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Controller placement problem (CPP) is a significant technological challenge in software
defined network (SDN). Deployment of a properly designed SDN-based network is re-
quired to detect optimal number of controllers for enhancing the network’s performance.
However, the best possible controller placement for enhancing the network’s performance
faces many issues. To solve the CPP, a novel technique called the hybrid evolutionary al-
gorithm of optimized controller placement (HEA-OCP) in SDN environment is introduced
to increase network’s performance by different network topologies. In the proposed model,
optimized controller placement using improved multi-objective artificial fish optimization
is employed to improve data transmission and reduce latency. Controller placement can
be determined using an undirected graph based on a variety of factors, including propa-
gation delay, load balancing capabilities and bandwidth, fault tolerance and data transfer
rate, and a variety of other factors. For each controller, the fitness value is calculated
over multi-criteria functions. The optimizer’s performance can be improved with the use
of Gaussian chaotic maps. In large-scale SDN networks using HEC-OCP, the algorithm
dynamically analyzes the optimal number of controllers and the best connections between
switches and controllers. As a result, the overall network performance is improved and
the delay minimization-based controller placement strategy is obtained. The simulation
of HEA-OCP with existing methods is conducted by a network topology dataset of vari-
ous metrics, namely packet delivery ratio, packet drop rate, throughput, average latency,
and jitter. The proposed HEA-OCP improves the packet delivery and throughput with
reduced average latency, and packet drop ensures more instantaneous communications in
real-time applications of SDN for better decision-making.
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1. Introduction

SDN decouples the control plane from the data plane. SDN controllers are
adequate for this task as they provide a single, unified surface. However, a sin-
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gle controller controlling all the switches in a large network will increase the
switch-to-controller latency. Therefore, an optimum number of controllers are
necessary in SDN. SDNs have several applications such as security services,
network intelligence and monitoring, compliance and regulation-bound appli-
cations, distributed application control and cloud integration, and many high-
performance applications such as geographic information system (GIS), engineer-
ing, computer-aided design (CAD), etc. [1]. Multiple physical controllers provide
a logically centralized control plane in SDN, which is one of its distinguishing
features. There is a critical design challenge known as the controller placement
problem (CPP) in the SDN environment. It has an effect on the network’s la-
tency, flow setup time, network availability, controller load balancing, and energy
consumption.

Almost every element of SDN, from state distribution choices to fault toler-
ance to network performance, is affected by the CPP, which has launched a lot
of studies [2]. The decoupled control plane’s functionalities and the network’s
state distribution choices are both affected by the CPP. The CPP presents it-
self as trivial issue that is primarily about selecting the number and location of
controllers to be placed in the network. This involves: (i) choosing the optimal
number of controllers for a particular network, (ii) the location of these con-
trollers in a certain area, and (iii) assigning function of controllers to switches
and designing an efficient and accurate control plane inside the network. In the
following paragraphs, brief summaries of the most significant research approaches
of CPP in SDN are given.

A simulated annealing-based failure foresight capacitated CPP (SA-FFCCPP)
was introduced in [3] to minimize latencies from all switches to the respective
backup controllers. The placement of controllers in this model was not consid-
ered for the load balancing capability to minimize packet loss. A garter snake
optimization capacitated CPP (GSOCCPP) was developed in [4] achieving lower
execution time. But the designed optimization technique failed to consider vari-
ous factors, such as fault tolerance and bandwidth, in obtaining minimum delay.

A comprehensive mathematical formalization of CPP was presented in [5] for
decreasing latency. However, the performance of the latency-aware CPP was
not considered. A parameter optimization model (POM) was introduced in [6]
for CPPS with minimum delay. But it failed to obtain reasonable SDN controller
placement method.

Varna-based optimization (VBO) was introduced in [7] for consistent con-
troller issue that minimizes total average latency. However, the developed method
was unsuccessful in considering numerous constraints to solve CPP in SDN.
Fault-tolerance meta-heuristic-based scheme was developed in [8] for CPP, max-
imizing the network connectivity and load balancing among the controllers. But,
the performance of latency was not minimized.
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A scalable algorithm was designed in [9] for controller placement issues on
large-scale networks. The developed algorithm decreased the latency, but a higher
throughput was not achieved. Two new maximum entropy-based clustering tech-
niques were introduced in [10] for controller placement. However, the heuristic
technique was unsuccessful in improving optimal controller placement. Efficient
meta-heuristic-based RALO was developed in [11] for multi-objective controller
placements. However, the method was unsuccessful in reducing switch-to-control-
ler delay.

A nature-inspired population-based meta-heuristic algorithm was developed
in [12]. But it failed to consider the different network topologies for conducting
the performance test. The heuristic algorithm based on Dijkstra and K-means
algorithm was developed in [13]. However, the efficient heuristic algorithm was
not implemented to enhance the performance of controller placement.

A new controller placement algorithm was designed in [14] for reducing delay
and convergence rate. However, the designed algorithm failed to apply other
metrics for further minimizing the propagation latency. A CPP was solved in [15]
for multi-link failures to decrease the number of controller delays (variables).
However, it failed to use the heuristic algorithm to reduce the overheads. A salp
swarm optimization algorithm (SSOA) was developed in [16] to improve the
optimizer’s performance and minimize the execution time. But the network’s
latency was not minimized.

A reliable CPP model (RCPPM) was introduced in [17] to maximize the
reliability of SDN. However, the different objective functions were not consid-
ered for enhancing the SDN network. The ant colony system with external
memory (ACS-EM) method was introduced in [18] for SDN-based device-to-
device communications. Nevertheless, the reliability of the algorithm was not
improved.

Near-optimal algorithms were introduced in [19] to minimize the low com-
putational complexity for solving the placement problem. However, the latency-
aware CPP was not considered. RCPPM was also presented in [20] to improve
the reliability of SDN. However, the designed model failed to consider the multi-
objective optimization.

An optimized submodularity-based approach was developed in [21] to solve the
CPP with minimum latency. But, the higher data delivery ratio between the swit-
ches and controller was not achieved. A new simulated annealing genetic algo-
rithm was designed in for resolving CPP and minimizing latency. Yet, the de-
signed method was not efficient in considering the multiple objective functions.

In order to overcome the existing issues in SDN, a novel HEA-OCP is intro-
duced in this work with the following contributions:

• To solve CPP in SDN, a novel HEA-OCP is introduced based on the multi-
criteria functions.
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• The proposed HEA-OCP technique finds the optimum controller on the
SDN environment based on the metrics such as propagation latency, load
balancing capability, bandwidth, fault tolerance, and data transmission
rate.

• To better regulate the reduction of local optima, chaotic maps extract
random parameters based on a Gaussian distribution. Using unimodal and
multimodal optimization, a logistic chaotic map is determined to be the
best fit for the problem at hand.

• Finally, a simulation test is conducted with the network topology for verify-
ing HEA-OCP and existing methods. HEA-OCP is explained with various
parameters.

The article consists of the following sections. Section 2 presents a description
of the novel HEA-OCP through a different process. Section 3 introduces the
simulation settings with the network topology. Section 4 provides the results
and discussions for three different methods. Section 5 presents the conclusion of
this article.

2. Methodology

SDN is a decoupled structural design that enables an administrator to make
a customizable and controllable network. In the control plane, controllers are
required to calculate and direct switches. By the SDN scenario, choosing an
optimal number of controllers with operation location is termed a controller issue.
The HEA-OCP is introduced based on the multi-criteria functions for controlling
the controller issue. By replicating the emergent behavior of biological swarms,
swarm intelligence (SI) algorithms have been shown to be a complete solution for
solving complicated optimization problems. Data science is gaining popularity,
and this necessitates the administration and quick analysis of large amounts of
data. Because of their dynamic features, device mobility, wireless connection, and
information supply, SI’s intelligent algorithms can address the complex issues of
IoT systems. In this work, the SI algorithm helps to avoid overfitting problems.

Figure 1 describes the basic block diagram of the proposed HEA-OCP tech-
nique to solve the CPPs. The switches are represented in the red, the controllers
are in blue, and the lines are referred to as links in the network topology. The
controller placement is organized into an undirected graphical model G(s, e)
where s indicates switches and e indicates a link between switches. A number of
controller’s C = ϕ1, ϕ2, ..., ϕn are located in an optimal way in the SDN-based
infrastructure. To improve the speed of data transmission, an optimum position
of the controller is identified based on multi-objective functions, such as propa-
gation latency (αlat), load balancing capability (αload), bandwidth (αbw), fault
tolerance (αft), and data transmission rate (αDTR).
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Fig. 1. Basic block diagram of the proposed HEA-OCP technique.

By applying the proposed HEA-OCP technique, the oppositional learned
multi-objective artificial fish optimization is a swarm intelligence processed based
on the population and stochastic search. In contrast to the existing optimization
algorithm, the proposed algorithm is the best technique. Oppositional learned ar-
tificial fish swarm is a meta-heuristic technique based on behaviors, such as prey,
swarm, and follow. Instead of relying on one other for knowledge, individuals
can allocate more of their limited mental resources to other activities, which can
lead to higher levels of cognitive performance when working together. Perceived
competition for food, which is more prevalent in larger groups when foraging is
involved, can cause this effect. It has been widely accepted in previous studies
that fish shoals have better cognitive abilities because of this individual-level ex-
planation. It is possible to use the sigmoid function for various fish movements in
a swarm to better detect movement and community detection in a swarm. Here,
the artificial fish was associated with the number of controllers, and food supply
represents the multi-objective functions, such as propagation latency (αlat), load
balancing capability (αload), bandwidth (αbw), fault tolerance (αft), and data
transmission rate (αDTR). Opposition learning is applied to select better indi-
viduals. The main aim of the opposition-based learning concept is to consider
the estimates or actions that attempt the opposite for enhancing accuracy with
lesser time complexity.

The optimization introduces a population of n number of artificial fishes (i.e.,
controllers) in the search space (i.e., SDN),

C = ϕ1, ϕ2, ..., ϕn. (1)

After the initialization, the opposition-based learning concept is applied to
generate an opposite population for obtaining the global optimum solution com-
pared to an arbitrary one. Hence, the opposite population is

C ′ = ai + bi − C, (2)
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where C indicates the current population, where ai and bi symbolize the small-
est and highest value of dimensions, respectively. After opposite and current
population generation, fitness is measured based on multi-objective functions.

In networking, the propagation latency is calculated by the time taken to
transmit data via the controller to the switches. It is measured as:

αlat = time (TD), (3)

where αlat denotes a latency, TD is the data transfer from the controller to the
switches. Load balancing capability (αload) between the switch and controllers
is measured based on the load factor. It is referred to as the proportion of load
to the highest requirement at a particular time,

Lf =
avgL
maxD

, (4)

where Lf indicates a load factor, avgL represents an average load, and maxD
indicates a maximum demand. A load factor less than 1 is represented by a con-
troller that has better load balancing capability.

Bandwidth is the significant objective function denoted as the maximum rate
of data transfer capacity in a particular amount of time from the controller to
the switches,

αbw =
maxD

S
, (5)

where αbw indicates a bandwidth, maxD [bits] represents the maximum rate
of data transfer in the unit bits, and S denotes time in second. Therefore, the
bandwidth is measured in terms of mega or gigabits per second [Mbps or Gbps].

Fault tolerance is the ability of a controller to maintain the operation properly
when a failure occurs. The failure rate is calculated by the proportion of number
of failures that occurred, to the entire operating time. It is formulated as follows:

Rf =
number of failures
total operating time

, (6)

where Rf indicates a failure rate. When the minimum failure rate occurs, the
controller has better fault tolerance capability. The data transmission rate is
the significant metric defined as the amount of data transmitted over a channel
in a particular unit of time. The unit of data transmission rate is bits/s.

Based on the above-said resources, the optimal location of controller place-
ment is identified through the fitness measure. The fitness is measured as:

βF = [arg minαlat] && [arg max {αload, αbw, αft, αDTR}] , (7)
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where βF indicates a fitness function, arg min denotes an argument of a min-
imum function, and arg max indicates an argument of a maximum function.
The controller with minimum latency and maximum load balancing capacity,
bandwidth, fault tolerance and data transfer rate are selected as optimal. Where
‘&&’ indicates the logical ‘AND’ operation and this operation must satisfy both
conditions.

Next, current and opposite populations are collective, and the categorization
of fishes is performed by fitness value. Lastly, n greatest artificial fishes were
chosen via population for additional transforming. Based on the fitness value,
different behaviors of the artificial fish’s positions, such as search or prey, swarm,
and follow, are performed to discover the best global solution.

2.1. Search or prey behavior

In the proposed HEA-OCP technique, the search for prey is a fundamental
behavior of fish search for food source. The artificial fish find the awareness of
food in water through vision or sense. Let us consider the present point of fish
is qi and the new point of fish is qi(t+1). If the fitness is greater than the other, i.e.,
βF (ci) < βF (cj), the search behavior is executed and updates the new position
based on the Gaussian chaotic map. The chaotic act as a method helps to avoid
the proposed optimization staying in the local optimum position for a longer
time. Therefore, a novel Gaussian chaotic map introduces into a search behavior
an algorithm to improve global convergence and search efficiency

qi(t+1) = qi + ϑ ∗R ∗ exp

(
−1

2
∗
(

(qj − qi)
‖qj − qi‖

)2
)
, (8)

where qi(t+1) indicates an updated position, qi represents the current position,
R denotes a random number from (0 < r < 1), ϑ specifies a footstep of the
fish movement in a random positive number, and ‖qj − qi‖ indicates the visual
distance between the position of the j-th fish and the position of the i-th fish.

2.2. Swarm behavior

The second one is the swarm behavior, where all the fishes are combined
during the movement to avoid the risks while searching for the food source.

The swarm behavior of the artificial fish is accomplished when the βF (cc) <
βF (ci)&&

(
nn
n < ω

)
, where βF (cc) is the fitness of artificial fish at the center

position, nn indicates a current neighborhood, n represents a total number of
fish, and ω denotes a crowd factor value from 0 to 1. It means the center fish has
a higher fitness value than the other. Subsequently, the position of the artificial
fish gets updated based on the center fish,



546 J. Hemagowri, P. Tamil Selvan

qi(t+1) = qi + ϑ ∗R ∗ exp

(
−1

2
∗
(
‖qc − qi‖

σ

)2
)
, (9)

where qi(t+1) indicates an updated point of fish, qi represents the current point,
R denotes a random number varied from zero to one (0 < R < 1), δ denotes a step
of the fish moving, which is a random positive number, ϑ specifies a footstep of
the fish movement in a random positive number, and ‖qc − qi‖ is the visual
distance between the position of the j-th fish and the central position of the fish
in its current neighborhood.

2.3. Follow behavior of the fish

Finally, in the moving behaviors, when a single fish or a number of fish
find their food, the neighborhood follows and reaches the food. If βF (cc) <
βF (ci)&&

(
nn
n < ω

)
, then the following behavior is implemented and the position

is updated as follows:

qi(t+1) = qi + ϑ ∗R ∗ exp

(
−1

2
∗
(
‖qmax − qi‖

σ

)2
)
, (10)

where qi(t+1) denotes the updated point of fish, qi represents the current point,
qmax denotes a position having the best fitness function value, R denotes a ran-
dom number varied from zero to one (0 < R < 1), ϑ denotes a step of the fish
movement which is a random positive number, and ‖qmax − qi‖ is the visual dis-
tance among point of i fish and point of fish having the best fitness function.
Now, replace the older fish with a new optimal one based on fitness. This process
is repeated until the maximum iteration gets reached.

Figure 2 illustrates the flowchart of the HEA-OCP to find the best optimal
controller for improving the data transmission. The algorithmic process of HEA-
-OCP is given in Algorithm 1.

The algorithmic process of HEA-OCP in an SDN network. The current popu-
lation of controllers and the opposite population were initialized arbitrarily. The
multi-criteria function is assessed for each controller. The fitness is calculated
based on the multi-criteria. The fitness values of the two controller populations
were then used to sort them. Afterward, the most recent greatest n controllers are
chosen to determine the best possible global solution. After then, the swarm’s co-
ordinates are recalculated using a Gaussian chaotic map to identify the world’s
most effective controllers for dealing with the placemat problem. Once the max-
imum iteration is achieved, the operation is repeated. Finally, the optimal con-
troller is obtained for improving the data delivery and minimize latency.
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Fig. 2. Flow chart of HEA-OCP.

Algorithm 1. HEA-OCP
Input: Dataset, Number of controllers C = ϕ1, ϕ2, ..., ϕn,
Output: Find optimal controllers for placement
Begin

1. For each controller ϕi

2. Initialize the current population of C = ϕ1, ϕ2, ..., ϕn

3. Initialize opposite populations C ′

4. Calculate the fitness βF
5. Merge the two populations C and C ′

6. Sort the controllers based on fitness
7. Select current best ‘n’ controllers
8. While (t < Max_iter)
9. if (βF (ci) < βF (cj)) then

10. Update the position qi(t+1) using Eq. (10)
11. else if

(
βF (cc) < βF (ci)&&

(nn
n
< ω

))
then

12. Update the position qi(t+1) using Eq. (10)
13. else if

(
βF (cc) > βF (ci)&&

(nn
n
< ω

))
then

14. Update the position qi(t+1) using Eq. (10)
15. end if
16. Replace the old controllers with the current best
17. end while
18. t = t+ 1

19. end for
20. Return (best optimal solution)

End
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3. Simulation scenario

In this section, a simulation of the HEA-OCP and existing SA-FFCCPP [3]
and GSOCCPP [4] is carried out in an NS-2 network simulator using a general
Bayesian network (GBN) network topology. This dataset includes simulation re-
sults of bandwidth transmitted, the total amount of packets transferred, the total
number of packets dropped, and the average delay in every source-destination
pair variance of delay (jitter) through packets that are transferred. Simulation
parameter settings are presented in Table 1.

Table 1. Simulation parameters.

Simulation parameters Values
Network simulator NS2.34
Number of nodes (switches) in GBN
network topology

17

Number of data packets 25, 50, 75, 100, 125, 150, 175, 200, 225, 250
Number of controllers 5
Simulation time 300 s
Protocol DSR
Number of runs 10

3.1. Simulation outcomes

Let us consider the GBN network topology dataset for conducting the simu-
lation with 17 nodes (switches) and 5 controllers.

As shown in Fig. 3, the switches and controller are organized into an undi-
rected graphical model. As shown in Fig. 5, blue color-circulated nodes are called
controllers, whereas the red-colored nodes are called switches.

Fig. 3. Switch and controller placement.
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Figure 4 shows the optimum controller placements using Gaussian chaotic
map multi-criteria fish swarm optimization technique. As shown in Fig. 4 green
color circulated nodes 9, 17, and 15 are selected as optimum controller place-
ments.

Fig. 4. Optimum controller placement.

Finally, the data transmission is performed via the optimal controller place-
ment from source to destination. As shown in Fig. 5, the yellow-colored node
represents the source and destination.

Fig. 5. Data transmission.

4. Comparative results analysis

The experimental results of HEA-OCP, SA-FFCCPP [3], and GSOCCPP [4]
are discussed with respect to various performance metrics, namely packet deliv-
ery ratio, packet drop rate, throughput, average latency, and jitter.
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4.1. Impact of packet delivery ratio

Packet delivery ratio is the number of packets effectively delivered via source
to destination pair in the network. It is measured by

RPD =
ND
N
∗ 100, (11)

where RPD indicates packet delivery ratio, N indicates the number of data pack-
ets, and ND indicates the number of packets successfully delivered. Packet de-
livery ratio is calculated in percentage [%].

Table 2 details the packet delivery ratio with different data packets. The
amount of data packet counts range of 25, 50, 100, ..., 250. The experimen-
tal result of three different methods: HEA-OCP, existing SA-FFCCPP [3], and
GSOCCPP [4] are used for calculating the packet delivery ratio. It reveals that
the HEA-OCP increases the packet delivery ratio more than the existing meth-
ods. The experiment is carried out by 25 data packets, and the packet deliv-
ery ratio is 88% by the proposed HEA-OCP, whereas 84% of the packet delivery
ratio was obtained in [3], and 80% of the packet delivery ratio was obtained
in [4]. For each method, ten outcomes are observed by various numbers of data
packets. The average of ten outcomes indicates that the proposed HEA-OCP
enhances the packet delivery ratio by 3% and 5%, compared with the other two
state-of-the-art methods, respectively.

Table 2. Packet delivery ratio.

Number of data packets
Packet delivery ratio [%]

HEA-OCP SA-FFCCPP GSOCCPP
25 88 84 80
50 90 88 84
75 92 89 87

100 90 87 85
125 91 90 88
150 89 87 85
175 92 90 89
200 90 88 86
225 92 90 89
250 91 89 86

The packet delivery ratio using three different methods: HEA-OCP, and ex-
isting SA-FFCCPP [3] and GSOCCPP [4], is illustrated by the amount of data
packets revealed in Table 2, the number of data packets consumed in the hori-
zontal direction and packet delivery ratio observed in the vertical direction. The
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graphical plot indicates that the packet delivery ratio of the proposed HEA-
-OCP is higher than the existing methods. Because of this enhancement, it was
used to select the optimal controller placement with multi-criteria functions. The
optimal controller placement in the network topology enhances data delivery.

4.2. Impact of packet drop rate

The packet drop rate was measured as the number of packets dropped via
source to destination pair in the network. The packet drop rate is estimated
below:

Packet drop rate =
number of packets dropped

N
∗ 100, (12)

where N indicates the number of data packets. It is expressed in percentage [%].
Table 3 presents the performance results of the packet drop rate versus the

number of data packets transferred through 25–250. The above results prove that
the packet drop rate of HEA-OCP is smaller than the other baseline techniques.
For 25 data packets measured in the experiment, the packet drop rate of HEA-
-OCP is found to be 12%, 16% and 20% using SA-FFCCPP [3] and GSOCCPP [4],
respectively. The packet drop rate is reduced by 19% and 32% compared to
SA-FFCCPP and GSOCCPP, respectively.

Table 3. Packet drop rate.

Number of data packets
Packet drop rate [%]

HEA-OCP SA-FFCCPP GSOCCPP
25 12 16 20
50 10 12 16
75 8 11 13

100 10 13 15
125 9 10 12
150 11 13 15
175 8 10 11
200 10 12 14
225 8 10 11
250 9 11 14

The packet drop rate of the proposed HEA-OCP is minimized by existing
methods. Because of this enhancement, it was used to select the optimum con-
troller placement with higher bandwidth as well as better load balancing capa-
bility. The data delivery was improved as well as packet drop was reduced.



552 J. Hemagowri, P. Tamil Selvan

4.3. Impact of throughput

It is measured as the number of data packets effectively distributed to the
destination in a specific time. Throughput is measured as follows:

Throughput =
amount of data packets delivered

time
. (13)

It is computed in bits per second [bps].
Table 4 provides the comparative analysis of the throughput of the three

different methods HEA-OCP, SA-FFCCPP [3], and GSOCCPP [4]. By utilizing
the proposed HEA-OCP technique, 183 bits of data packets were transferred in
1 second. But the throughput of SA-FFCCPP and GSOCCPP is observed at
171 bps and 160 bps, respectively. This significant improvement is achieved by
selecting the optimum controller with higher bandwidth capacity and data trans-
mission rate. Besides, efficient bandwidth-aware data transmission is performed
for continuous data flow. The throughput of data transmission was improved
from source to destination.

Table 4. Throughput.

Size of data packets [KB]
Throughput [%]

HEA-OCP SA-FFCCPP GSOCCPP
15 183 171 160
30 259 218 205
45 382 326 310
60 493 412 390
75 595 547 480
90 680 610 560

105 782 720 670
120 859 810 770
135 1050 925 880
150 1263 1035 960

4.4. Impact of average latency

Average latency is referred to as the time consumed for transferring data
packets via the controller to switches

Lavg = N ∗ t (TD), (14)

where Lavg indicates an average latency in ms, N indicates the number of data,
and t (TD) represents time consumed with the algorithm for data transmission.
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Table 5 illustrates the average latency with respect to the number of switches.
From the observed results, the average latency is considerably reduced by HEA-
-OCP compared to the other two methods. The overall results indicate that the
HEA-OCP technique decreases the average latency by 20% compared to SA-
-FFCCPP [3] and by 37% compared to GSOCCPP [4].

Table 5. Average latency.

Number of switches
Average latency [ms]

HEA-OCP SA-FFCCPP GSOCCPP
2 0.18 0.25 0.4
4 0.32 0.5 0.7
6 0.45 0.62 0.8
8 0.67 0.76 0.95

10 0.8 0.98 1.4
12 1.2 1.5 1.7
14 1.6 1.8 2.1
16 2.1 2.3 2.5

From the results, the average latency of the HEA-OCP was comparatively
more reduced than the two existing methods. The reason for enhancement is
used to apply the Gaussian chaotic map multi-criteria fish swarm optimization
to select the controller placement with better load balancing capacity and higher
bandwidth. This increases the data delivery with minimum latency.

4.5. Impact of jitter

Jitter defined as the variation of data packet transmission via source to des-
tination in time delay. It is computed by

J = |d(i)− d(i− 1)| , (15)

where J indicates jitter, d(i) denotes a current delay, and d(i − 1) indicates
a delay of packet transmission. It is measured in milliseconds [ms].

Table 6 indicates that the performance results of the jitter were attained
in a variation of delay with the number of data packets transferred from source
node 25–250. Jitter is an important parameter employed for detecting the source
node that extends the time of data delivered by the destination. HEA-OCP
is reduced by baseline methods. Jitter improves all three methods owing to
which the packet counts are improved. For the experiment, 25 data packets
measured the jitter of 6 ms utilizing HEA-OCP. SA-FFCCPP [3] and GSOC-
CPP [4] produced the jitter of 8 and 10 ms, respectively. The jitter was reduced
by 16% and 26% compared to SA-FFCCPP and GSOCCPP, respectively.
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Table 6. Jitter.

Number of data packets
Jitter [ms]

HEA-OCP SA-FFCCPP GSOCCPP
25 6 8 10
50 8 10 12
75 10 12 14

100 11 13 15
125 12 14 16
150 13 16 18
175 15 17 20
200 17 19 21
225 18 20 22
250 19 22 24

5. Conclusion

An efficient controller placement problem for the distributed network was pre-
sented. This paper discussed a novel technique of HEA-OCP used for increasing
the network of optimal controller placement. HEA-OCP uses the oppositional
learned chaotic multi-criteria fish swarm optimization for solving the optimum
CPP on multi-criteria functions, namely propagation latency, load balancing
capability, bandwidth, fault tolerance, and data transmission rate. Simulations
were conducted in the GBN network topology dataset with different optimization
techniques. The performance assessment illustrates that the HEA-OCP tech-
nique is improved by a high packet delivery ratio, lesser latency, smaller jitter,
and reduced packet drop rate.
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