08 0.92 0.31 −2.09 1.28 0.53 0.2 −0.89 3.14 0.07

k2 (Ann) 1401 1202 1393 1340 1637 1193 1495 1210 1215 1874

k2 (Des) 1402 1201 1394 1337 1631 1191 1505 1205 1212 1884

Deviation [%] 0.07 −0.08 0.07 −0.22 −0.37 −0.17 0.66 −0.41 −0.25 0.53

k2 (Ann) 1890 1710 2013 1517 1845 1878 1555 1758 1227 2004

k2 (Des) 1882 1714 2074 1542 1805 1868 1543 1765 1220 2044

Deviation [%] −0.43 0.23 2.94 1.62 −2.22 −0.54 −0.78 0.4 −0.57 1.96

a)

b)

Fig. 4. Comparison of Desired and ANN value for ambient vibration with interval initial condition for:
a) k1, k1, b) k2, k2, for case (ii), eg. (2).
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a)

b)

Fig. 5. Comparison of Desired and ANN value for forced vibration with crisp forcing function for: a) k1, k1,
b) k2, k2, for case (iii), eg. (1).

Table 3. Comparison of Desired and ANN value for forced vibration with crisp forcing function for k1, k1,
k2, k2 for case (iii), eg. (2).

Data no

1 2 3 4 5 6 7 8 9 10

k1 (Ann) 1070 1242 1357 1246 1022 1066 1121 1693 1729 1574

k1 (Des) 1070 1245 1363 1242 1025 1053 1132 1659 1742 1575

Deviation [%] 0 0.24 0.44 −0.32 0.29 −1.23 0.97 −2.05 0.75 0.06

k1 (Ann) 1111 1798 1401 1812 1407 1085 1183 1898 1939 1657

k1 (Des) 1111 1780 1390 1831 1404 1096 1179 1942 1956 1658

Deviation [%] 0 −1.01 −0.79 1.04 −0.21 1 −0.34 2.27 0.87 0.06

k2 (Ann) 1161 1330 1455 1337 1123 1145 1220 1821 1772 1684

k2 (Des) 1170 1345 1463 1342 1125 1153 1232 1759 1842 1675

Deviation [%] 0.77 1.12 0.55 0.37 0.18 0.69 0.97 −3.52 3.8 −0.54
k2 (Ann) 1211 1888 1494 1944 1514 1195 1282 2043 2018 1767

k2 (Des) 1211 1880 1490 1931 1504 1196 1279 2042 2056 1758

Deviation [%] 0 −0.43 −0.27 −0.67 −0.66 0.08 −0.23 −0.05 1.85 −0.51
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Table 4. Comparison of Desired and ANN value for forced vibration with crisp forcing function for k1, k1,
k2, k2 for case (iii), eg. (2).

Data no

1 2 3 4 5 6 7 8 9 10

k1 (Ann) 2155 2416 2118 2338 2505 2357 2076 2198 2157 2155

k1 (Des) 2145 2427 2060 2351 2513 2402 2076 2240 2123 2184

Deviation [%] −0.47 0.45 −2.82 0.55 0.32 1.87 0 1.88 −1.6 1.33

k1 (Ann) 2251 2879 2625 2955 2954 2499 2497 2362 2863 2370

k1 (Des) 2250 2853 2622 2913 2955 2501 2499 2348 2910 2379

Deviation [%] −0.04 −0.91 −0.11 −1.44 0.03 0.08 0.08 −0.6 1.62 0.38

k2 (Ann) 1070 1240 1370 1244 1029 1051 1132 1689 1714 1571

k2 (Des) 1070 1245 1363 1242 1025 1053 1132 1659 1742 1575

Deviation [%] 0 0.4 −0.51 −0.16 −0.39 0.19 0 −1.81 1.61 0.25

k2 (Ann) 1105 1757 1370 1835 1397 1101 1180 1913 1931 1692

k2 (Des) 1111 1780 1390 1831 1404 1096 1179 1942 1956 1658

Deviation [%] 0.54 1.29 1.44 −0.22 0.5 −0.46 −0.08 1.49 1.28 −2.05

a)

b)

Fig. 6. Comparison of Desired and ANN value for forced vibration with interval forcing function for:
a) k1, k1, b) k2, k2, for case (iv), eg. (2).
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are used to train with 15 hidden nodes so as to get an accuracy of 0.001. Comparison between the
desired and ANN values for 10 data chosen from 80 numbers of data have been incorporated in
Table 4 for first problem. Similarly the results for second problem have been plotted in Figs. 6a
and 6b.

Finally in case (v), two examples for testing the data which are not used (seen) during the
training are considered for both ambient and forced vibration. These test data are fed into
the neural network along with the stored (converged) weights to generate corresponding stiff-
ness parameters. For the first problem, interval response with initial condition in interval form
and for second problem, the interval responses with the forcing function in interval form are
considered for testing. Here 10 numbers of data are taken for testing using the stored con-
verged weights of training. Comparison between the test values of desired and ANN for am-
bient vibration with the initial condition in interval form for 10 numbers of data are plotted
in Figs. 7a and 7b. Again comparison between the test values of desired and ANN for forced
vibration with the forcing function for 10 data in interval form have been plotted in Figs. 8a
and 8b.

It may be seen that the neural results are comparable with the desired and the deviations in
percentage between them have also been shown in all the tables.

a)

b)

Fig. 7. Comparison of Desired and ANN value of testing data for ambient vibration with interval initial
condition for: a) k1, k1, b) k2, k2, for case (v), eg. (1).
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a)

b)

Fig. 8. Comparison of Desired and ANN value of testing data for forced vibration with interval forcing
function for: a) k1, k1, b) k2, k2, for case (v), eg. (2).

5. CONCLUSION

Protection of various structures against the effect of earthquake is an interdisciplinary research
where the knowledge, skills and experience of earthquake along with structural engineers assisted
by architects, art historians, material scientists and applied mathematicians are required. Health
monitoring, system identification, theoretical and experimental assessment of structural perfor-
mance, design, testing and implementation of retrofit are some of the main steps of any modern
earthquake protection methodology for conservation of structures. As such after a long span of
time, the structures deteriorate due to application of various manmade and natural hazards. So,
it is a challenging task to know the present health of the above structures to avoid failure. Hence,
the present study demonstrates application of IANN with solution of forward vibration problem
for the identification of structural parameters of multi-storey shear buildings utilizing only design
parameters of the system by a proposed IANN methodology. The present study considers example
problems of two-storey shear structure with the use of interval artificial neural network (IANN)
models which can handle interval data. It is assumed that only the stiffness is changed and the
mass remains the same. The values of the responses in interval form may be obtained by available
experiments and using these, one may get the parameter values by IANN. Although to train the
new ANN model, set of data are generated numerically beforehand. As such converged IANN model
gives the present stiffness parameter values in interval form for each floor. Thus one may predict the
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health of the structure in interval form from the knowledge of the identified stiffness parameters in
interval form. Corresponding example problems have been solved and related results are reported
to show the reliability and powerfulness of the model.
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