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SVD as a preconditioner in nonlinear optimization
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Finding a solution of nonlinear constrained optimization problem may be very computer resources con-
suming, regardless of solution method adopted. A conceptually simple preconditioning procedure, based
on singular value decomposition (SVD), is proposed in the current paper in order to speed up the conver-
gence of a gradient based algorithm to solve constrained minimization problem having quadratic objective
function. The efficiency of the proposed procedure is tested on a constrained minimization problem with
quadratic objective function and quadratic constraints. Accuracy of the results obtained using proposed
preconditioning method is checked and verified against the results determined without the preconditioning
procedure.
Results obtained so far seem to indicate a significant speedup of the calculations at the expense of,

negligible from the engineering point of view, loss of accuracy.
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1. INTRODUCTION

Realistic nonlinear optimization problems are solved using iterative solution methods falling into
two groups: deterministic and stochastic based ones [10, 19]. In general, stochastic based methods
prove themselves when one has to deal with objective function having multiple local extremes, while
gradient based procedures are efficient in case of convex objective functions exhibiting continuous
differentiability, spanned over convex feasible regions [11].

Effectiveness of gradient based search algorithm is strongly dependent on number of decision
variables and constraints, and conditioning of decision variables space. While number of deci-
sion variables and constraints is external to the optimization routine, being defined by the solved
problem, conditioning of the decision variables space may be improved within the optimization
procedure, in a manner transparent to the solved problem.

Singular value decomposition (SVD) [20] plays an important role in linear algebra, having ap-
plications in least squares problems, computing the pseudoinverse or Jordan canonical form, digital
image processing and optimization [3]. Several efficient SVD algorithms exist [3, 8, 9] which formed
the basis for development of computer routines, such as those contained in [18, 21, 22].

Present paper deals with a concept of improving convergence speed of gradient optimization
routine [14] applied to solve the minimization problem defined by quadratic objective function:

min
x

F (x) =
1

2
· xT ·A · x, A = AT , (1)

and subjected to quadratic constraints:

Gi(x) =
1

2
· xT ·Ki · x+ Li · x+Mi ≤ 0, i = 1, ..., n. (2)
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In such a case conditioning of the decision variables space may be expressed through conditioning
number of the matrix A, which is equal to:

κ(A) =

∣∣∣∣
λmax(A)

λmin(A)

∣∣∣∣ , (3)

where λmax and λmin denote the maximum and minimum (by modulus) eigenvalues of A, respec-
tively.
Of course the closer this condition factor κ is to unity, the better the conditioning of decision

variables space.

2. FORMULATION OF THE PROBLEM

As long as the matrix A is positive definite, introduction of L ·LT (Cholesky) decomposition, and
simple change of variables [15] is sufficient to achieve the lowest possible condition factor, i.e., 1.
Situation gets somewhat more complicated, if matrix A, instead of being positive definite is only

non-negatively defined (i.e., it is rank deficient). In such a case, arising for instance when solving a
problem of elastic-plastic shake down [2, 13, 17], L · LT decomposition is impossible, but one may
apply the SVD algorithm to decompose a symmetrical, non-negatively defined matrix A into:

A = UT ·D ·U, (4)

where U – orthonormal matrix (UT = U−1), D – diagonal, non-negatively defined matrix contain-
ing moduli of eigenvalues of A, ordered by magnitude.
Since D is diagonal and non-negative, one may decompose it further into the product of three

diagonal matrices:

D = S · J · S, (5)

where S – diagonal matrix of square roots of eigenvalues contained in D, with an exception of
singular values which are replaced by 1, J – unit matrix, with an exception of singular value
locations in D, at which 1 are replaced by 0.
Thus, finally matrix A may be decomposed into a product of three square matrices, of which

one is orthonormal, one is diagonal and nonsingular, while the last one is diagonal and singular:

A = UT · S · J · S ·U. (6)

In such a manner the singularity of matrix A is transferred into and contained within the
matrix J.
By introducing a substitution

y = S ·U · x (7)

and determining an inverse relationship

x = S−1 ·UT · y, (8)

one may express the formulas (1) and (2) in terms of the new decision variables y

min
y

F (y) =
1

2
· yT · J · y, (9)

subjected to

Gi(y) =

(
1

2
· yT ·U · S−1 ·Ki + Li

)
· S−1 ·UT · y +Mi ≤ 0, i = 1, ..., n. (10)
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In such a situation, gradients of the objective function ∇F (y) and constraints ∇Gi(y), which
are used to determine new search direction, may be expressed by new decision variables as

∇F (y) = J · y,

∇Gi (y) =
(
yT ·U · S−1 ·Ki + Li

)
· S−1 ·UT .

(11)

The formula for ∇Gi(y) may be expressed using old decision variables x as well:

∇Gi(y) =
(
xT ·Ki + Li

)
· S−1 ·UT . (12)

3. SOLUTION ALGORITHM

In general, two algorithmic approaches are possible in search for the minimum solution. First
of those approaches may be briefly described as: move to the y (new) decision variables space
and search for the solution there, returning back to the x (original) variables space only after the
optimization problem has been solved. The second approach may be summed up as: switch between
the x (old) and y (new) decision variables spaces during each iteration – more precisely, calculate
as much as possible in the x (original) decision variables space (constraint values and gradients),
then transfer these results to the y decision variables space, determine search direction, step size,
new approximate solution and check termination criteria here, then return to the x variables space
to begin new iteration (determine constraint values and gradients).
Both approaches have advantages and disadvantages. If the first approach is to be used, all

constraints are to be expressed in terms of the y decision variables – a process, which though
performed only once, may be very time-consuming and clumsy, but then all the remaining operations
are executed on the y decision variables. In the second approach one needs not express constraints
in terms of the y decision variables, but at the expense of operating continuously in two separate
variable spaces. This means, that the transformations (8) and (12) need to be performed once
during every iteration.
It is worth to note, that in both approaches the SVD decomposition of matrix A (the most

time-consuming single procedure of the proposed algorithm extension) is performed only once at
the beginning of calculations.
The second approach was tested in the current paper.
Flowchart and the sequence of operations for this approach are presented in Fig. 1.

Fig. 1. Program flowchart.
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4. NUMERICAL IMPLEMENTATION

The set of procedures in Fortran programming language, performing all the necessary operations
outlined above, was implemented as a part of the feasible directions method (FDM) optimization
package [14] supplemented by externally developed SVD routine [18]. This implementation is trans-
parent to the final user of the optimization package, i.e., the user needs not be concerned with the
internal functioning, and the information flow logic of these computer routines. All the user has to
do is to supply the matrix A at the beginning of calculations and numerical routines to calculate
the values and gradients of constraints for a given vector of decision variables x.

5. TEST PROBLEM

A residual stress distribution in an elastic perfectly plastic body subject to cyclic loads exceeding its
elastic bearing capacity is sought as the solution of the following two step nonlinear minimization
procedure [2, 12, 13, 17], based on [7]:

step I – find a transition matrix B relating residual stresses σr to plastic strains εp as a solution
of the following constrained minimization problem:

min
σ

r
Θ(σr) =

∫

V

(σr)T ·E · σr · dV −
∫

V

ε
p · σr · dV, (13)

subjected to zero boundary conditions (14) and internal equilibrium conditions (15):

σ
r · n = 0 on ∂V, (14)

divσr = 0 in V ; (15)

step II – find a distribution of plastic strains εp corresponding to statically admissible residual

stress field σr as the solution of the following minimization problem:

min
ε
p
Ψ(εp) =

∫

V

(εp)T ·BT ·E ·B·εp · dV, (16)

subjected to Huber-Mises-Hencky yield condition:

Φ(B · εp + σ
e)− σy ≤ 0 in V ; (17)

the remaining denotations in formulas (13)–(17) are as follows: σe – momentary, time dependent,
elastic solution determined as if the considered body deformed purely elastically when subject to
the considered loading program, σy – yield stress, n – vector normal to the boundary, E – elastic
compliance matrix.
One should note here, that the matrix B, being the solution of minimization problem (13)–(15),

is square, but singular, with rank substantially smaller than dimension, and thence the matrix
BT ·D ·B in (16), corresponding to A in (1) is singular as well.
In order to check the efficiency of the proposed optimization routine on nonlinear minimization

problems varying in the number of decision variables as well as in the number of constraints, the
test problem (13)–(17) was solved several times for different levels of external load (σe) applied in
different locations and resulting in different plastic zone sizes. Based on the applied load level solved
cases may be assigned into three groups, characterized by similar number of decision variables and
nonlinear constraints, and further called low, medium and high (Table 1, Figs. 2–5).
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Table 1. Summary of cases solved.

Case group

Constraint thickness 0.0001 Constraint thickness 0.0000001

Average number of
Average ratio

Average number of
Average ratio

variables constraints variables constraints

high 268 48 5.523 351 66 5.337

medium 212 37 5.714 272 50 5.456

low 180 31 5.902 247 44 5.623

Fig. 2. Averaged single iteration time in seconds (vertical axis) for a rough estimate (left) and high quality
results (right) versus the ratio of decision variables to constraints (horizontal axis).

Fig. 3. Speedup ratio of augmented over standard procedure (vertical axis) versus a ratio of decision
variables to constraints (horizontal axis).
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Fig. 4. Global (left) and local (right) hydrostatic pressure based error measure (vertical axis) versus case
(load location) number (horizontal axis).

Fig. 5. Global (left) and local (right) Huber-Mises-Hencky equivalent stress based error measure (vertical
axis) versus case (load location) number (horizontal axis).

Since the solution quality depends highly on the setting of termination criterion (Kuhn-Tucker
optimality criterion [1] is used here), as well as constraint thickness setting, and these in turn
affect the calculation time to a large degree, two termination settings were used. In order to get
a rough estimate of plastic zone location and size, the threshold values of 0.0001 for constraint
thickness and 0.001 for the allowed length of the normalized search direction vector projection onto
active constraints (Kuhn-Tucker criterion) were applied based on previous experience [16], while
the settings 1000 times smaller were used for both parameters in order to get a final, high quality
estimate of both plastic strains εp and residual stresses σr. The average ratio of decision variables
to constraints for each group of cases solved is indicated in columns 4 and 7 of Table 1, as it was
found out during tests, that this ratio constitutes a good single characteristic of all the optimization
problems solved so far.
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A subset of solved cases belonging to high case group is presented in Tables 2 and 3. In these
tables STD denotes standard set of optimization routines, while the SVD denotes the singular value
decomposition augmented set of optimization routines applied to solve the test problem. All the
calculations were performed on a 2.40 MHz Intel Pentium 4M CPU equipped PC class computer
operating under control of Windows XP SP3 operating system. Respective total calculation times
in seconds (including initialization and execution of SVD algorithm in the SVD case), time gain
factor of augmented procedure over standard one and average times per iteration, computed as
total execution time divided by the number of iterations required to arrive at the optimum solution
with assigned precision as well as the ratio of one iteration time using the augmented (SVD)
approach over standard (STD) approach are indicated in Table 2 (rough estimate of a solution
in an underestimated plastic zone) and Table 3 (high precision results in a correctly sized plastic
zone). Actual calculation times were determined in milliseconds through appropriate calls to system
clock from within the code.

Table 2. Rough estimate solution calculation times (in seconds).

Case
Decision
variables

Constraints Iterations
Total
time

Speed up
Time per
iteration

Ratio

STD
212 37

3776 113.68
3.94

0.0301
3.38

SVD 283 28.83 0.1019

STD
220 38

2072 65.16
2.42

0.0315
5.29

SVD 163 26.86 0.1648

STD
224 39

3735 117.36
4.32

0.0314
4.32

SVD 200 27.16 0.1358

STD
228 40

4709 175.03
8.39

0.0372
3.66

SVD 153 20.84 0.1362

STD
344 65

3005 219.92
2.77

0.0732
3.55

SVD 304 79.19 0.2605

STD
392 74

9738 1002.55
3.26

0.1030
2.54

SVD 1172 307.41 0.2623

Table 3. High quality solution calculation times (in seconds).

Case
Decision
variables

Constraints Iterations
Total
time

Speed up
Time per
iteration

Ratio

STD
328 60

4367 289.51
1.47

0.0663
3.08

SVD 964 196.70 0.2041

STD
336 62

7586 532.05
3.34

0.0701
3.01

SVD 754 159.16 0.2111

STD
340 63

6466 453.40
2.15

0.0701
3.29

SVD 913 210.85 0.2309

STD
344 65

9852 758.04
3.98

0.0769
3.02

SVD 819 190.58 0.2327

STD
348 66

14346 581.17
4.30

0.0405
5.04

SVD 661 135.11 0.2044

STD
412 79

71019 4151.93
6.49

0.0585
4.61

SVD 2375 639.92 0.2694
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Average single iteration times for all of the cases solved with limited accuracy versus a ratio of
decision variables to constraints in a considered case are depicted on the left side of Fig. 2, while
the same data for all the cases solved with high precision are depicted on the right side of the same
figure. The trend lines depicted in this figure seem to indicate that for the standard procedure
single iteration calculation times are fairly independent of the problem size. For the augmented
procedure trend lines depicted on left and right parts of this figure seem to indicate, that for the
low quality results the calculation times increase with decreasing decision variables to constraints
ratio while the opposite is true for high quality results. This may be a disadvantage while trying
to solve even bigger optimization problems, as it was found out during previous tests [16, 17] (cf.
also Tables 2 and 3) that in absolute terms the most time consuming to solve with high precision
were problems having low number of decision variables to constraints ratio.
A ratio of total calculation time needed to solve given case using standard approach over aug-

mented approach versus a ratio of decision variables to constraints in a considered case is depicted
in Fig. 3. Trend lines depicted seem to indicate that while for low accuracy results the overall
speedup ratio is low and fairly constant, for high accuracy results it seems to increase with de-
creasing decision variables to constraints ratio. This is encouraging, as it shows, that in spite of the
trend observed in Fig. 2 for high quality results (growing single iteration time) a total calculation
time gain is still possible, due to the lower global number of iterations performed.
Due to practical considerations [4] two measures are introduced to compare the differences

between the residual stress distributions obtained using standard and augmented approaches. First
one is based on hydrostatic pressure:

σH = tr(σ)/3, (18)

while the second one is based on Huber-Mises-Hencky equivalent stress:

σHMH =
1√
2
·
√

(σxx − σyy)
2 + (σyy − σzz)

2 + (σzz − σxx)
2 + 6 ·

(
τ2xy + τ2yz + τ2zx

)
. (19)

Both measures are applied in both global (20) and local (21) forms:

σG
X =

∫

A

|(σr
STD − σ

r
SV D)X | · dA

∫

A

|(σr
STD)X | · dA

, (20)

σL
X =

max (σr
STD − σ

r
SV D)X

max
(
σ
r
STD

)
X

. (21)

The following denotations hold in the two above formulas: σr
STD – residual stress tensor in the

considered body determined using standard procedure, σr
SV D – residual stress tensor in the con-

sidered body determined using SVD augmented procedure, σG
X – global hydrostatic pressure based

(X = H) or Huber-Mises-Hencky equivalent stress based (X = HMH) error measure, σL
X – local

hydrostatic pressure based (X = H) or Huber-Mises-Hencky equivalent stress based (X = HMH)
error measure.

Results presented in Figs. 4 and 5 for global (left) and local (right) measures, grouped in series
based on applied load levels, indicate that there is no noticeable loss of accuracy in the final results
when the singular value decomposition augmented optimization procedure is used. This may be
confirmed as well by the analysis of sample σzz residual stress distributions presented in Fig. 6.
For better readability those distributions are split into positive (tensile) and negative (compressive)
parts.
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Fig. 6. σzz residual stress contour plots in a railhead, standard results (left) versus SVD augmented
results (right); contour levels 21 MPa for compression and 14 MPa for tension.

6. CONCLUDING REMARKS

An idea of speeding up the solution of nonlinear optimization problem through application of SVD
as a preconditioner was proposed. An application of the computer routines developed according to
this idea is transparent to the user of the optimization code. Numerical tests performed indicate,
that effectiveness of the method tends to improve with problem size, when high precision solution
is sought, on average reaching more than four times speedup factor with maximum of almost 6.5
achieved for the largest problem solved. When only a rough estimate of a solution is sought, though
the speedup factor varies between almost 2.5 and almost 8.5, there is no such a general trend in
data, and the speedup factors for the smallest and the largest problems solved are relatively close,
averaging 3.5.
The final solution quality of the optimization problem considered as the test example remained

the same for SVD enabled and SVD disabled solution approaches, as long as the same termination
criteria were applied.
Although the current application of proposed procedure is limited to quadratic functions, the

basic idea is quite general and the SVD decomposition proposed here may be applied to any
objective function, which may be locally approximated by a quadratic one. Unfortunately this may
be achieved at the expense of efficiency, as every change of local approximation will necessitate new
SVD decomposition, constituting the most time consuming single step of the algorithm. This does
require additional testing.
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