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Sequential stochastic identification of elastic parameters of thin aluminum plates using Lamb waves is
proposed. The identification process is formulated as a Bayesian state estimation problem in which the
elastic constants are the unknown state variables. The comparison of a sequence of numerical and pseudo-
experimental fundamental dispersion curves is used for an inverse analysis based on particle filter to
obtain sequentially the elastic constants. The proposed identification procedure is illustrated by numerical
experiments in which the elastic parameters of an aluminum thin plate are estimated. The results show
that the proposed approach is able to identify the unknown elastic constants sequentially and that this
approach can be also useful for the quantification of uncertainty with respect to the identified parameters.
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1. INTRODUCTION

Lamb waves have been used for three decades for non-destructive identification of elastic constants
of plate structures. The reconstruction can be based on the minimization of the sum of the squares
of the discrepancy between experimental and analytical or numerical dispersion curves. Rogers in [5]
demonstrated identification of elastic properties with several materials (aluminum, steel, glass) and
with both thick (6 mm) and thin plates (0.8 mm) using nonlinear least squares. He also investigated
the sensitivity of the nonlinear least squares solution to the measurement region of the dispersion
curve and he found that identification is more accurate when only selected frequencies are used.

Recently, Sale et al. in [8] proposed reconstruction of elastic moduli of plate-like structures based
on fundamental symmetric and antisymmetric dispersion curves obtained through a semi-analytical
finite element (SAFE) formulation and corresponding numerical or experimental curves. The SAFE
method coupled to the inverse procedure was tested by identification of the elastic material proper-
ties of a 2.54 mm thick aluminum plate. It was found that by applying both fundamental symmetric
and antisymmetric dispersion curves smaller residual error was obtained.

Up to date, most of the Lamb wave-based identification methods for elastic constants of plates
can be categorized as deterministic approaches. They provide only numerical values for the elastic
properties and often fail to fully characterize reconstruction uncertainty in systematic manner. In
this context Bayesian methods offer more systematic approach to uncertainty quantification. For
example, Gogu et al. in [3] adopted Bayesian framework for identifying elastic constants of an or-
thotropic composite plate from an open-hole tensile test with full-field displacement measurements.
They found that Bayesian approach is a worthwhile undertaking since it allows more accurate rep-
resentation of experimental uncertainty as well a solid basis for combining measurements and their
uncertainties stemming from different sources.

Bayesian approach is also sequential in nature allowing for solving identification problems re-
cursively at every acquisition of measurements. Furukawa and Pan in [2] proposed an energy-based
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characterization technique that recursively identifies the elastic constants of anisotropic materials
using Kalman filter. They compared the proposed technique with a deterministic technique based
on solving a set of linear equations and have shown that the filtering-based technique is not only
more robust to measurement noise but also describes uncertainty in the identified constants. Re-
cently, Tekieli and Stonski in [9] compared Kalman filter and Monte Carlo filter (a.k.a. particle
filter) in the problem of Young’s modulus identification of a laboratory-scale frame. They have
shown that Monte Carlo filter can be a viable alternative to Kalman filter, especially in case of
nonlinear problems.

In this paper, a novel application of particle filter for sequential stochastic identification of elas-
tic constants of plate structures using Lamb waves is proposed. The proposed procedure is based
on the comparison of experimental and analytical or numerical dispersion curves and the identifi-
cation results are in the form of a posterior distribution over elastic constants which describe the
uncertainty. The proposed procedure is verified on an example of pseudo-experimental dispersion
curves computed for an aluminum plate.

The paper is organized as follows. Section 2 briefly describes the semi-analytical procedure
for computing the dispersion curves based on Rayleigh-Lamb equations. A short presentation of
particle filter-based sequential stochastic identification technique in the context of Bayesian state
estimation is given in Sec. 3. Section 4 contains a numerical study for verification of the proposed
approach. Closing remarks are presented in Sec. 5.

2. LAMB WAVES FOR ELASTIC PLATES
2.1. Rayleigh-Lamb equations

Nondestructive identification of elastic constants of thin plates can be based on dispersion curves
derived for guided ultrasonic waves propagating in elastic plates. In case of a homogeneous isotropic
and elastic infinite plate, the propagation of ultrasonic waves, assuming plane strain, is described
by Lamb waves theory [4, 6]. The waves propagating in these plates are dispersive and have infinite
number of symmetric and anti-symmetric modes that are characterized by dispersion curves.

The dispersion curves are usually computed by numerical solution of Rayleigh-Lamb character-
istic equations. In case of symmetric waves, the dispersion curves are computed from the following
equation
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where p is the first Lamé constant, A is the second Lamé constant and p is the mass density. From
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Eq. (2), we can see that the ratio of velocities kK = L' depends only on the Poisson’s ratio as
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In case of antisymmetric waves, the dispersion curves are computed from a similar equation as
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A semi-analytical approach for efficient solution of Rayleigh-Lamb equations is based on the
introduction of non-dimensional frequency and wavenumber variables in the form [1]

Q=" c_p, (5)
cr

and the following two equations
z= (@ -2 y= (@7 - (6)
Substituting the non-dimensional variables into the frequency Egs. (1) and (4) we obtain

4ay€? tan(x)
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=0, for symmetric waves, (7)
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=0, for antisymmetric waves. (8)

After some additional transformations, the Rayleigh-Lamb equations for plates in non-dimensional
variables have the form

(€2 — 2%)? sin(x) cos(y) + 4aye? cos(z) sin(y) = 0, for symmetric modes, (9)

(€% — %)% sin(y) cos(x) + 4ay&? cos(y) sin(z) = 0, for antisymmetric modes. (10)

These equations are solved numerically for the roots which form the basis for obtaining non-
dimensional dispersion curves. Figure 1 shows two fundamental non-dimensional dispersion curves
So and Ag, which were computed using Eqs. (9) and (10) assuming Poisson’s ratio v = 0.33.
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Fig. 1. Plot of fundamental non-dimensional dispersion curves Sy and Ay computed using Egs. (9) and (10)
for v = 0.33.
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2.2. Dispersion curves

From the non-dimensional relation between  and &, using equations in (5), we can compute the
fundamental dispersion curves for specified values of Young’s modulus £, half of the plate thickness
d and the mass density p. Each dispersion curve consists of points defined as a pair of frequency value
and the corresponding wavenumber. For example, in Fig. 2, three dispersion curves are presented
obtained assuming the plate thickness d = 2 mm, the mass density p = 2700 kg/m? and three
values of Young’s modulus E in range from 60 GPa to 70 GPa. It can be seen from this plot that
the value of Young’s modulus has rather small influence on the shape of the dispersion curves.
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Fig. 2. Plot of fundamental dispersion curves Ao computed for Poisson’s ratio v = 0.33, half of plate
thickness d = 2 mm, mass density p = 2700 kg/m® and three Young’s moduli E.

3. SEQUENTIAL STOCHASTIC IDENTIFICATION
3.1. Bayesian state estimation

Sequential identification of elastic constants proposed in this paper is based on Bayesian infer-
ence for a nonlinear stationary dynamical system defined in the discrete state space form. The
formulation of Bayesian state estimation problem for a dynamical system consists of two nonlinear
equations. The first equation is called a transition model and is defined by

Xk+1 = f(xk7wk+1)7 k= 17 "'7K7 (11)

where x;, denotes the set of state variables at time step k. The function f(-) is a transition function
and it defines the evolution of state variables. The system evolution process is corrupted by a
random noise represented in Eq. (11) by a vector of random variables wy,.

The second equation is called an observation model and is defined by

Yi+1 = h(xk-i-lyvk-‘rl)v k= 17 () Kv (12)

vy denotes the set of observable variables at time step k. The output from the dynamical system
yi is measured at each time k, and the measurements sequence up to time k is stored in the matrix
Yix={y1,y2,--., ¥k} The function h(-) is an observation (measurement) function and it defines
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the measurement process as a function of state variables. Similarly, the measurement process is
also corrupted by a random noise represented in Eq. (12) by a vector of random variables vy.

Bayesian state estimation problem can be graphically presented in the form of a dynamic
Bayesian network, see Fig. 3. Bayesian network is a directed acyclic graph and represents the
dependencies among random variables [7]. In this context, Kalman filter is an example of dynamic
Bayesian network with continuous variables and linear Gaussian conditional distributions. Dynamic
Bayesian network can model any distribution in which the joint distribution over the sequence of
K observed variables yj, and state (hidden) variables xy is given by

K K
P(X1,X2, - XK Y1, Y2, YE) = p(x1) [ [ pxelxe—1) T] p(yrlxs), (13)
k=2 k=1

where p(xXj|xx—1) is the transition model (assumed here to be a first-order Markov chain) and
p(yk|x) is the observation (measurement) model.
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Fig. 3. Dynamic Bayesian network for a sequence of state variables x; and observable variables yy
(measurements).

The main goal of Bayesian state estimation is sequential inference of the posterior distribution
p(Xg+1]Y1.k+1) starting from a prior distribution p(xx|Y1.x). The inference is performed recursively
in two steps: prediction step and update (correction) step. In the first step the prediction of state
variables distribution p(xxy1|yx) before applying new measurements is done. This distribution is
computed using the sum rule of probability and integrating out the state variables as

P 1| Yix) = / Pk |0)P (XY 1) . (14)

Then, the new measurements yj.1 are used to update the prior to obtain the posterior distri-
bution p(xx+1|Y1.5+1) applying the Bayes’ rule

Y P(Yr1 Xk 1)P(Xp11 Y 1:1)
p X . = 5 15
(k1 [Yikrr) P(Yr+1| Y1) 15)

where the denominator in (15) is computed from

P(Yrt1Yin) = /p(Yk+1|Xk+1)p(Xk+1|Y1:k)dxk+1- (16)

The update step in Eq. (15) can be also written in the recursive form that is more useful for
obtaining particle filter algorithm. Using Bayes’ rule we can rewrite Eq. (15) as

(Y1 X 11)P(Xpp1]Xk) (17)

P(Xk+1|Y1:641) = P(Xk| Y12
( + | + ) ( | ) p(Yk+l|Y1:k)

3.2. Particle filter

The Bayesian state estimation described above gives the posterior distribution over the states.
It does not give, however, the way to find the solution efficiently using both Eqgs. (14) and (15).
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In addition, the exact inference is intractable and an approximate method has to be applied. In
this work a particle filter (PF) algorithm is used. It is based on sequential Monte Carlo sampling
and is described below.

In order to implement Bayesian filtering, we approximate the posterior distribution p(xj41|yx+1)
using N particles x}lg 41 (1t =1,2,...,N), with corresponding importance weights w,i 41, that replace
the posterior distribution with the empirical distribution

N
Py (Xpy1) = Zw2+15(xk+1 — Xpy1)s (18)

i=1
where §(-) is the Dirac delta function. The weights are computed using sequential importance

sampling as

. o (Y1 )P(xG 4 %)
W41 = Wy 7 7
ﬂ-(xk+1|xk7 Yk-i-l)

(19)

where 7(Xg41|Xk, yr+1) is the importance distribution such that samples from it can be easily gen-
erated. In general, choosing the optimal importance distribution is rather difficult so for simplicity,
the common choice is to apply the transition density as the importance density

W(X2+1’X2=Yk+1) = p(X§;+1\X§;), (20)

that yields a simple equation for computing weights in the next time step as

Wiy = Wi, P(Yrt1|Xfp1)- (21)

N
Note that these weights are normalized and satisfy 0 < w,i <1land ) wfC =1
i=1
The initial weights are uniform with values w! = 1/N but later during recursive computations
they become far from uniform leading to particles degradation (few particles with large weights).
As a result the empirical distribution becomes very poor approximation of the state variables distri-
bution p(xk41|Y1.6+1). To overcome this particular degradation problem, a sequential resampling
procedure is applied. The resampling procedure regenerates the set of particles by replicating the
particles with high importance weights and removing samples with low weights.
Finally, the basic particle filter algorithm is as follows. It starts with a population of N initial-
state samples, created by sampling from the prior p(x;). Then the prediction-update-resample cycle
is repeated for each time step [7]:

1. Each sample is propagated forward by sampling the next state value xj,1, given the current
value xj, for the sample, based on the transition model p(xj11|xx).

2. Each sample is weighted by the likelihood it assigns to the new evidence, p(yxi1|Xgt1)-

3. The population is resampled to generate a new population of N samples. Each new sample
is selected from the current population; the probability that a particular sample is selected is
proportional to its weight. The new samples are unweighted.

3.3. Identification of elastic constants of plates

In the second section, we formulated the sequential stochastic identification problem as a Bayesian
state estimation problem. Because the plate parameters are assumed to not change in time, they
are treated here as time-independent state variables and the transition equation has the following
simple form:

Xk+1 — Xk- (22)
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The Eq. (22) is further modified as
Xp1 = Xk + W1, (23)

where wy is a noise random variables added for numerical efficiency of particle filter-based iden-
tification. In this work, w is assumed to be a set of independent and identically distributed (iid)
Gaussian random variables

2
p(w) = N(wl0,0%,), (24)
where o2, is a covariance matrix.
The states are recursively estimated using measurements yj.q that here are defined as the
fundamental antisymmetric dispersion curves Ag. They are related to state variables x; 1 by the
nonlinear observation model h(xy1,Vii1) as

Vi1 = h(Xgy1) + Vi, (25)

where vi41 is a noise random variables introduced to account for modeling and measurement
uncertainties. Here it is also assumed to be a set of independent and identically distributed (iid)
Gaussian random variables

p(v) 5 N(v]0,02), (26)

where 2 is a covariance function.

Finally, the proposed approach is graphically presented in Fig. 4 in the form of a flowchart.
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Fig. 4. Flowchart of particle filter-based identification of elastic constants of thin plates using experimental
and numerical dispersion curves.
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4. NUMERICAL EXPERIMENTS

To assess the effectiveness of the proposed method, numerical exercises for an aluminum plate were
performed. In the numerical experiments, the material properties of the aluminum plate (Young’s
modulus, Poisson’s ratio and mass density) and the plate thickness were assumed in advance, see
Table 1 for exact values of these parameters.

Table 1. Assumed values of the aluminum plate parameters applied
in the numerical experiments.

E v p h
Parameter
[GPal [-] [kg/m?] [mm]
Assumed value 67.5 0.33 2700 4

Having defined the plate parameters, a pseudo-experimental fundamental antisymmetric disper-
sion curve Ag was computed using semi-analytical approach described above. During sequential
identification, this curve was represented with a small number of parameters that were used as the
observed variables y.

4.1. Young’s modulus identification
4.1.1. State-space model definition
One-dimensional transition model

In the first experiment, we assumed that the Young’s modulus is a time-independent state variable
and the transition equation for a state-space model is defined by (23). The state variable xj is
defined as the Young’s modulus in k-th step z = Fj. and wy, denotes an independent and identically
distributed (iid) Gaussian random variable with zero mean and variance o2, defined by (24). The
value of o, was set to 0.003 GPa.

Observation equation

The vector of observed variables yj.1 was defined as a set of parameters of the fundamental an-
tisymmetric dispersion curves Ag. The observed variables are related to the state variable xj.q
by the nonlinear observation function h(zyy1), defined in (25). The vector vi4q denotes an inde-
pendent and identically distributed (iid) multivariate Gaussian random variable with zero mean
vector and covariance matrix af/. The covariance matrix was defined as a diagonal isotropic ma-
trix with elements o, equal to 0.01 1/m. Finally, the nonlinear observation function h(zjy) was
used to predict the parameters of the fundamental dispersion curve for a given Young’s modu-
lus.

Prior distribution

Our initial and uncertain knowledge about the state variable (here Young’s modulus) is represented
by a prior distribution p(zp). In the experiments, we applied a one-dimensional normal prior distri-
bution p(zo) = N (o, 02), with mean value zio = 67.0 GPa and standard deviation oy = 3.35 GPa
(coefficient of variation (COV) was 5%). Figure 5 shows the plot of the prior distribution (as a
dashed line).
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Fig. 5. Plot of prior and posterior distributions for Young’s modulus. Gaussian prior distribution (dashed
line) has mean value pprior = 67.0 GPa and standard deviation oprior = 3.35 GPa (coefficient of variation
(COV) is 5%). Approximate Gaussian posterior distribution (solid line) has mean value pipos = 67.5 GPa and
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standard deviation opos = 0.05 GPa (coefficient of variation (COV) is 0.1%).

4.1.2. Young’s modulus identification results

The approximate posterior distribution of Young’s modulus given pseudo-experimental dispersion
curves Py(x|yk) in the k-th step was computed using the particle filter-based identification pro-
cedure described above. In experiments, we applied N = 2000 particles to obtain the approximate
posterior distribution and the number of steps in the sequential identification was set to K = 500.
Figure 6 shows the sequential nature of the elastic constant identification process by plotting the
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Fig. 6. Plot of evolution of mean value of posterior distribution for Young’s modulus and corresponding
one-standard deviation error bars (solid horizontal line represents Young’s modulus value (67.5 GPa) assumed

in numerical experiments).
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evolution of the mean value of the posterior distribution and the corresponding plot for the one-
standard deviation error bars as a function of the step number. There is also shown a solid horizontal
line representing the reference Young’s modulus value (67.5 GPa) applied in numerical experiments.
From the plot, it may be observed that the estimation process converged to the reference value
quite rapidly (in about 120 iterations).

Table 2 presents statistical parameters of prior and posterior distributions in the form of mean
values, standard deviations and coefficients of variation (COV). From the table, it can be stated
that the final mean value of the posterior distribution is the same as the reference value. Moreover,
the coefficient of variation decreased from 5% for the prior distribution to only 0.1% for the final
posterior distribution. Figure 5 shows the final one-dimensional posterior distribution together with
the prior distribution.

Table 2. Statistical parameters of prior and posterior distributions for Young’s modulus
(mean value, standard deviation and coefficient of variation (COV)).

Parameter Prior | Posterior
Mean value (GPa) 67.0 67.5
Standard deviation (GPa) | 3.35 0.05
COoV (%) 5.0 0.1

4.2. Identification of Young’s modulus and Poisson’s ratio
4.2.1. State-space model definition
Two-dimensional transition model

In this example, we assumed that Young’s modulus and Poisson’s ratio were time-independent state
variables and the transition equation for a state-space model is defined by (23). The vector of the
state variables x; consists of the Young’s modulus and Poisson’s ratio in k-th step xx = {Ek, vk}
The vector wy, denotes independent and identically distributed (iid) Gaussian random variables with
zero mean vector and covariance matrix o2, defined by (24). The covariance matrix was defined as
a diagonal isotropic matrix with elements o, equal to 0.003 GPa and 0.0015, respectively.

Observation equation

In the experiments we used a vector of observed variables yj1 which were defined as parameters of
the fundamental antisymmetric dispersion curves Ag. The observed variables are related to the state
variable 1 by the nonlinear observation function h(zyy1), defined in (25), where vi11 denotes
an independent and identically distributed (iid) multivariate Gaussian random variable with zero
mean vector and covariance matrix O'Z. The covariance matrix was defined as a diagonal isotropic
matrix with elements o, equal to 0.01 1/m. The nonlinear observation function h(zy41) was used
to predict the parameters of the fundamental dispersion curve for a given Young’s modulus and
Poisson’s ratio.

Prior distribution

The uncertainty about Young’s modulus and Poisson’s ratio values was represented by a two-
dimensional Gaussian prior distribution p(x¢) = N(pg,03), with mean values p, = [67.1 GPa,
0.33]. The standard deviations were about 5% of the corresponding mean values, i.e., g =
[3.4 GPa, 0.02]. Figure 7 shows a contour plot of the two-dimensional prior together with the
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scatter plot of particles sampled from that prior. Table 3 presents statistical parameters of the

prior.

for Young’s modulus and Poisson’s ratio.

Table 3. Statistical parameters of the Gaussian prior distribution

for Young’s modulus and Poisson’s ratio.

Parameter E [GPa] v
Mean value 67.1 0.330
Standard deviation 3.40 0.017
COV (%) 5.1 5.1

4.2.2. Results

As in the first example, the approximate posterior distribution of elastic constants given pseudo-
experimental dispersion curves Py (xk|yx) in the k-th step was computed using the particle filter-
based identification procedure described above. In the second experiment, we applied N = 2000
particles to approximate the posterior distribution and the number of steps was K = 500.

Figure 7 shows the contour plot of the posterior distribution together with the scatter plot of
particles. Table 4 presents final identification results of elastic constants in the form of statistical
parameters. From Tables 1 and 4, it can be concluded that the mean values of the posterior
distribution are the same as the assumed elastic constants. Moreover, from Tables 3 and 4 it can be
stated that in case of Young’s modulus the coefficient of variation decreased from 5.1% for the prior
distribution to only 0.3% for the posterior distribution. In case of Poisson’s ratio the coefficient

Table 4. Statistical parameters of the posterior distribution
for Young’s modulus and Poisson’s ratio.

Parameter E [GPa] v
Mean value 67.5 0.33
Standard deviation 0.22 0.01
COV (%) 0.3 2
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of variation decreased from 5.1% for the prior distribution to 2.0% for the posterior distribution
which indicates that the identified Poisson’s ratio is more uncertain.

5. FINAL REMARKS

The purpose of this paper was to present a novel application of particle filter for reconstruction
of elastic constants of plate structures. The proposed procedure rests on the comparison of experi-
mental and numerical dispersion curves in the context of Bayesian state estimation.

Taking into account the assumed experimental errors and considering propagation of errors in
the sequential estimation, the uncertainty in the identified value of Poisson’s ratio is 2% and the
uncertainty in the estimated value of Young’s modulus is less than 0.5%.
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