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A new semi-analytical method, discussed in the presented paper, is composed of two stages. Stage A
corresponds to the direct analysis, in which the Lamb Waves Measurements (LWM) technique enables
obtaining an experimental set of points D(f j , kj)Jj=1, where f and k are frequency and wavenumber, re-

spectively. After the preprocessing in the transform space an experimental approximate curve k̃exp(f | D)
can be formulated. In Stage B the identification procedure is simulated as a sequence of direct analy-
ses. The dimensionless Lamb Dispersion curves are computed by means of the dimensionless simulation
curve ksim(f |par), where the vector of plate parameters par = {E, ν, d, ρ} is adopted, in which Young’s
modulus E, Poisson ratio ν, plate thickness d and density ρ are used. The main idea of the proposed
approach is similar to that in the classical method of error minimization. In our paper we propose to
apply the zero error value of relative criterion Reky = 0, cf. formula (15). The formula can be applied for
the identification of a single plate parameter, assuming a fixed value of the other plate parameters. This
approach was used in a case study, in which Stages A and B were analysed for an aluminum plate.

Keywords: Structure Health Monitoring, non-destructive method, Lamb waves, dispersion curve, modes
of vibration, elastic isotropic and homogenous plate, identification of plate parameters.

1. INTRODUCTION

A new approach in engineering, called Structure Health Monitoring (SHM) has been under in-
creasing development for some time now. SHM deals with structures and various processes, closely
related to the life and maintenance of a variety of engineering structures. An important role for
SHM is played by systems which on the base of monitoring or measurements can reflect the actual
state (health) of structures. This permits the control the structure and warning against failures
or dangerous events. Non-destructive methods of structure examination and ‘on line’ methods of
information transmission are especially valuable for SHM, see [5, 7].
From among non-destructive methods, the application of ultrasonic waves is worth emphasizing

for the evaluation of material properties and detection of various defects [12]. In what follows we are
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discussing a comparatively simple problem of the application of the Lamb Waves (LWs) propagation
in thin, elastic and homogeneous plates, cf. [6, 13]. These waves are guided in the vibration plane,
perpendicular to the plate midsurface and they are propagated along a comparatively long distance.
The LW equations make it possible to formulate the Dispersion Curve (DC) which can be written

as a relation k(f), where k is the wavenumber and f is the frequency of vibrations. Unfortunately,
the implicit formulation of DCs as mentioned above is analytically impossible so only numerical
methods can be applied. In the presented paper we are addressing the problem of identification
of ‘a priori’ unknown plate properties, i.e. we are interested in the analysis of DCs written in a
schematic form k(f |par), where f – an independent variable, par = {E, ν, ρ, d} – vector of given
values of plate parameters: Young’s modulus E, Poisson ratio ν, plate density and thickness ρ
and d, respectively.
An approach commonly applied to the identification of vector par components is to find exper-

imentally a DCexp and simulate numerically a corresponding DCsim. Then a measure of distance
‖ksim − kexp‖ is minimized applying different computer methods for variations of par components.
There is a variety of numerical methods supported on FEM, BEM and FDM. What seems es-

pecially numerically efficient are their modifications and combinations, see e.g. Local Interaction
Simulation Approach/ Sharp Interface Model (LISA/SIM), Elastodynamic Finite Integration Tech-
nique (EFIT), cf. [2], Semi-Analytical FE (SEFE), cf. [10] and application of Spectral FEs [6]. Such
approaches are rather “costly” since they need several iterations, related to a great number of
operations.
A novelty of the presented paper lies in the formulation of the DCexp by the application of the

method supported on the basis functions with a set of basis parameters. Then a dimensionless form
of dispersion curves DCsim was adopted in order to formulate the zero value relative error Rey
as a measure of distance between DCsim and DCexp. The application of such a criterion enabled
identification of the value of single plate parameters, fixing other parameters.
The presented approach was numerically proved on a case study in which the testing and com-

putational processes are discussed.

2. LWS IN ELASTIC, HOMOGENEOUS AND ISOTROPIC THIN PLATES

2.1. Some basics on LWs

The 3D waves in elastic solids can be reduced to the analysis of 2D Lamb waves (LWs), guided in
the Lamb plane, see Fig. 1. The plane of vibration (x1, x3) is perpendicular to the tested plate of
the midsurface at (x1, x2) with dimensions L× d and plate thickness d = 2h.

Fig. 1. Lamb wave propagation plane with longitudinal and transverse/shear LWs.
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The following assumptions are adopted:

i) Plain strain at the LWs plane
i.e. the displacement v disappears and

v(x) = 0 for all the points x of the LGW plane; (1)

ii) upper and lower plate stress free surfaces:

σ33 = σ31 = 0 at x3 = ±h. (2)

There is the superposition of the longitudinal and transverse LWs. Applying the Helmholtz
decomposition, the governing motion equations can be written in the following form:

∂2Φ

∂x21
+

∂2Φ

∂x22
=

1

c2L

∂2Φ

∂t2
, (3)1

∂2Ψ

∂x21
+

∂2Ψ

∂x22
=

1

c2T

∂2Ψ

∂t2
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where longitudinal and transverse velocities are written as:

cL =

√
E(1− ν)

2ρ(1 + ν)(1− 2ν)
for longitudinal modes, (4)1

cT =

√
E

2ρ(1 + ν)
for transverse modes. (4)2

In formulas (4) the plate parameters E, ν, ρ and d are written.
The potentials correspond to the following functions:

Φ = (A1 sin px3 +A2 cos px3) exp[i(kx1 − ωt)], (5)1

Ψ = (B1 sin qx3 +B2 cos qx3) exp[i(kx1 − ωt)], (5)2

where besides the parameters p and q:

p2 =
ω2

c2L
− k2, q2 =

ω2

c2T
− k2, (6)

the factors A1, A2, B1, B2 are related to boundary conditions (2). The other parameters are: k –
wavenumber, ω = 2πf – angular velocity ω related to frequency f .
From the condition of nonzero values of the factors A1, A2, B1, B2 the following, two well known

equations of LWs can be derived. They correspond to symmetric and anti-symmetric modes S and
A, see Fig. 2.

S:
tg q h

tg p h
= − 4k2qp

(k2 − q2)2
, (7S)

A:
tg q h

tg p h
= −(k2 − q2)2

4k2qp
. (7A)
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Fig. 2. LW modes a) Symmetric (radial in-plane motion), b) Anti-symmetric mode (out of-plane motion).

3. DIMENSIONLESS LAMB EQUATIONS

3.1. Derived form of dimensionless dispersion equations

Instead of Eqs. (7) commonly applied, Armikulova in her M.Sc. Thesis [4] formulated the dimen-
sionless Lamb dispersion equations in the implicit form:

(S): (ξ2 − y2)2 sinx cos y + 4xyξ2 cos x sin y = 0, (8S)

(A): (ξ2 − y2)2 sin y cos x+ 4xyξ2 cos y sinx = 0, (8A)

where the following dimensionless variables are used:

x = (Ω2 − ξ2)1/2, y = (Ω2κ−2 − ξ2)1/2, (9)

using the dimensionless frequency Ω, wavenumber ξ and ratio of velocities κ:

Ω = ωh/cT , ξ = kh, κ = cL/cT . (10)

In [4], the power series and Poisson ratio ν as a small parameter were applied for the analysis
of the dimensionless DCs. These curves can be simulated numerically. The plots of dimensionless
DCs for the S0 and A0 modes are shown in Fig. 3 for the fixed value ν = 0.25.

Fig. 3. Dimensionless dispersion curves for Lamb modes A0 and B0.



A semi-analytical method for identification of thin elastic plate parameters basing on LWM 9

The function Ω(ξ) was derived in an analytical form, but in further computations its inverse
form ξ(Ω) is needed, see Fig. 4. The corresponding curve was formulated numerically for discrete
points, due to one-to-one correspondence of coordinates (ξ, Ω).

a)

b)

c)

Fig. 4. Families of curves for 10% and 20% changes of LDC of Eref = 69.0 GPa, νref = 0.33, d = 2.54 mm,
ρref = 2700 kg/m and for f ∈ (0, 1.0] MHz.
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3.2. Application of dimensionless Lamb Dispersion curves
for drawing LDCs for changes of material parameters

Besides the wavenumber k, also two additional forms of wave physical velocities, are used:

1) k [m−1] – wavenumber, (11)1

2) cph [m/s] = ω/k = f/(2πk) – phase velocity, (11)2

3) cg [m/s] = ∂ω/∂k – group velocity. (11)3

Dimensionless Lamb Dispersion curves can be easily applied for drawing the LDCs for different
physical velocities. Adopting a reference set of plate parameters {E, ν, d, ρ}ref, the sensitivity of
Lamb equations to changes of selected parameters can be evaluated. Figures 4a, 4b, 4c, correspond-
ing to the families of dispersion curves DC(E), DC(ν), DC(d), were computed for 10% and 20%
changes of Eref , νref , dref . The values of a reference aluminum plate parameter were taken from [10].
Following the paper mentioned above only A0 and B0 modes were selected for the frequencies range
f ∈ (0, 1.0] MHz.

4. IDENTIFICATION OF PLATE PARAMETERS

The total analysis can be divided into two general stages: Stage A (Direct analysis) and Stage B
(Inverse analysis).

4.1. Stage A

Stage A (Direct analysis) corresponds to three essential steps discussed in [11]. These steps are
related to carrying out a laboratory test with excitation and propagation of the LWs (Essential
Step I). The signals are transmitted from sensors and preprocessed in the Essential Step II. Then,
in Step III the time signals are transformed into 2-B scans. Applying 2D-FFT and searching local
maxima in the transform space the points corresponding to different vibration modes points at
dispersion curves can be found [1]. Thus, the experimental set of points can be formulated:

D = (f j, kj |m), (11)

where j = 1, 2, . . ., J – numbers of dispersion points, m – number of vibration mode.
Having data set (11), an approximate experimental curve can be formulated and parameters of

these curves are computed by means of the Least Square Method (LSM):

k̃exp(f |BFref(f) , α, Dexp)
LMS−→ α̃exp, (12)

where α̃exp – vector of the approximate, experimental curve parameters. The vector of reference
basis functions BFref(f) is found by means of numerical analysis. In the identification analysis only
selected modes of vibrations are used, e.g. the basic modes A0 and S0, see [3], or even a single mode
A0 is recommended in [12].

4.2. Stage B

In the presented paper, Stage B of computer simulations is related to the Essential Step IV in [11].
In this step the inverse analysis is carried out in a classical way. This means that a sequence of
direct analyses is iteratively made. In order to do it the Lamb DCsim are computed using the
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dimensionless equations and procedures taken from [4]. The LDCsim for a selected plate parameter
can be written in the shortened form:

kJ (fJ |yr, spar), for j = 1, 2, . . . , J and r = 1, 2, . . . , R, (13)

where yr – selected plate parameter at the r-th iteration step, spar – vector of plate stored (fixed)
parameters, others than yr. For example if yr = Er than spar = {νfix, ρfix, dfix}.
Then a range of searched parameters is adopted, i.e. yr ∈ (yrmin, y

r
max), where y

r is the identified
plate parameter. The range is uniformly divided into S subranges to have S points for estimating
the 0-value relative error Rky for yrmin ≤ yrident ≤ yrmax. The adopted relative error measure for the
wavenumber Rky is:

Rek(yr) =
1

J

J∑

j=1

(kj(yr)/k̃jexp − 1)× 100%. (14)

Then we explore the zero value criterion Reky = 0 for estimating an identified value of the plate
parameter yident:

Rek(yr) = 0
reg falsi−→ yrident. (15)

The algorithm sketched above needs an evaluation of the selected parameter range. This can be
easily done by looking at the changes of the error (14) signs. Then, we can adopt a corresponding
range and end the iteration by finding the zero value of the function Rek(yr) = 0 by the simple
“regula falsi” algorithm.

5. CASE STUDY

5.1. A selected case study

A number of test studies was carried out by Ł. Ambrozinski in years 2011–2013. From among them
we adopted the data discussed in [3, 8]. In Fig. 5a, 5b we show plots corresponding to the Essential
Step III, described in [11].

a) b) c)

Fig. 5. Experimental DCexp for the aluminum plate of thickness d = 4.0 mm: a) experimental points, b) points
found for local maxima at the bit plane, c) selection of vibration modes for the numerical analysis.

According to suggestions from the book [12] we focus on a single vibration mode A0. Then
following the carried out tests and recommendations in [10] our analysis was restricted to the
lower range of frequencies f ∈ [0.05, 1.0] MHz, see Fig. 6. It was shown that for higher values of
f > 0.8 MHz a number of noisy points appears. Altogether J = 1700 points were selected taking
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into account also noisy patterns. For the cloud of these points the Least Square Method was applied,
cf. relations (12). On the base of extensive numerical analysis the following five basis functions were
found:

k̃exp = α
T
(1×5) ·BF(5×1) = α1 + α2f + α3f

2 + α4(1/f) + α5th(0.65f), (16)

where the computed values of α̃iexp equal:

α̃1 exp = 183.5, α̃2 exp = 194.4, α̃3 exp = 1.00, α̃4 exp = −22.0, α̃5 exp = 24.9. (17)

Fig. 6. A part of dispersion curve, mode A0 taken from [3].

5.2. Discussion of numerical results

The formulated experimental curve (16) is a base for computing the relative error (14). At the
beginning, the evaluation of elastic modulus is made, adopting the nominal values of aluminum
plate parameters from [3]. The corresponding values are: E = 68.0 GPa, ν = 0.3, d = 4.0 mm and
ρ = 2700 kg/m3. Assuming the range E ∈ (64.0, 70.0) MHz and adopting the values of other plate
parameters as equal to nominal values, the ‘regula falsi’ method was applied. After three iterations
the identification by Reky criterion gave:

ERekE
ident = 65.915 GPa. (18)

The approach discussed above can be applied to the identification of other plate parameters.
For instance, if we want to identify the Poisson ratio ν ∈ (0.26, 0.32) or d ∈ (3.5, 4.5) mm, then
the computed values of these parameters ν equal:

νRekν
ident = 0.29991 for Efix = 65.915 GPa, dfix = 4.0 mm, ρfix = 2700 kg/m3,

νfix = 0.29991 for Efix = 65.915 GPa, dRekd
ident = 4.00052 mm, ρfix = 2700 kg/m3.

(19)

The nominal values of plate parameters mentioned above were used for the identification of plate
parameters applying the LINSA method, cf. [3]. After 5–7 iterations it was found that:

ELINSA
ident = 65.45 GPa for nominal values of other parameters. (20)
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At the end of this discussion let us assume that the fixed value of elasticity modulus equals (20).
Then, applying the Reky criterion we can identify ν parameter:

Efix = ELINSA
ident = 65.45 GPa, νRekν

ident = 0.2908, dfix = 4.0 mm, ρfix = 2700 kg/m3. (21)

The application of the SAFE method in [10] needed 13–17 iterations for the identification of E
and ν.
A conclusion from the obtained results (21) is that the decrease of the modulus E of about 0.7%

influences the decrease of the parameter ν of about 3.0% if the Reky criterion method is applied.
Such a relation can be caused by non linear relations between E and ν.
It is worth emphasizing that if the Finite Element Method was applied for the elastic modulus

E and ratio ν, the identification process (other fixed plate parameters are written in Fig. 4) needed
13–17 iterations. From the point of view of the iteration numbers to fulfil the Lamb equations, the
LINSA method seems to be better than the application of SAFE method code for the identification
of ESAFE.

6. SOME GENERAL REMARKS AND FINAL CONCLUSIONS

1. A semi-analytical method, applied in the presented paper, is supported on three basic algorithms:
i) Construction of an experimental approximate curve k̃exp(f |Dexp) on the base of the data set
Dexp, taken from the LW measurement results; ii) Semi-analytical simulation of the Lamb dis-
persion curve k(f |Dexp), computed by means of the procedure formulated for the dimensionless
DC and applying procedure taken from [4]; iii) The identification of a selected plate parameter
yr is made by fixing values of other plate parameters in the Reky criterion method. This method
corresponds to zero value of the error measure function Rey(yr) = 0, in which the identified
value of parameter yrident is computed by the ‘regula falsi’ method.

2. The proposed approach is in fact supported on the analysis of a sequence of direct problems,
but the corresponding identification criterion Reky seems to be very simple and does not need
complex algorithms.

3. The problem of sensitivity of plate parameters on perturbation of other parameters has been
only marked in Point 5.2 of the presented paper. This problem seems to be very difficult for
the analysis since the corresponding optimizing process should be carried out in 4D space with
many minima.

4. It follows from the experience of the first two authors of this paper that the application of the
Artificial Neural Networks could be very promising [14]. That is why a corresponding paper
with the application of ANNs to the plate parameters identification has been submitted for
publication in a scientific journal [15].
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