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This paper deals with hp-type adaptation in the discontinuous Galerkin (DG) method. The DG method
is formulated in this paper with a non-zero mesh skeleton width, which leads to a version of the method
called in this paper the interface discontinuous Galerkin (IDG) method. In this formulation, the mesh
skeleton has a finite volume and special finite elements are used for discretization. The skeleton spatial
calculations are performed using the finite difference or mid-values formulas which are based on the shape
functions of the neighbouring finite elements. The Dirichlet boundary conditions are applied using a non-
zero width of the material between the outer boundary and a finite element aligned with the boundary.
Next, the paper discusses the mesh refinement of hp type. In the IDG method, the mesh does not have to
be conforming. The Zienkiewicz-Zhu (ZZ) error indicator is adapted in the IDG method for the purpose of
mesh refinement. The paper is illustrated with two-dimensional examples, in which the mesh refinement
for an elliptic problem is performed.
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1. INTRODUCTION

In this paper a formulation of the discontinuous Galerkin (DG) method which involves a finite
element mesh skeleton with a non-zero thickness and afterwards the hp-type mesh refinement based
on the adapted Zienkiewicz-Zhu (ZZ) error estimation are presented. In this approach, the mesh
skeleton has a finite volume and creates a kind of interface between the neighbouring finite elements.
This is why, in order to distinguish this approach from the standard discontinuous Galerkin (SDG)
approach [3], the formulation presented in this paper is named the interface discontinuous Galerkin
(IDG) method. The IDG method presented in this paper is an original approach. However, the idea
that lies behind the IDG method has already been successfully developed and applied to XFEM
modelling [31] or to coupling of finite element method with meshless method [30].

In this paper, the IDG method is applied to a scalar elliptic problem in three-dimensional (3D)
domains. However, the examples presented in this paper are for two-dimensional cases. A typical
example of scalar elliptic problem is heat transport, which has been chosen here for analysis.
Although the paper is focused on elliptic problems, the approach can be directly applied to other
kinds of problems.

The origin of the discontinuous Galerkin (DG) method goes back to 1970s [37], when the method
was first introduced and applied to the numerical solution of a neutron transport PDE problem.
The DG method has been subsequently explored since its introduction by many researchers and
numerous DG methods have been developed, for example: the total variation bounded Runge-
Kutta DG method [4, 11–13, 52], the local DG method [9, 10, 32], the interior penalty (IPDG)
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method, the mixed DG method, the central DG method, the hybridizable DG method, the space-
time DG method, the positivity-preserving DG method, and many others. The DG method has also
been applied to some particular problems in structural mechanics, e.g., see [18, 28, 36], in fracture
modeling [42, 43, 45] or in modeling of the phase flow in porous media [19, 40]. The DG method
has been found sufficiently flexible for hp refinement and applicable to various partial differential
equations, e.g. [5, 6, 23, 25, 53].

Various techniques are used in the DG method for a posteriori error estimation. For example,
in [1] the computable a posteriori error bounds are obtained for the error measured in DG-norm
and the broken energy seminorm. In, [20] the authors deal with convection-diffusion equations dis-
cretized with the non-symmetric interior penalty and the local discontinuous Galerkin methods in
which a posteriori estimate obtained using duality technique and residual-based error estimators.
The convection-diffusion problem is also considered in [26], but in this case a residual-based a poste-
riori error estimator is proposed that is subsequently applied for a fully automated hp-refinement.
The hyperbolic problems were analysed in [29] for which the a posteriori error bounds were derived
by employing a duality argument. In [33], as an error estimator the authors used a residual based
error estimator that is applied to the convection dominated non-linear, quasi-stationary diffusion-
convection-reaction equations. A survey concerning the error measure for the DG method in elliptic
problems is presented in [41]. The Zienkiewicz-Zhu (ZZ) gradient recovery method presented in [55]
has been applied in this paper for error estimation and, afterwards, for mesh refinement. The ZZ
indicator is widely used in the standard finite element analysis [8, 54, 56, 57]. The gradient recovery
approach is simple and quite effective, and this is why it is quite often used for mesh refinement,
e.g., [22, 35]. The gradient recovery technique is unsuitable for the discontinuous Galerkin method,
because of the discontinuous approximation fields, but there are some studies that try to tackle
this problem [14, 44]. However, the ZZ method can be quite easily applied in the IDG method. In
order to adapt the ZZ approach in the IDG method, the additional integrals over the mesh skeleton
and outer boundary have to be considered. In this paper the mesh refinement is non-conforming
in the sense that the so-called ‘hanging’ nodes may appear in the refinement procedure. This gives
a great flexibility in mesh refinement because the refinement can be reduced to one single element
without the necessity to disturb the neighbouring elements. Neither the approximation based on
incremental hierarchical shape functions [17, 46, 50] nor the constrained approximation [16, 51],
required in the locally p- and h-adaptive FEM, respectively, are necessary in IDG. Instead the
so-called skeleton elements are employed, which are introduced in this paper. The effectiveness of
the ZZ algorithm is shown in the examples in which the hp-type mesh refinement is performed on
the IDG method solution.

The DG method on non-conforming meshes is a quite new research topic and there are not too
many papers concerning this problem. In the DG methods, the mortar approach is applied [5, 34]
or some techniques are used to stabilize the solution [7, 21, 24, 27]. In the IDG method, no special
technique is needed in the case of mesh non-conformity. Due to the skeleton finite elements in the
IDG method the problem with non-conforming mesh is naturally overcome.

The problem which is the focus of this paper is defined in the following Sec. 2. Section 3 presents
formulation of the IDG method. Section 4 deals with boundary conditions in the IDG method. The
IDG method is completed in Sec. 5 where the approximation is introduced which results in the
algebraic system of equations. The details related to Zienkiewicz-Zhu error indicator are presented
in Sec. 6. In Sec. 7 the refinement procedure is described. In the IDG method, the width of the
mesh skeleton has to be properly evaluated and this is the topic of Sec. 8. The presented approach
is illustrated with examples in Sec. 9. Finally, the paper ends with some conclusions.

2. FORMULATION OF THE PROBLEM

The IDG method is presented for an elliptic problem with the physical interpretation of stationary
heat transport. The considered problem is defined in the domain Ω with outer boundary Γ . The
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studied three-dimensional model starts with the well-known local form of heat flux balance equation,
the Fourier law as well as essential and natural boundary conditions

divq = r, in Ω,

q = −k∇Θ, in Ω,

Θ = Θ̂, on ΓΘ,

q⋅n = ĥ, on Γq,

(1)

where Θ is the temperature field, q the heat flux vector, r the heat source density, k is the heat
conductivity parameter of a thermally isotropic material, Θ̂ and ĥ are prescribed values of temper-
ature and heat flux, respectively, ΓΘ and Γq are the parts of Γ where the temperature Θ̂ and the

heat flux ĥ, respectively, are prescribed. The heat flux vector is connected with the temperature
field by means of Fourier’s law included in (1).
The problem in its strong formulation, Eq. (1), can be rewritten in the weak form with a vΘ

test function

∫
Ω

vΘdivqdΩ −∫
Ω

vΘr dΩ = 0, ∀vΘ. (2)

When the integration by parts is performed on the first component in Eq. (2), it results in

∫
Γ

vΘq⋅ndΓ − ∫
Ω

∇vΘ⋅qdΩ − ∫
Ω

vΘr dΩ = 0, ∀vΘ. (3)

Equation (3) is the starting point for the IDG method which is presented in the next section.

3. FORMULATION OF THE INTERFACE DISCONTINUOUS GALERKIN METHOD

In order to obtain the approximate solution of the problem in Eq. (3) the domain under consider-
ation is structured by a finite element mesh. The mesh consists of a set of cells (finite elements),
nodes and inter-element borders. The set of the inter-element borders is called in this paper the
finite element skeleton Γs, or skeleton in short. The cells, mesh skeleton and outer border are
presented in Fig. 1, where the finite element mesh is constructed of these objects.

Fig. 1. Division of finite element mesh into: i) set of finite element interiors, ii) outer boundary Γ ,
iii) mesh skeleton Γs.

In the standard FEM, two adjacent elements share a common segment of the skeleton and also
common nodes as well as degrees of freedom associated with those nodes. In the approach presented
in this paper it is assumed that the skeleton has a non-zero width and each segment of the skeleton
is discretized by a finite element. The skeleton finite element is rectangular in 2D or parallelepiped
in 3D. In Fig. 2, the discretization together with the discretized skeleton are schematically depicted.
As can be seen in this figure, the regular finite elements are diminished adequately to the width
of the skeleton. The skeleton finite elements play a role of inter-element interfaces that can ‘glue’
together the regular finite elements of different order or join together the non-conforming finite
elements, which is shown in Fig. 3.
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Fig. 2. The configuration of two neighbouring finite element cells with the skeleton finite element
of width w.

Fig. 3. Example of non-conforming finite element cells with the skeleton finite elements.

The domain volume Ω can be expressed as the sum of the volumes of all the regular finite
elements ΩE and the skeleton volume Ωs

Ω = ΩE ∪Ωs, ΩE ∩Ωs = ∅. (4)

The skeleton volume, on the other hand, can be expressed by the mesh skeleton Γs and its
width w:

Ωs = Γs ×w. (5)

In the regular finite elements, the construction of shape functions and the integration schemes
are performed in a standard way. However, the skeleton finite elements are treated in a special
way, regarding interpolations, integrations and assembling procedures. By definition, the skeleton
finite elements are very thin, which is why all the computations regarding those elements are
performed in the so-called skeleton local coordinates (ns, ss,rs), where ns is unit vector normal to
skeleton segment, and ss and rs are mutually perpendicular unit vectors that are tangent to the
skeleton segment. In 2D, the local coordinates are reduced to two unit vectors, namely (ns, ss).
The orientation of the skeleton local coordinates is in fact arbitrary, providing that it meets the
requirements stated above.
Remembering the relation in Eq. (4) the integrals over volume Ω from Eq. (3) can be written

as the sum over these two volumes:

∫
Γ

vΘq⋅ndΓ − ∫
ΩE

∇vΘ⋅qdΩ − ∫
Ωs

∇vΘ⋅qdΩ − ∫
ΩE

vΘr dΩ −∫
Ωs

vΘr dΩ = 0. (6)



The hp nonconforming mesh refinement in discontinuous Galerkin finite element method. . . 47

Furthermore, on the basis of Eq. (5) the integrals over the mesh skeleton can be expressed as
the integrals over the skeleton surface Γs and over the skeleton width w:

∫
Γ

vΘq⋅ndΓ − ∫
ΩE

∇vΘ⋅qdΩ − ∫
Γs

∫
w

∇vΘ⋅qdw dΓ − ∫
ΩE

vΘr dΩ −∫
Γs

∫
w

vΘr dwdΓ = 0. (7)

On the basis of the assumption that the skeleton width w is very small (about thousands of
times smaller than the size of the adjacent elements), the integrals over w can be expressed as
a product of the skeleton width and the value of the integral over the skeleton surface:

∫
Γ

vΘq⋅ndΓ − ∫
ΩE

∇vΘ⋅qdΩ − ∫
Γs

w∇vΘ⋅qdΓ − ∫
ΩE

vΘr dΩ − ∫
Γs

wvΘr dΓ = 0. (8)

The third integral in (8) is over the skeleton surface, and in this integral the scalar product of
the test function gradient and the heat flux vector have to be calculated on the skeleton surface Γs.
The scalar product can be calculated in the global coordinates as well as in the skeleton local
coordinates:

∇vΘ⋅q = ∂vΘ

∂x
qx +

∂vΘ

∂y
qy +

∂vΘ

∂z
qz = ∂vΘ

∂n
qn +

∂vΘ

∂s
qs +

∂vΘ

∂r
qr for x ∈ Γs, (9)

where
∂vΘ

∂n
,
∂vΘ

∂s
and

∂vΘ

∂r
are the partial derivatives in ns, ss and rs directions, respectively, and

qn, qs and qr are the components of the heat flux vector in the skeleton local coordinates.
The skeleton finite elements are not typical because there are no standard shape functions in the

elements. As can be seen in Eq. (8), the integrals concerning the skeleton finite elements are limited
to the integrals along the skeleton segments. In order to compute this kind of integrals, we need
to have approximation of required quantities just in the segment points, i.e., on the mid-surface of
the skeleton elements. This is achieved by the values on both sides of the skeleton finite elements.
As a result in the last integral in (8), the test function vΘ is expressed as a mean value: vΘ = ⟨vΘ⟩.
On the other hand, the derivatives in the skeleton normal direction can then be approximated with
the help of the finite difference expression regarding Fourier’s law, namely

qn = −k [[Θ]]
w

,
∂vΘ

∂n
= [[vΘ]]

w
, (10)

where the operators [[⋅]] and ⟨⋅⟩ are defined as follows:
[[f]] (x) = f(x + 0.5wns) − f(x − 0.5wns) = f+ (x) − f− (x)
⟨f⟩ (x) = 0.5 ⋅ (f+ (x) + f− (x)) for x ∈ Γs. (11)

The other components of the inner product in Eq. (9) are approximated by mid-values. Keeping
in mind Fourier’s law, the scalar product in Eq. (9) can now be written in the following form:

∇vΘ⋅q = − k

w2
[[vΘ]][[Θ]] − k ⟨∂vΘ

∂s
⟩ ⟨∂Θ

∂s
⟩ − k ⟨∂vΘ

∂r
⟩ ⟨∂Θ

∂r
⟩ for x ∈ Γs. (12)

The derivatives in ss and rs directions from Eq. (12) can be written by means of gradients in
the global coordinates, and this results in

⟨∂vΘ
∂s
⟩ = ⟨∇vΘ⟩ ⋅ ss, ⟨∂vΘ

∂r
⟩ = ⟨∇vΘ⟩ ⋅ rs,

⟨∂Θ
∂s
⟩ = ⟨∇Θ⟩ ⋅ ss, ⟨∂Θ

∂r
⟩ = ⟨∇Θ⟩ ⋅ rs.

(13)
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Finally, the scalar product in Eq. (12) is expressed by the values of temperature, test function
and their gradients on the edges of neighbouring regular finite elements

∇vΘ⋅q = − k

w2
[[vΘ]][[Θ]] − k ⟨∇vΘ⟩ ⋅ ss ⊗ ss⋅ ⟨∇Θ⟩ − k ⟨∇⟩ vΘ⋅ rs ⊗ rs⋅ ⟨∇Θ⟩

= − k

w2
[[vΘ]][[Θ]] − k ⟨∇vΘ⟩ ⋅ (ss ⊗ ss + rs ⊗ rs) ⋅ ⟨∇Θ⟩

= − k

w2
[[vΘ]][[Θ]] − k ⟨∇vΘ⟩ ⋅Qsr ⋅ ⟨∇Θ⟩ for x ∈ Γs, (14)

where Qsr is defined as

Qsr = ss ⊗ ss + rs ⊗ rs = I − ns
⊗ns. (15)

Substituting relation in Eq. (14) into Eq. (8) in the weak form, we obtain the following result:

∫
Γ

vΘ q⋅ndΓ + ∫
ΩE

k∇vΘ⋅∇ΘdΩ +∫
Γs

k

w
[[vΘ]][[Θ]]dΓ

+ ∫
Γs

wk ⟨∇vΘ⟩ ⋅Qsr ⋅ ⟨∇Θ⟩ dΓ − ∫
ΩE

vΘr dΩ − ∫
Γs

w ⟨vΘ⟩ r dΓ = 0. (16)
In order to compare Eq. (16) with the adequate equation obtained in SDG [3], such an equation

is presented below

∫
Γ

vΘ q⋅ndΓ + ∫
Ω

k∇vΘ⋅∇ΘdΩ + ∫
Γs

σ[[vΘ]]⋅ [[Θ]]dΓ
− ∫
Γs

k[[vΘ]]⋅ ⟨∇Θ⟩ dΓ + κ∫
Γs

k ⟨∇vΘ⟩ ⋅ [[Θ]]dΓ − ∫
Ω

vΘr dΩ = 0, (17)

where σ is the so-called discontinuity penalisation parameter. The σ parameter is taken to be of
order O(h−1), where h is the characteristic element size in a mesh, e.g., see [47, 48]. This parameter
is set in this paper as σ = σ0

h2
where σ0 is constant. The value of the penalisation parameter is

assessed to be large enough to enforce continuity of the solution and, on the other hand, not too
large to avoid numerical instabilities. The κ parameter has the values +1, −1 or 0. Depending on
these values the following DG schemes arise:
κ = −1 – symmetric interior penalty Galerkin (SIPG) [49],

κ = 1 – nonsymmetric interior penalty Galerkin (NIPG) [39],

κ = 0 – incomplete interior penalty Galerkin (IIPG) [15].
It can be noticed that in Eq. (16), obtained by the IDG method, the fourth and sixth integrals

are new in comparison to the standard approach. On the other hand, in the SDG method the fourth
and fifth integrals in Eq. (17) do not appear in Eq. (16). The third integrals in Eqs. (16) and (17)
are quite similar, except the penalty parameter, which in Eq. (16) is substituted by k/w.
4. BOUNDARY CONDITIONS

The boundary conditions of Neumann and Dirichlet types, which are defined in Eq. (1), are written

in Eq. (16) by means of the integral over the whole outer boundary Γ , i.e., ∫
Γ

vΘ q⋅ndΓ . The

Dirichlet boundary condition can be applied in a way typical of FEM, i.e., by assigning appropriate
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values to degrees of freedom on the nodes on the ΓΘ boundary. However, a different approach has
been chosen in this paper, which is based on the integral along ΓΘ.
The integral along the outer boundary can be written as the sum of two integrals: over Γq and

ΓΘ, and the Neumann boundary condition can be directly substituted here:

∫
Γ

vΘ q⋅ndΓ = ∫
Γq

vΘ ĥdΓ + ∫
ΓΘ

vΘ q⋅ndΓ. (18)

In order to apply the Dirichlet boundary conditions, it is assumed that along ΓΘ there is a thin
layer of material between the boundary and the regular finite elements, which is discretized by the

skeleton finite element of the
1

2
w width. Under these assumptions, the normal part of the heat flux

can be expressed with the help of Fourier’s law:

q⋅n = qn = −k Θ̂ −Θ1

2
w
= −2k Θ̂

w
+ 2k

Θ

w
on ΓΘ. (19)

Equations (18) and (19) are substituted to Eq. (16), as a result the weak form equation changes
to the final form, in which both kind of boundary conditions are considered:

∫
Γq

vΘ ĥdΓ − 2 ∫
ΓΘ

vΘ
k

w
Θ̂ dΓ + 2 ∫

ΓΘ

k

w
vΘΘdΓ +∫

ΩE

k∇vΘ⋅∇ΘdΩ +∫
Γs

k

w
[[vΘ]][[Θ]]dΓ

+ ∫
Γs

wk ⟨∇vΘ⟩ ⋅Qsr⋅ ⟨∇Θ⟩ dΓ − ∫
ΩE

vΘr dΩ − ∫
Γs

w ⟨vΘ⟩ r dΓ = 0. (20)
Equation (20) can be written in the form of equality of bilinear and linear forms

A(Θ, vΘ) = F (vΘ), ∀vΘ, (21)

where

A(Θ, vΘ) =∫
ΩE

k∇vΘ⋅∇ΘdΩ + ∫
Γs

k

w
[[vΘ]][[Θ]]dΓ

+ ∫
Γs

wk ⟨∇vΘ⟩ ⋅Qsr⋅ ⟨∇Θ⟩ dΓ + 2 ∫
ΓΘ

k

w
vΘΘdΓ,

F (vΘ) = ∫
ΩE

vΘr dΩ + ∫
Γs

w ⟨vΘ⟩ r dΓ −∫
Γq

vΘ ĥdΓ + 2 ∫
ΓΘ

k

w
vΘ Θ̂ dΓ.

(22)

5. APPROXIMATION

In order to solve Eq. (21), the solution function (temperature Θ) and the test function have to
be approximated. The Bubnov-Galerkin approach is selected for this approximation, which means
that both of the functions are approximated in the same manner. The approximation on ΩE is
done in a similar way as in the standard FEM, but now the shape functions are not continuous
along adjacent regular finite elements.
The approximation in the e-th single regular finite element Ωe is constructed with the help of

the local basis functions and the local degrees of freedom

Θe =Φe
Θ Θ̌e in Ωe, (23)
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where Φe
Θ
is the matrix of shape functions for the e-th element and Θ̌e is the vector of local

degrees of freedom associated with the e-th regular element. The matrix of shape functions Φe
Θ
is

the same as in FEM and their support is limited to Ωe. Using the approximation in (23), the global
approximation can be constructed that considers all the regular finite elements ΩE

Θ =ΦΘΘ̌ in ΩE , (24)

where

ΦΘ = [Φ1

Θ
Φ2

Θ
. . . ΦN

Θ
] , Θ̌ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̌1

Θ̌2

⋮

Θ̌N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

and N is the number of regular finite element cells.
It can be noticed that approximation in Eq. (24) takes into account the approximation of regular

finite elements. Due to the fact that the skeleton finite elements are very thin, they can be neglected
in the spatial discretization. However, the existence of skeleton finite elements is already taken into
account in Eqs. (21) and (22).
The temperature gradient is approximated by the shape functions gradients

∇Θ =BΘΘ̌ on ΩE , (26)

where BΘ = ∇ΦΘ.
In the integrals over Γs the temperature jumps or mean-values are required, which are obtained

by the following approximations

[[Θ]] = [[ΦΘ]]Θ̌, ⟨Θ⟩ = ⟨ΦΘ⟩ Θ̌, ⟨∇Θ⟩ = ⟨BΘ⟩ Θ̌ on Γs. (27)

For example, let us suppose that there are two neighbouring regular finite elements and we want
to calculate the jump or mean values of matrix of shape functions at point xs that belong to the
skeleton segment, see Fig. 4. Then the jump and mean value of shape functions matrix reads:

[[ΦΘ]](xs) = [0 . . . −Φe1
Θ
(x−s ) . . . 0 . . . Φe2

Θ
(x+s ) . . . 0] ,

⟨ΦΘ⟩ (xs) = 0.5 [0 . . . Φe1
Θ
(x−s ) . . . 0 . . . Φe2

Θ
(x+s ) . . . 0] . (28)

Fig. 4. Illustration of point positions to calculate the jump or mean values of shape functions
of two neighbouring regular finite elements.
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When the approximations in equations from (24) to (27) are substituted to Eq. (21), the linear
system of equation is obtained:

KΘ̌ = F, (29)

where

K =∫
ΩE

kBTΘBΘ dΩ + ∫
Γs

k

w
[[ΦΘ]]T[[ΦΘ]]dΓ

+∫
Γs

wk ⟨BΘ⟩TQsr ⟨BΘ⟩ dΓ + 2∫
ΓΘ

k

w
ΦTΘΦΘ dΓ,

F = ∫
ΩE

ΦTΘr dΩ + ∫
Γs

⟨ΦΘ⟩Tw r dΓ −∫
Γq

ΦTΘĥdΓ + 2 ∫
ΓΘ

ΦTΘ
k

w
Θ̂ dΓ

(30)

It should be noted that the approximations presented in Eqs. (24)–(26) are common for the
IDG and SDG methods. On the other hand, the approximations in Eq. (27) are true only for
the IDG method due the different definition of the jump mid-value operators in comparison to the
SDG method (see [38]).

6. THE ZIENKIEWICZ-ZHU INDICATOR

Zienkiewicz and Zhu introduced in [55] the so-called ZZ error indicator which has been applied to
an elasticity problem. In this paper, the ZZ estimator is used for a heat transport problem using
the discontinuous approximation, as presented in Sec. 5.
In the standard procedure, the ZZ error estimation is based on the integral over the whole

domain, which is performed by the sum of integrals over all the finite elements. In the version of
ZZ error estimation which is applied in this paper, the integral over the whole domain is written
as the sum of integrals over all the regular finite elements volume ΩE and over the mesh skeleton
volume Ωs. The integrals over Ωs are treated in the same manner as in Eq. (8), i.e., as the integrals
over Γs and the integrand multiplied by w. In the ZZ approach, the outer boundary is also treated

as a skeleton but with a
1

2
w width. In such a case, the ZZ error estimator in the version applied in

this paper is based on the following error measure:

ǫ = 1∣ΩE ∣ ∫
ΩE

(q − qh)T (q − qh) dΩ + 1∣Ωs∣ ∫
Ωs

(q − qh)T (q − qh) dΩ, (31)

where q is the exact heat flux vector and qh is the approximated heat flux vector defined as
qh = −kBΘΘ̌, where ∣ΩE ∣ and ∣Ωs∣ are the volumes of ΩE and Ωs subdomains. In the ZZ approach,
the exact flux vector is substituted by the so-called smoothed vector q∗

ǫzz = 1∣ΩE ∣ ∫
ΩE

(q∗ − qh)T (q∗ − qh) dΩ + 1∣Ωs∣ ∫
Ωs

(q∗ − qh)T (q∗ − qh) dΩ. (32)

The vector q∗ is unknown at this stage of the analysis and set in such a way as to minimize the
ǫzz error.
After taking into account Eq. (5) the second integral in Eq. (32) can be written in the following

form:

∫
Ωs

(q∗ − qh)T (q∗ − qh) dΩ = ∫
Γs

w

2

∫
−w

2

(q∗ − qh)T (q∗ − qh) dw̃dΓ, (33)
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where w̃ is the auxiliary scalar variable that is used for integration along the skeleton thickness.
The skeleton width is very small, thus it can be assumed that the heat flux changes linearly across
the skeleton. The inner integral can be numerically calculated using two-point Gauss’ integration
rule without the loss of accuracy, that is

∫
Γs

w

2

∫
−w

2

(q∗ − qh)T (q∗ − qh) dw̃ dΓ

= ∫
Γs

w

2

⎛⎝(q∗ − qh)T (q∗ − qh)⎞⎠
RRRRRRRRRRRw̃1

+
w

2

⎛⎝(q∗ − qh)T (q∗ − qh)⎞⎠
RRRRRRRRRRRw̃2

dΓ, (34)

where w̃1, w̃2 are the Gauss integration points that read

w̃1 = −w
2

1√
3
, w̃2 = w

2

1√
3
. (35)

The smoothed heat flux is approximated with the same discontinuous shape functions as for the
temperature field in (24), but now we need to remember that the heat flux is a vector

q∗ =Φqq̌
∗, (36)

where q̌∗ is the vector of degrees of freedom for the smoothed heat flux q∗. The matrix of shape
functions for the flux vector Φq is constructed in similar manner as shown in Eqs. (23) to (25), but
now for the flux vector. Equation (36) can be rewritten for each component of the vector q∗, then
the same matrix of shape functions as for temperature can be used

q∗α =ΦΘq̌
∗
α, α = x, y, z. (37)

However, the approximation presented in Eq. (36) is used for the further analysis.
The vector of smoothed heat flux field degrees of freedom q̌∗ can now be calculated by minimising

the error in Eq. (32)

∂ǫzz

∂q̌∗
= 0 ⇒ Mq̌∗ = Z, (38)

where matrix M and vector Z are defined as follows:

M =∫
ΩE

ΦTq Φq dΩ + ∫
Γs

w

2

⎛⎝ΦTq Φq

⎞⎠
RRRRRRRRRRRw̃1

+
w

2

⎛⎝ΦTq Φq

⎞⎠
RRRRRRRRRRRw̃2

dΓ. (39)

On the basis of Eq. (11) it can be easily noticed that

Φq

RRRRRRRRRRRw̃1

= s1Φ−q + s2Φ+q , Φq

RRRRRRRRRRRw̃2

= s2Φ−q + s1Φ+q , (40)

where s1 =
√
3 + 1

2
√
3
, s2 = 1 − s1. In consequence, the matrix M in Eq. (39) has the form

M = ∫
ΩE

ΦTq Φq dΩ +∫
Γs

w

2
(s1Φ−q + s2Φ+q )T (s1Φ−q + s2Φ+q ) dΓ

+ ∫
Γs

w

2
(s2Φ−q + s1Φ+q )T (s2Φ−q + s1Φ+q ) dΓ. (41)
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The right-hand side vector in Eq. (38) is defined in the following way:

Z = −∫
ΩE

kΦTq BΘ dΩ Θ̌ −∫
Γs

k
w

2
(s1Φ−q + s2Φ+q )T (s1B−Θ + s2B+Θ) dΓ Θ̌

− ∫
Γs

k
w

2
(s2Φ−q + s1Φ+q )T (s2B−Θ + s1B+Θ) dΓ Θ̌. (42)

The system of equation in Eq. (38) with definitions in Eqs. (41) and (42) has a nice compact
form for all coefficients of the flux vector q∗. However, its size is thrice the size of the problem in
Eq. (29). It can be easily noticed, keeping in mind the approximation in Eq. (37), that Eq. (38)
can be rewritten as three independent sets of equations for each component of the heat flux vector

M
αq̌∗α = Zα, α = x, y, z, (43)

where

Mx =My =Mz = ∫
ΩE

ΦTΘΦΘ dΩ +∫
Γs

w

2
(s1Φ−Θ + s2Φ+Θ)T (s1Φ−Θ + s2Φ+Θ) dΓ

+ ∫
Γs

w

2
(s2Φ−Θ + s1Φ+Θ)T (s2Φ−Θ + s1Φ+Θ) dΓ, (44)

and

Zα = −∫
ΩE

kΦTΘBα
Θ dΩ Θ̌ −∫

Γs

k
w

2
(s1Φ−Θ + s2Φ+Θ)T (s1Bα

Θ

−
+ s2B

α
Θ

+) dΓ Θ̌

− ∫
Γs

k
w

2
(s2Φ−Θ + s1Φ+Θ)T (s2Bα

Θ

−
+ s1B

α
Θ

+) dΓ Θ̌, (45)

where Bα
Θ
is defined as Bα

Θ
= ∂ΦΘ

∂α
.

The smoothed heat flux q∗ =Φqq̌
∗ obtained from Eq. (38) or Eq. (43) is then used for measuring

the error for particular finite element cells, i.e.:

ǫezz = 1∣Ωe∣ ∫
Ωe

(Φqq̌
∗
+ kBΘΘ̌)T (Φqq̌

∗
+ kBΘΘ̌) dΩ, (46)

where Ωe is the volume of the e-th finite element cell, ǫezz is the error measure for e-th finite element
cell. It should be noted that in Eq. (32) the error measure is for the whole domain and is constructed
in order to find the smoothed flux q∗. Then the element error measure can be directly calculated
from Eq. (46).

7. THE hp-TYPE MESH REFINEMENT

Two types of finite elements are used in the approach presented in this paper: the regular finite
elements and the skeleton finite elements. The regular finite elements are typical as standard finite
elements shape functions are used for approximation in these elements. The skeleton finite elements
are not typical finite elements since they are very thin and the approximation is based on the
values on both sides of the skeleton segment. The skeleton finite elements can quite easily join
neighbouring elements with a different approximation order, e.g., the three-node finite element
with ten-node finite element, like in Fig. 5. It is also possible to use this method to join non-
conforming finite element cells, also with different number of nodes. This is illustrated in Fig. 6,
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Fig. 5. The configuration of two neighbouring finite element cells with different approximation order.

Fig. 6. The configuration of three neighbouring non-confirming finite element cells
with different numbers of nodes.

where three neighbouring non-conforming finite elements with different number of nodes are joined
by skeleton finite elements.
This paper is concerned with the refinement of h-type or p-type as well as the combined hp-type

refinement. By using the skeleton finite elements, all types or refinements are easy to preform.
In a situation when we want to refine a certain single element, the refinement procedure can be
reduced to this particular element.
The refinement procedure is based on the ZZ error measure. For each element the error in

Eq. (46) is calculated and then this element can be refined. The refinement procedure is as follows:

1. Prepare the finite element mesh, each element is of the first order.

2. Find the approximated solution for the mesh.

3. Find the smoothed heat flux q∗.

4. Set two error limits β1 and β2 where β1 < β2.
5. Compute ǫezz for each element.

6. Each element is divided into two elements when ǫezz > β1.
7. When ǫezz > β2, the elements are additionally p refined (the order of the elements is increased).
8. Afterwards, the problem is solved on the refined mesh and subsequently the points 1–8 are
repeated.

9. The procedure stops when no element in the mesh is refined.

In the examples presented in Subsec. 9.1, a two-dimensional problem is presented. For those
problems, the triangular meshes are used, which are refined using the procedure described in
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this section. For p refinement, the following sequences of triangular elements are used: 1st order
(3 nodes), 2nd order (6 nodes), 3rd order (10 nodes), 4th order (15 nodes), 5th order (21 nodes),
6th order (28 nodes). 7th order (36 nodes). The high-order finite elements are constructed using
the procedure presented in [2]. In a case when an element reaches 7th order of approximation the
element can be only h-type refined.
The hp refinement technique presented in this paper is easy to implement and it is not restrictive

in the sense of element division or raising the element order. The refinement of one element does
not influence the neighbouring elements. The usage of special finite elements, i.e., skeleton finite
elements, gives a great opportunity for a combined hp refinement. This technique gives a great
flexibility in the mesh refinement, which can be easily adjusted to fit particular requirements.

8. EVALUATION OF THE SKELETON WIDTH

In order to obtain correct results from the IDG method, the skeleton width w has to be properly
assessed. Its value depends strictly on the mesh density. A short analysis concerning the skeleton
width is presented in this section, which finally results in a practical method of w assessment.
Similar approach is presented in [30] where the interface region is applied for coupling two computer
methods. In this work the procedure is adjusted to the skeleton width assessment.
In the IDG method, the volume of the finite element mesh consists of the volume of all finite

elements ∣Ωs∣ and the volume of the mesh skeleton ∣ΩE ∣. It is required that the skeleton volume
should be much smaller in relation to the volume of the regular finite elements. This can be
expressed as

∣Ωs∣∣ΩE ∣ = ǫ(h), (47)

where h is the characteristic length of finite element in the mesh, and ǫ is a small value which
depends on the element size. After the analogous analysis presented in [30] the value of the skeleton
width can be expressed as

w = C ⋅ h ⋅ (arctan (h
ρ
− 1) + π

2
), (48)

where C and ρ are constants independent of the mesh density. These constants need to be set for
the considered problem. In this work they are set as C = 1 ⋅ 10−7 and ρ = 1 ⋅ 10−1.

9. EXAMPLES

9.1. Benchmark example

The presented approach is illustrated in this section with a two-dimensional exponential example.
In the considered example, a square domain [−1, 1] × [−1, 1] is taken into account, in which the
exact solution of an elliptic problem is given as

Θ(x, y) = exp (−5 ⋅ (x − y)2 − 5x2) . (49)

The function, shown in Fig. 7, has large gradients and this is why it is suitable for numerical tests.

The function is used to construct the boundary problem in the form

−∆Θ = f(x, y), (50)

where the Dirichlet boundary conditions are applied on all the outer boundaries, and the values are
taken from the function in Eq. (49). The problem defined in (50) can be seen as a heat transport
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Fig. 7. The exact solution of the considered example Θ(x, y) = exp(−5 ⋅ (x − y)2 − 5x2).

problem, where the thermal conductivity is k = 1 and the heat source r is given by the function
f(x, y), which is defined as

f(x, y) = (−50x2 + 60xy − 20y2 + 3) ⋅ exp (−5 ⋅ (x − y)2 − 5x2) . (51)

The considered example is solved using the IDG method for various finite element meshes and
of various order of finite elements. The results obtained from the IDG method are compared with
the exact solution in Eq. (49).
In our benchmark example, two kinds of errors are considered: the temperature error ǫΘ and

flux error ǫq which are defined as follows:

ǫΘ = ∣Θ −Θh∣, ǫq =
√(q − qh)T (q − qh), (52)

where Θh and qh are the approximate temperature and heat flux, respectively.
Two kinds of global errors in L2 norm and H1 semi-norm, i.e.,

∥ǫΘ∥2 =
¿ÁÁÀ∫

Ω

(ǫΘ)2 dΩ, ∣ǫΘ∣1 =
¿ÁÁÀ∫

Ω

(ǫq)2 dΩ (53)

are used in the following analysis. In some cases, the global effectivity index is also traced, which
is defined as

Iǫ =

¿ÁÁÀ∫
Ω

(ǫ∗q )2 dΩ
¿ÁÁÀ∫

Ω

(ǫq)2 dΩ
, (54)

where ǫ∗q is defined as

ǫ∗q =
√(q∗ − qh)T (q∗ − qh). (55)

The analysed problem has been solved using uniform meshes (i.e., the size of all finite elements in
a mesh is about the same) but with various densities so that convergence of the IDG method could
be verified. The convergence test has been done for finite elements of the first order up to sixth
order. The results are presented in Fig. 8, where the errors are shown in relation to the element
size. The results show the well-known tendency that the finite elements of higher order not only
give more accurate results but also a higher convergence rate.
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a) b)

Fig. 8. Convergence of the IDG method for finite elements of the 1st up to 6th order:
a) convergence in L2 norm, b) convergence in H1 semi-norm.

In the next step, the problem in Eq. (50) has been solved on the non-conforming rough mesh
(21 cells) but with elements of the 1st to 6th order. The results are presented in Fig. 9, and they
show that the IDG method gives results that are continuous, even for non-conforming meshes and
for elements with various order.

Subsequently, three cases are presented illustrating the mesh non-conformity. Figure 10 presents
the results obtained where the finite element mesh is regular and conforming. In this case, the
first-order finite elements are used (i.e., three degrees of freedom – dofs). The results are in fact
the same as the results obtained by the standard FEM. In the second case, the non-conforming
mesh is used. The mesh and the results obtained for the mesh are presented in Fig. 11. In this
case, all finite elements are of the first order (3 dofs). In spite of the fact that the finite elements
are non-conforming, the results are continuous for the whole domain. This shows that in the IDG
method the mesh conformity is not required. In the third case, the non-conforming mesh is used
and the finite elements in the mesh are of various orders. Figure 12a presents the mesh for the third
case with the number of dofs for finite elements. In this case, the finite elements with 3, 6 and 28
dofs are used and the elements of the first order (3 dofs) are located next to the 6-th order finite
elements (28 dofs). The results presented in Fig. 12b are continuous, even though two first order
finite elements are surrounded by 6-th order finite elements. This means that in the IDG method,
the h-type and p-type refinements can be done quite easily. The arbitrary element in the mesh can
be divided or its order can be raised without any change in the neighbouring elements.

The same example as the one defined in Eqs. (49)–(51) is used for illustrating the h-type and
hp-type refinements. The refinement procedure outlined in Sec. 7 is applied here for h and, sub-
sequently, for hp refinement. In the refinement procedure, the error measure for each element is
calculated accordingly to Eq. (46). The h-type refinement procedure with the uniform order p for
finite elements is assumed. The calculations have been performed for p = 1, 2, 3. In each case, the
initial mesh consisted of 32-element triangular mesh and 12 refinement steps have been performed.
The β1 parameter has been set to 5 ⋅ 10−5, 1 ⋅ 10−7 and 1 ⋅ 10−10 for p = 1, 2, 3, respectively. Fi-
nally, the h-type refinement was compared to hp-type refinement. In the hp-type refinement the
parameters β1 and β2 were set to 1 ⋅ 10−12 and 1 ⋅ 10−10. In this case, the same initial mesh has
been used and only six refinement steps were sufficient to get the results of high accuracy. The
results are presented in the form of solution convergence in relation to the number of degrees of
freedom (#dof), Fig. 13. Figure 14 shows the effectivity index for h refinement with p = 3 and for
hp refinement. The meshes and errors maps are presented in Figs. 15–17 after 7th and 12th steps
for h-type refinement. For the hp-type refinement, the final mesh with various values of p and error
map is shown in Fig. 18.
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a) Results for p = 1, 3 nodes in a cell, b) Results for p = 2, 6 nodes in a cell,
error = 3.226 ⋅ 10−1 error = 1.165 ⋅ 10−1

c) Results for p = 3, 10 nodes in a cell, d) Results for p = 4, 15 nodes in a cell,
error = 4.259 ⋅ 10−2 error = 1.572 ⋅ 10−2

e) Results for p = 5, 21 nodes in a cell, f) Results for p = 6, 28 nodes in a cell,
error = 5742390 ⋅ 10−3 error = 2.451 ⋅ 10−3

Fig. 9. The results of the IDG method for various orders p on a non-conforming mesh with 21 cells.

a) The mesh in case 1 b) The solution in case 1

Fig. 10. The mesh and solution for case 1. The mesh is conforming and finite elements are of the first order.
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a) The mesh in case 2 b) The solution in case 2

Fig. 11. The mesh and solution for case 2. The mesh is non-conforming and finite elements
are of the first order.

a) The mesh in case 3. b) The IDGM solution in case 3

The colors in the elements represent

the number of dofs

(red – 3 dofs, orange – 6 dofs,

blue – 28 dofs)

Fig. 12. The mesh and solution for case 3. The mesh is non-conforming and finite elements
are of various orders.

a) b)

Fig. 13. Solution convergence in h-type refinement for p = 1, 2, 3 and hp-type refinement:
a) convergence in L2 norm, b) convergence in H1 semi-norm.
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Fig. 14. Effectivity index for h-type refinement with p = 3 and hp refinement.

a) b) c)

d) e) f)

Fig. 15. h-Type refinement for p = 1. The mesh, ǫΘ error map and ǫq error map after 11th step: (a), (b), (c)
and after 16th step: (d), (e), (f).

From the presented results it can be noticed that the h-type mesh refinement procedure for
various p can follow the places with higher errors. The mesh is refined in such a way so that the
error distribution is more or less uniformly distributed in the whole domain. However, for higher
order elements the convergence rate is higher. Similar effect is obtained for hp-type refinement.
However, in this case, the approximate solution convergence is the fastest. For hp-type refinement
the relatively small #dofs is needed for high-quality solution. For example, 21 thousand #dofs was
enough for hp-type refinement to reach error level of 4 ⋅ 10−8 and in h-type refinement and p = 3,
93 thousand #dofs is used to obtain error level of 2 ⋅ 10−7.
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a) b) c)

d) e) f)

Fig. 16. h-Type refinement for p = 2. The mesh, ǫΘ error map and ǫq error map after 11th step: (a), (b), (c)
and after 16th step: (d), (e), (f).

a) b) c)

d) e) f)

Fig. 17. h-Type refinement for p = 3. The mesh, ǫΘ error map and ǫq error map after 11th step: (a), (b), (c)
and after 16th step: (d), (e), (f).
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a) b)

c) d)

Fig. 18. The results of hp-type refinement after the final step: a) mesh, b) p-order map, c) ǫΘ error map,
d) ǫq error map.

9.2. Domain with rectangular hole example

This example illustrates the heat flow through the domain with a hole. Figure 19 shows the domain
with the boundary conditions and the reference solution of the problem. The reference solution has

a) b)

c) d) e)

Fig. 19. Domain with a hole for heat transfer example: a) domain with boundary conditions, b) initial
mesh with 48 finite elements and 144 #dofs and reference solution: c) temperature Θ, d) heat flux qx,

e) heat flux qy .
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been obtained on a very dense mesh with third degree finite elements using a standard FEM. The
heat flux on the vertexes goes to infinity, so the upper and lower boundaries for qx and qy have

a) b)

c) d)

Fig. 20. The results of hp-type refinement after the 4th step: a) mesh with 384 finite elements and
3312 #dofs, b) p-order map, c) heat flux in x direction, d) heat flux in y direction.

a) b)

c) d)

Fig. 21. The results of hp-type refinement after the 6th step: a) mesh with 848 finite elements and
8568 #dofs, b) p-order map, c) heat flux in x direction, d) heat flux in y direction.
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been set on the figures with heat fluxes. For the sake of clarity, all the values in this example are
dimensionless and the conductivity parameter k is set to one.
In this example, the heat flux concentration is observed on the inside hole vertices. So the mesh

refinement should be concentrated around these vertices. In this example, 14 hp-type refinement
steps were performed and the parameters β1 and β2 were set to 1 ⋅ 10

−3 and 1 ⋅ 10−1 respectively.
The results after 4th, 6th and 14th steps are presented in Figs. 20–22, respectively.

a) b)

c) d)

Fig. 22. The results of hp-type refinement after the 14th step: a) mesh with 1424 finite elements and
28752 #dofs, b) p-order map, c) heat flux in x direction, d) heat flux in y direction.

It can be noticed that the mesh is refined just around the hole vertices, thus in the places with
heat flux concentrations. This means that the refinement procedure can find the places with higher
errors and reduce the error levels.

10. CONCLUSIONS

This paper presents the so-called IDG method with its applications to the elliptic problem of
stationary heat transport. The IDG method is quite similar to SDG method that is well known
from the literature. However, the IDG method results in different equations in comparison to SDG
and it is quite simple to adapt the ZZ estimator to the IDG approach. The core idea of the IDG
formulation is that the mesh skeleton has a non-zero thickness and is discretized by special, very
thin, finite elements. Those skeleton finite elements play a role of interfaces between the regular finite
elements. As a result, the considered domain volume is divided into the regular finite elements and
the special skeleton finite elements between them. Due to a small thickness of the skeleton volume,
the integrals over the volume are expressed by integrals along the skeleton surface. Next, all the
quantities in the skeleton volume are substituted by finite difference relations or mid-values over
the skeleton thickness.
In the IDG method, the mesh refinement of h- or p-type, or their combination, is quite simple. In

the refinement of the finite element mesh, the neighbouring elements do not have to be geometrically
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conforming. In addition, there is no problem, if the neighbouring elements are of different orders,
e.g., first and seventh order or so on. The mesh refinement procedure described in this paper is based
on the ZZ error estimation. The ZZ procedure is adopted for the IDG method. In consequence,
a simple and effective algorithm for error estimation, based on element error indicators, is obtained.
It is important to assess the skeleton width and that the width should depend on the size of finite

elements. The technique presented in this paper helps to assess effectively the skeleton thickness
for calculations. The approach presented in this paper can be directly extended to other kinds of
problems, for example, a diffusion-dominated problem or coupled problems. This will be the subject
of our further research.
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