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The techniques of explainability and interpretability are not alternatives for many real-
world problems, as recent studies often suggest. Interpretable machine learning is not
a subset of explainable artificial intelligence or vice versa. While the former aims to build
glass-box predictive models, the latter seeks to understand a black box using an explana-
tory model, a surrogate model, an attribution approach, relevance importance, or other
statistics. There is concern that definitions, approaches, and methods do not match, lead-
ing to the inconsistent classification of deep learning systems and models for interpretation
and explanation. In this paper, we attempt to systematically evaluate and classify the var-
ious basic methods of interpretability and explainability used in the field of deep learning.
One goal of this paper is to provide specific definitions for interpretability and explain-
ability in Deep Learning. Another goal is to spell out the various research methods for
interpretability and explainability through the lens of the literature to create a systematic
classifier for interpretability and explainability in deep learning. We present a classifier
that summarizes the basic techniques and methods of explainability and interpretability
models. The evaluation of the classifier provides insights into the challenges of developing
a complete and unified deep learning framework for interpretability and explainability
concepts, approaches, and techniques.
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1. Introduction

Exciting advances in the field of artificial intelligence (AI) have led to a variety
of machine learning (ML) models now being used in complex and wide-ranging
applications. At the same time, interest in the research and practical applica-
tions of explainable AI (XAI) is growing [1, 2]. Many deep learning (DL) models
have borrowed heavily from current thinking in cognitive science and have rekin-
dled interest in neural networks. DL approaches and, in particular, breakthrough
results with deep neural networks (DNNs) include a number of successful tech-
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nical applications such as computer vision [3, 4], speech recognition [5], video
analysis [6], and precision medical diagnostics [7]. Despite the extensive research
on the interpretability and explainability of DNNs in recent years, modeling
interpretations and explanations through the use of various interpretation and
explanation methods remain a challenge, e.g., axioms and metrics for explana-
tions [8], self-explanatory models [9], or attribution-based methods [10].

Despite recent successes in XAI, it is still unclear how a particular DNN
comes to a certain decision, how confident it is in its decision, whether and
when we can trust or distrust it, or when it needs to be corrected. The main
reason for this is that DNNs result in complex black-box models [11–19], i.e.,
where only the input features and the output predictions are known, making
it difficult to understand the nature of learning within their structure. There
are high-impact, high-risk domains where knowledge about the decision-making
process is particularly important, e.g., healthcare decisions [20], autonomous
driving [21], criminal justice [22], and other high-risk domains where the cost of
poor decisions can have a large impact on human society [23]. The questions we
should be thinking about here are “Can we trust decisions made by DL models?”
or “How does a DL model make its decision?”

The growing interest of researchers in XAI has led the DL research community
to focus on methods of interpretability and explainability of DNNs. The main
problem with explainability, according to DARPA [1], is to provide sufficient
justification for AI/ML conclusions such that users know why a conclusion has
been reached or not, allow the user to know when an algorithm will succeed or
fail, and when it can be trusted. To build trust and confidence in DL systems
and models [24, 25], stakeholders need to gain insight into the decision-making
process of a system or model by learning exactly why and how the DL system,
model, and algorithm arrived at a particular solution.

There are several important reasons, either technical or methodological, why
interpretable machine learning (IML) and XAI techniques and methods to be
used in DL are a hot topic today and are becoming an active research area
[18]. It can be assumed that the two key words “interpret” and “explain” men-
tioned above are never completely interchangeable in language use, especially
not in technical and scientific language [26]. This also refers to the ability to
interpret and explain DL systems and models in a human-friendly way. From
the literature, we recognize several current research challenges we face regarding
interpretability and explainability in DL systems and models:

• There are no clear differences between the two main concepts of XAI –
interpretation and explanation [27].

• There is a lack of agreement on the vocabulary and different definitions of
concepts and terms in IML and XAI [28]. For example, there is absolute
ambiguity when it comes to explainable visualization, because terms such
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as heatmaps, saliency maps, and salient maps are used interchangeably.
Another example is that “feature relevance” and “feature importance” are
assigned to the same concept.

• Based on the recent successful research methods for IML and XAI, it
is worthwhile to create a classifier for interpretability and explainability
methods for DL.

Answering these questions is important for the AI research community be-
cause it could enable the human-friendly use of practical DL applications to prove
that decision behavior is based on plausible features [29] rather than speculative
correlations of artifacts [30]. The goal of this paper is to attempt to define the
boundaries between interpretability and explainability and provide a classifica-
tion through a systematic review of interpretability and explainability methods
and techniques. Overall, the novel contribution of this study can be summarized
as follows:

1. We investigate the terminological and contextual difference between the
two main concepts: interpretability and explainability and show that there
is a clear difference between the two. The definitions of these concepts are
presented in this article.

2. We address the problem of the difference between IML and XAI in DL,
through the scope of the black-box and glass-box approach, system mod-
eling, and a methodological perspective.

3. After thoroughly examiningrecently deployed XAI techniques and meth-
ods, we present the overall classification of IML and XAI for understanding
DL systems and models. In addition to the classification, we display a brief
description of the most prominent and commonly used IML and XAI meth-
ods and techniques and, our definition of each proposed category.

The rest of this article is organized as follows. Section 2 discusses the prop-
erties of a black box compared to a glass box, and shows how they relate to
XAI and IML. Section 3 comments on the different approaches to interpretabil-
ity. Section 4 addresses the methodological issues related to explainability. The
taxonomies and classifications of XAI and IML, as well as a brief description of
the existing categories of methods, are summarized in Sec. 5. The most common
XAI methods are presented along with a brief description in Sec. 6. In Sec. 7,
the paper classifies the domain of IML (intrinsic models) for interpretability.
Section 8 presents toolboxes for explainability. Finally, conclusions and future
directions are presented in Sec. 9.

2. Black box versus glass box

The use of DL is promising because it can process complex sets of data and
model highly nonlinear internal representations of data. The models of DL can be
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composed of hundreds of layers, e.g., deep residual networks (ResNet) [31], which
are over 200 layers deep and can encompass a vast parameter space with millions
of parameters managed by hyperparameters [32]. DNNs have been shown to be
particularly useful in tasks that indirectly or directly affect humans by producing
classifications, regressions, predictions, or decisions.

One of the most prominent examples is convolution neural networks (CNNs)
[3, 33], which have enabled unmatched developments in a wide range of com-
puter vision tasks: from image recognition [34], image classification [3, 35], object
detection and semantic segmentation [36, 37], image captioning [38, 39] to vi-
sual question answering [40–42] and, more recently, embodied question answering
[43–45] and visual dialogue [46, 47]. It is well known that CNNs consist of an
extremely complex internal structure and are therefore very difficult to explain.
Fortunately, because human cognitive abilities prefer understanding visual data,
these types of deep models can be more easily explained by visualizing their
feature space. To understand the decision process of using CNNs, there are two
approaches [28]: mapping the output back to the input space to see which parts
of the input were crucial to the output, or trying to delve inside the network to
interpret how the intermediate layers see the world, not necessarily with a par-
ticular input, but more generally.

Other examples are recurrent neural networks (RNNs) [48] and long short
term memory (LSTM) [49], which are used for prediction problems on inher-
ently sequential data, especially in natural language processing and language
modeling [50], or for the analysis of temporal data series [51]. Interpretation
of RNN models can be divided into two groups: using explainability by under-
standing what the RNN model has learned, mainly through feature relevance
[52], and interpretability by modifying the RNN architecture to gain insight into
the decisions they make [28]. The explanation of neural ensemble networks is
another challenging task where specific explanation methods have recently been
sought [53].

Research in DL modeling has traditionally focused on improving the quality,
algorithmics, or speed of prediction of a neural network model [54]. At the same
time, DNNs are generally considered as black-box models due to their multilayer
nonlinearity and deeply nested structure, which are often criticized as opaque
and incomprehensible to humans [55]. Since they are trained and not directly pro-
grammed, it can be difficult to discern how exactly they arrive at their decisions.

The term “black box” refers to a model that accepts a sequence of query
inputs and produces corresponding outputs, while hiding internal states such
as the model architecture [56]. There are black-box explanation methods that
attempt to explain existing DL models without considering the internal structure
of the model. This class of explanation methods is model-agnostic and can be
easily integrated into DL models, from decision-trees to complex neural networks.
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Black-box explanation methods are also referred to as post hoc methods because
they can be used to interrogate DL models after training and deployment without
knowing the training procedures. Explanations derived in this way are not in
some way guaranteed to be human-friendly, useful, or enforceable, and may be
dangerous in high-stakes decisions to the degree that others are not.

The opposite of a black box is an incremental system or “glass box” [17, 57],
which is inherently transparent. Interpretive modules or tasks are integrated in
advance into the DL architecture and algorithms and are referred to as ante hoc.
The advantage of this approach is that practitioners can translate the models
on DL, detect data and/or labeling errors, and in some cases, edit the models’
decisions when they do not match the values or domain knowledge. This type of
approach solves the problem of a trade-off between accuracy and interpretation,
which is the problem of black box and post hoc models.

Black-box models, unlike glass-box models, are opaque, counterintuitive, and
difficult to understand [58]. Due to their nonlinear structure, it is difficult to
project the function they represent back into their input space and make sense
of it. Moreover, they are not transparent, i.e., the provision of information, ac-
countability, and prediction results of deep models is difficult to interpret and
explain [20]. In the context of explainability, a black box is considered a func-
tion that is too complicated for a human to understand, e.g., a highly recursive
function, a proprietary function, or even both [15].

There is a growing interest in understanding how these DL models arrive at
their successful predictive tasks. Work on explaining these black-box networks
has focused on understanding how a fixed deep model leads to a particular
prediction [59]. The challenges in using DL models to explain their decisions are
mainly due to the following: 1) the lack of transparency [57, 60], 2) the lack of
explainability [61–63], 3) the large complexity and computational resources of
current deep learning models [64], 4) the lack of robustness to adversarial attacks
[65], and 5) the inability to explain decisions and actions in a way that humans
can understand [66].

If we are trying to figure out what kind of input causes a particular DNN
behavior – whether it is the firing of an internal neuron or the final output layer –
we can use derivations to iteratively modify the input against that goal [67]. The
question is what caused the trained DNN model to make a particular decision
and how we can understand and quantify its inference. If we understand and
trust the model, we need to clarify the decisions through interpretations [68].
From the perspective of developers and engineers, an explanation can help us to
better understand the data and the problem, and provide a rational solution for
using the system. Regulators consider explanations of algorithmic AI systems
as a claim for compliance with the EU’s General Data Protection Regulation
(GDPR) [69].
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These questions can be answered by a subset of AI – XAI, which aims to
create a collection of methods that produce more explainable models while main-
taining high levels of search, learning, planning, and reasoning through optimiza-
tion, accuracy, and precision. The main idea behind XAI is to break down the
black-box algorithm, explain how the black box made decisions, and account
for the steps and models involved. These black-box functions can be extremely
complex and too complicated for humans to understand. Referring to Gunning
et al. [70], the purpose of an XAI system is to make its behavior more under-
standable to humans by providing explanations. The challenge for XAI is to
produce explanations that are both complete and interpretable [9]. XAI systems
should be able to provide historically scalable explanations of what the system
has done, what it is doing now, and what will happen next, as well as reveal the
key information to which it is responding.

XAI is concerned with implementing transparency and traceability of black-
box statistical methods in ML, in particular DL [71]. Issues of explanation to
their audience include at least four components: users, laws and regulations,
explanations, and algorithms [72]. XAI assumes that there are many types of end-
users or end-user groups, e.g., business owners, customer service representatives,
IT and system operators, developers, data scientists, and policymakers. Each of
these groups may differ based on the different times of system development and
use [73]. Measuring and evaluating XAI systems requires evaluation frameworks,
reasoning [74], mutual understanding, and diverse thinking [75].

Due to factors driving the improvement of AI systems, such as new algo-
rithms and DL methodology [76, 77], GPU cards and on-chip neural networks,
data availability, and cloud infrastructure, it has recently become possible to
explain the actions of DL systems and evaluate the “explainability” of a system
[18, 68]. These properties constitute explainable DL (XDL) and enable humans to
understand, appropriately trust, and effectively manage DL systems and models
using interpretability and explainability.

3. Interpretability

Let us clarify the discrepancies between the two main concepts widely used in
XAI – interpretability and explainability. These two concepts are often used
interchangeably in the literature. However, this is no longer the case for the
new third wave of AI, that is, explainable AI applications, offering great ben-
efits to a wide range of domains [70] (first wave – symbolic AI, second wave –
statistic AI). Compared to task-centric AI systems, XAI systems are designed to
perform specific tasks that lead to explanations or the creation of explanatory
models that address black-box problems or IML systems, where interpretations
or understandable models should be glass-box. This can lead toward trustwor-
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thy artificial intelligence, the methodology for implementing human-friendly AI
methods that focus on model transparency, fairness, and accountability [28]. This
is how companies, regulators, and users view one of the key options for future
AI. Thus, the distinction between interpretability and explainability is not only
a crucial task, but also a challenging one. Therefore, we can argue that there
are important reasons to distinguish between these two key concepts of XAI.
Another question that arises is what is the difference between the two concepts
and which is a more general concept, or could each of the concepts consist of
sub-concepts [57]?

Montavon et al. [78] define interpretation as “the mapping of an abstract
concept, for instance, a predicted class, into a domain that the human can make
sense of”. Gilpin et al. [9] define the goal of interpretability as describing the
internals of a system in a way that is understandable to a human. A similar
definition has been given by Doshi-Velez and Kim [25]: “interpretability is defined
as the ability to explain or to provide the meaning in understandable terms
to a human”. There is no mathematical definition of interpretability. However,
Doshi-Velez and Kim [25] outline an approach to measuring interpretability.
A non-mathematical definition by Miller [79] is “interpretability is the degree to
which a human can understand the cause of a decision”.

Interpretability refers to a model’s passive property and the level at which
a particular model makes sense to a human in the context of transparency. By
contrast, explainability can be considered a model’s active character, which refers
to the discovery of the model’d internal functions [28]. That is, interpretability
is the result of the DL model, but explainability is the tool that must “open” this
result. The higher the interpretability of a DL model, the easier it is for someone
to understand why certain decisions or predictions have been made. A model is
more interpretable than another model if its decisions are easier for a human
to understand than the decisions of the latter one. From that, we can conclude
that the concept of interpretability has a broader perspective compared to the
concept of explainability.

Researches [2, 7, 14] hold a view on how to evaluate human interpretability.
An approach that has emerged is that a proposed classification must consist
of three main constituents: application-grounded evaluation, human-grounded
evaluation and functional-grounded evaluation. A more frequent and clear op-
tion referring to Girshick et al. [80] is the scope of interpretability, divided into
global interpretability and local interpretability. Together with the two, time
limitation and nature of user expertise are added as a scope to better disen-
tangle interpretability. Time limitation means that an important aspect is how
much time that the user has or can spend on understanding an explanation. The
extent of the user’s experience in the task is another key aspect in the perception
of interpretability of a model.
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Global interpretability is about understanding how the overall deep model
makes decisions that result from the prediction. This can be done by examining
the complex structure and parameters of the entire model, which input patterns
are captured, and how they are transformed to produce the output [81]. Local
interpretability examines locally the reasons for the behavior of a deep model
given a particular prediction. It is achieved by identifying the mapping of each
feature in a specific input for the prediction made by the DNN [18]. Local in-
terpretability helps to uncover the causal relationships between a specific input
and the corresponding model prediction.

Along with human interpretability, which helps people understand machines,
there is also machine interpretability. This refers to how machines “understand”.
For example, consider automatic care for the elderly or how an autonomous
vehicle waiting at an intersection should reliably perceive and respond when
a human in another car across the street signals to continue [25].

Identifying how to measure what interpretability means is not a trivial task,
and there is little consensus on how to evaluate it. Logically, it would be clear that
the higher the interpretability of a DL model, the easier it would be for someone
to understand its decisions or predictions. A model is more interpretable than
another model if its decisions are easier for a person to understand than the
decisions of the other model. Lipton [57] points out that interpretability is not
a monolithic concept, but reflects several distinct ideas and has a quasi-scientific
character. Looking at the goal of DL from a modeling perspective, interpretabili-
ty is closely related to the key end-user audiences from a system perspective.
From the above, we can focus our attention on four specific concepts that describe
interpretability: understanding, transparency, decision, and domain.

Understandability (also intelligibility) is the property of a model to make
a human understand its operation without elucidating its internal structure or
the internal operations by which the model processes data [82]. This property
refers to the question: how does the deep model work? According to the pre-
viously mentioned machine interpretability and human interpretability, we can
see that there is a machine (model) understandability and a human understand-
ability. From the latter, we can see that the audience is the cornerstone of XAI
when it comes to understanding the model [28]. When it comes to understanding
DNNs, we have to deal with two views of understandability: a mechanistic under-
standing, i.e., what mechanism the network uses to solve a problem or implement
a function, and a functional understanding, i.e., how the network relates the input
variables to the output variables. From the above, we can conclude that compre-
hensibility is the most important concept in interpretable deep learning (IDL).

Transparency addresses the system’s property to explain how it functions
even when it behaves unexpectedly. A very important problem we are trying to
solve for the ground truth of interpretability depends on complete transparency,
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and how a deep model arrives at its decision [83]. Roscher et al. [84] proposed
to differentiate transparency into model transparency, design transparency, and
algorithmic transparency. There are DNNs systems, where transparency as well
as explainability are not the key requirements as long as the overall performance
of these systems is good enough. If the transparency and trust requirements are
not high, the system might lead to wrong decisions and even pose a threat.

On the other hand, if we create a trustworthy DNN system, there should
be faith in the system and the prediction performance [85]. Lipton [57] divides
transparency according to the property of understandability of a model. Refer-
ring to his proposal, models are divided into three levels: simulatable models
(the level of the whole model), decomposable models (the level of individual
components), and algorithmically transparent models (the level of training algo-
rithms). In some contributions, interpretability is understood as a prerequisite
for trust [57]. This indicates that the main idea of interpretability is to help peo-
ple understand and trust the prediction tasks of DL models. These prediction
tasks include decision support, e.g., tumor diagnosis, ranking, forecasting, and
detecting anomalies.

In the context of XDL, interpretability can be considered to consist of three
categories [90]. Firstly, data interpretability: which dimensions of the data are
most relevant for the task. Secondly, model interpretability: what pattern belong-
ing to a certain category typically looks like according to the model. Thirdly,
prediction interpretability, explains why a certain pattern x has been classified
in a certain way f(x).

From the above, we can focus on specific concepts that describe interpretabili-
ty: understanding, transparency (trust) and decision. Our definition, based on an
extensive literature review, is as follows: Interpretability means the ability
for a human to understand and trust the decision of the DL model’s
results.

For example, suppose we have a model that classifies patients for COVID-19
infection. Our DNN model has learned to classify patients’ radiographs into three
classes: normal radiographs, COVID-19 radiographs, and radiographs with pneu-
monia. The results are presented to the physician for further decision-making. If,
after receiving the model results, the physician can see, read, listen and under-
stand how the results were obtained and trust them, we could say that the predic-
tions are interpretable. There is a logical path between the data, the image input,
and the output results to understand and trust what concepts DNN has learned.

4. Explainability

The ability to verify the decisions of a DL system or models is very important
to promote both trust and understanding in situations where the DL systems
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practically make the decisions, e.g., autonomous driving, and in situations where
they play a supporting role, e.g., medical diagnosis [18]. Typically, standard
models of DL take an input x and convert it to an output y, e.g., a predicted label
that constitutes a further decision. In other words, let f : X → Y be the black-
box function we are interested in explaining. For example, we might train a DNN,
e.g., a classifier, to predict whether to accept or reject a medical diagnosis. If
our request is rejected, we would like to know why. Because each decision of
a DNN is a combination of thousands of neurons and weights interacting with
each other, an explanation can be a very difficult task.

There is a great need to ask explanatory questions and know what, why,
and how [79] an algorithm of a DNN makes a certain prediction and arrives at
exactly that decision. The innate goal of explanation algorithms is to facilitate
human understanding [86]. If users of a deep model understand the explanations,
they will be more inclined to trust and adopt DL systems. From the perspective
of the developers and researchers of DL systems, the explanations provided can
help them better understand the problem and the data, understand why a model
might fail, and even increase the system’s security [87]. The safety of a DL system
depends on explanations, fairness, security/privacy, and model debugging [88].

Probably the best definition of the explanation comes from Montavon et al.
[78], who write that “an explanation is the collection of features of the inter-
pretable domain, that have contributed for a given example, to produce a deci-
sion”. Explanations can be full or partial [70]. Models that are fully explainable
provide a complete explanation and are transparent [89]. Models that are only
partially explainable reveal only important parts of their reasoning process. In
scientific research, a scientific explanation should include at least two parts [90]:
the object to be explained and the content of the explanation. Referring to
Gunning [1], there are four types (modes) of explanation: analytical (didactic)
statements, cases, visualization, and alternative choices. Another definition by
Hendricks et al. [91] states that explanation should consider visual evidence,
which includes two types of visualization: they must be class discriminative and
accurately describe a specific image instance. One can distinguish between ex-
planation systems with introspection, which explain how a model determines its
final output, and explanation systems with justification, which produce sentences
detailing how visual evidence is consistent with a system output.

Visual explanations highlight the regions of the DNN that are descriptive
for the classes of interest, or, more generally, visualize the behavior of the
model [92]. Visual explanations must satisfy two criteria. They must be class
discriminative and accurately describe a particular image instance [91]. Textual
explanations [93] are natural language statements that are verbally formulated
or described. Textual explanations can be either template-based [86] or rule-
based [94]. Explanations by example [57, 95] select particular instances underly-
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ing the data distribution to explain the behavior of the DL model. Explanations
by simplification [96] involve dividing the complex feature space into simpler,
explainable domains. Feature relevance attribution [97] assigns an importance
score to each feature for specific input.

A good explanation should at least be faithful and interpretable [15]. A faith-
ful explanation is an accurate characterization of the behavior of a model, while
an interpretable explanation is easy for a human expert to understand [18]. There
are two types of explanations that answer the faithful model: what has the net-
work function learned to do, and how does it do it? The “what” question refers
to the external properties of the function, such as whether it is invariant to the
input. The “how” question refers to the internal functioning, i.e., how the hid-
den units process information to achieve invariance [15]. Hansen and Rieger [98]
describe five general desiderata for a useful explanation of a DL system: fidelity,
understandability, sufficiency, low construction overhead and efficiency.

There are different types of explanations, e.g., feature-based, instance-based,
and language-based [27]. To find explanations, we need to define an explanation
rule for a black box f(x). First, we need to define which variations of the input x
should be used to explore f(x). The search for explanations can be formulated as
the problem of learning meta-predictors that predict the behavior of a model [99].
There are explanation methods that differ in their approach. The goal they
pursue is the same – to evaluate input variables according to their importance
for prediction [18]. Montavon [8] consider three axioms of an explanation that
can be traced to individual neurons of the network: conservation, continuity, and
implementation invariance.

Araya et al. [27] argue that the explainability of an ML model is usually
inversely related to its ML performance. Often DL models are the most powerful
but least explainable, but this is not a rule of thumb. Decision trees are the
most explainable, but with the least accuracy [70]. A different view is held by
Watcher et al. [69], who argue that explanations do not have to satisfy explana-
tory accuracy. They say that counterfactuals are sufficient for an explanation.
It is assumed that the higher the predictive accuracy, the lower the explana-
tory power of a model [9, 100], which is the case for black-box models.

Nevertheless, Murdoch et al. [101] describe another conflict between the de-
scriptive and predictive power of a model. Yang et al. [102] argue that the ex-
plainability of DNN can be recognized by three main aspects. The first involves
a complex function decomposition into sparse additive subnetworks. The sec-
ond involves projection indexing in subnetworks that tend to be less confounded
with each other. The third aspect involves subnetworks that can be used to
better explain the functional relationship.

Using such an approach leads to an XDL that can balance the model‘s predic-
tion performance and explainability. For instance, an example of sparse additive
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decomposition is given in [103], designated by the authors as an additive index
model approach. Our definition based on an extensive literature survey is the fol-
lowing: Explainability means the ability by which a human can justify
the cause of the explanatory rule of the DL model’s results.

Let us refer to our COVID-19 example. Our physician wants to know not
only the results of the classified radiographs, but also what the cause is and how
exactly the model arrives at its prediction. Knowing what patterns, which pixels,
and where in the network they are responsible for a particular prediction can
help the physician make an informed decision based on the explanatory power
of the model.

As for the explanation to the user, the explanation of the DL models of
should be explained at all levels of the model state, which can be done through
the scope of explanation , modeling perspective , and method viewpoint
of explanation .

The scope of the explanation consists of the following:
• Global. Global explanations attempt to focus on the entire model. The

entire model can be explained, and reasoning can be followed from input to
every possible outcome, e.g., the importance of features to all training data.
This scope allows us to get a better picture of an entire model. This can
be, for example, visualizing the weight distribution in a DNN or visualizing
deep network layers propagating through the network.

• Local. Local explanation attempts to capture individual outcomes, e.g.,
to explain each prediction. The goal is to explain why a black box makes
a particular prediction based on local features, e.g., pixels. These explana-
tory methods can be used for a small portion of a network, e.g., when
considering a single filter in a deep network. Local explainability deals
with a situation where it is possible to understand only the reasons for
a particular decision.

Explainability by dividing through the modeling perspective [57] of the DL
systems can be divided into two fundamental stages:

• Ante hoc (also known as intrinsic). An ante hoc explanation (Latin: before
this event) of the decision of a black-box model is incorporated in advance
into its architecture or conceptual constraint. Ante hoc systems provide
explanations that go from the beginning of the model or input toward the
output [57].

• Post hoc (Latin: after the event) explanations for the decision of a black-
box model can be given after the fact. Post hoc explanations are concerned
with how the model behaves in ways that are not readily interpretable by
design [28]. The post hoc approach requires the creation of a second model
(explainer) that provides explanations [68], such as visual explanations,
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text explanations, local explanations, explanations by example, explana-
tions by simplification, and feature relevance attribution.

The problem with post hoc explanations is that they may not define exactly
how a deep model works. Nonetheless, they should provide useful information
to users. Post hoc models are about being able to explain the process in terms
of its outcome, for example, by determining which part of the input data is
responsible for the final output. Post hoc analysis techniques attempt to uncover
the significance of the various parameters, a goal we summarize as transparency.
Post hoc techniques entail incorporating the explainability into a model from its
outcome, such as marking which part of the input data is responsible for the
final decision, e.g., the surrogates modeling method LIME [85]. These modeling
techniques are easier to apply to different DL models, but say less about the
whole model in general. In the post hoc approach [78], we assume that we have
access to the parameters and architecture of the network under study.

Post hoc explainability methods are specifically designed and adapted to ex-
plain different types of DL models [28]. We can divide them into two groups:
shallow DL models, which do not depend on layered structures of neural pro-
cessing units, and deep DL models, e.g., convolutional neural networks, recurrent
neural networks, modular neural networks, and transparent models [104]. The
post hoc model analysis is a very common approach to explain AI systems and
models. The main difference between ante hoc and post hoc by Du et al. [68] lies
in the trade-off between model accuracy and explanation fidelity.

Explainable models can be divided according to their method viewpoint of
explanation :

• Model-specific. Model-specific explainability methods are restricted to
a specific class of models [2]. They attempt to understand the DL model
by analyzing the internal components of the network [68] and how they
interact by examining activation functions or backward pass activations
on the input. Model-specific explainability can be linked with a particular
type of black-box model or input data. It is only suitable for a single type
of model, e.g., visualization of the layers of a neural network, which is only
applicable to DNNs. Model-specific methods generally examine the distri-
bution of input or output data. These methods aim to understand the DL
model by analyzing the internal components and their interaction. For ex-
ample, it is possible to examine the activation units of DNNs and link the
internal activations to the input. This requires a thorough understanding
of the network and is not applicable to other models.

• Model-agnostic. The black-box explainers are model-agnostic and gen-
erally require access only to a model’s prediction function, while the glass-
box explainers generally require access to a model’s internals, such as its
loss function. Model agnostic explanation methods do not care which type
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of model you have and, in many cases, correlate with a post hoc expla-
nation. The model-agnostic methods can be divided into three categories:
model simplification, attribution estimation (feature relevance) and visual-
ization methods. A model-agnostic explanation for post hoc explainability
is intended to be applied to any DL model by means of obtaining some
information from its prediction procedure.

To benefit from explainable DL, we need to get to know and apply its pro-
cesses, axioms, and methods. To increase the explainability power of DL models,
one must take into consideration at least several of the most important desiderata
for DL explainability:

• Causality: the ability of a method to clarify the relationship between input
and output in a specified context of use [57, 71, 79].

• Correctability: the ability of a method to make necessary corrections back
to the learning model [73].

• Effectiveness: the ability of a method to support good decision-making
[105].

• Efficiency: the ability of a method to support faster best-option for end-
user decision-making [100].

• Explicitness: the ability of a method to provide explanations immediately
and in an understandable manner [106, 107].

• Faithfulness: the ability of a method to provide explanations that indicate
the true relevant features [106, 107].

• Fidelity: the ability of a method to agree with the input-output mapping
of the deep model [108].

• Informativeness: The ability of the method to provide useful information
to the end-user via its output [57, 109].

• Stability: the consistency of a method to provide similar explanations for
similar or neighboring inputs [106, 107].

• Transferability: the ability of a method to generalize and transfer new
knowledge to unfamiliar situations [57, 108, 110].

• Robustness: The persistence of a method to withstand small perturbations
of the input that do not change the prediction of the model [65, 106, 107].

• Persuasiveness: The ability of a method to convince users to perform cer-
tain actions [106, 107].

• Scrutability: the ability of a method to inspect a training process that fails
to converge or does not achieve an acceptable performance [106, 107].

From the explainability modeling perspective, there is a challenge to apply
several so-called explanators or explainers which try to point out the connection
between input and output to represent in a simplified way the inner structure
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of DL black boxes [14]. Besides black-box explainers, there are glass-box (also
known as white-box) explainers [27].

5. Taxonomies and classifications of interpretability
and explainability

Most of the research on explainability and interpretability has been conducted
after 2016. There are several taxonomies in the literature to distinguish XAI
methods (Table 1). The proposed taxonomies differ according to the scope of
the explanation, the level of explanation, the type of explanation, the type of
model or data that can be explained, or a combination of these methods [27,
116]. One group of XAI researchers distinguishes them into ante hoc and post
hoc methods. Another important distinction, distinguished by a second group,
is between explanation methods that attempt to explain the decision-making
process of a model at a global level and those that focus on explaining a single
data sample, i.e., at a local level [111]. A third group distinguishes XAI methods
as model-specific or model-agnostic [112]. There is an approach to classify XAI
techniques into a quadrate by vertically indicated global and local explanations
and horizontally marked model-specific and model-agnostic explanations [17].

Gilpin et al. [9] present explanations that focus on DL and divide them into
three categories: 1) DN processing that, includes methods for producing insights
between inputs and outputs of the deep model. This category includes linear
proxy models, decision trees, automatic rule extraction, and saliency mapping,
2) DN representation that, includes methods attempting to explain representa-
tions of the inside of the network. This category includes the role of layers, the
role of individuals, and the role of representation vectors, and 3) explanation-
producing systems, the combinatorial approach that attempts to merge different
explainability methods. This category includes attention networks, generated ex-
planations, and disentangled representations.

Samek et al. [18] divide methods of XAI into: 1) explaining with surro-
gates, e.g., LIME [85], 2) explaining with local perturbations, e.g., sensitivity
analysis [123], and prediction difference analysis [124], 3) propagation-based ap-
proaches (leveraging structure), e.g., LRP [125], guided backpropagation [86],
and 4) meta-explanations, e.g., spectral relevance analysis [117], and network
dissection [126]. Guidotti et al. [111] identify and categorize explainability meth-
ods into four categories: 1) by the type of explanation model, 2) by the data used
as input, 3) by the problem that makes up the method, and 4) by “opening” the
black box.

Lucieri et al. [129] distinguish three neural network explanation methods
using DNNs: 1) saliency-based, e.g., Grad-CAM [130], SmoothGrad [131], inte-
grated gradient [132], and LRP [125], 2) text-based, which can be either template-
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Table 1. Examples of the XAI taxonomy and classification methods collections.

Authors, year [Ref.] Description of the taxonomy or classification
Bodria et al., 2021 [113] Present XAI taxonomy for explaining black boxes for tabular

data, image data and text data.
Linardatos et al., 2021 [114] A survey on XAI methods, codes and toolbox with references.
Zhou et al., 2021 [115] An overview of explanation methods and quantitative met-

rics.
Arrieta et al., 2020 [28] An extensive survey of explainable methods is divided into

transparent and post hoc explainability.
Belle, Papantonis, 2020 [116] Present a taxonomy divided into transparent and opaque

models, with mapping methods for subcategories.
Benchekroun et al., 2020 [117] Designate explainability taxonomy into three categories: pre-

modeling, modeling, and post-modeling.
Chari et al., 2020 [118] Propose an explanation ontology incorporating different ex-

planation types by the role of explanation, accounting for the
system and user attributes in the process.

Das, Rad, 2020 [119] Propose XAI taxonomy based on the explainability scope,
methodology and usage.

Hase, Bansal, 2020 [120] Summarize explainability methods dividing them into feature
importance, gradient-based and case-based reasoning cate-
gories.

Vilone, Longo, 2020 [107] Provide an overview of methods divided by stage (ante hoc,
post hoc), scope (global, local), problem type, input data, or
output format.

Xie et al., 2020 [121] Present an XAI taxonomy based on visualization methods,
model distillation and intrinsic methods.

Arya et al., 2019 [27] Taxonomy is based on what is explained (data or model),
how it is explained (post hoc or ante hoc) and at what level
(global or local).

Carvalho et al., 2019 [122] A survey of ML explanation methods and metrics.
Adadi, Berrada, 2018 [2] The explainability taxonomy is divided by scope (global, lo-

cal), post hoc (model-agnostic) and intrinsic (model-specific)
methods.

Gilpin et al., 2018 [9] Present explanations dividing them into three categories: DN
processing, DN representation, and explanation producing
systems.

Guidotti et al., 2018 [111] A summary of the methods for opening and explaining black
boxes concerning the explanator adopted.

based [133] or rule-based [134], and 3) concept-based, e.g., concept activation
vectors [135]. Murdoch et al. [101] developed a predictive, descriptive, relevant
(PDR) framework that introduces metrics for explainability methods, predictive
accuracy, descriptive accuracy, and relevance. The framework is based on the as-
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sumption that explainability is divided into categories, post hoc interpretation,
and transparent models.

Arrieta et al. [28] begin by dividing the taxonomy into post hoc explain-
ability and transparent models, with post hoc explainability subdivided into
model-agnostic and model-specific. The authors identify four categories related
to DNNs, 1) explanation of DN processing, 2) explanation of DN representation,
3) explanation of producing systems, and 4) hybrids of transparent and black-
box methods. Hase and Bansal [120] divide the taxonomy of interpretability into
three categories: 1) feature importance estimation, which includes, for instance,
gradient-based approaches, 2) case-based reasoning, e.g., prototype models for
computer vision, and 3) latent space traversal, which shows how the model be-
haves when its input changes.

Another taxonomy presented by Liao et al. [100] divides XAI methods ac-
cording to their mapping to user question types: global (explain the model),
local (explain the prediction), inspect the counterfactuals or based on an exam-
ple. Nguyen and Martínez [136] propose a set of metrics for the programmatic
evaluation of interpretation methods and divide the methods into example-based
and feature attributions. Sokol and Flach [62] compiled a list of functional, op-
erational, and user-friendly features of explanatory methods for predictive sys-
tems called the explainability fact sheet – a framework for systematic evaluation
of explainability approaches. Lage et al. [137] focus on explanations in terms of
decision sets (also known as rule sets) as a starting point for a study of explana-
tory methods. Xie et al. [121] list visualization methods, model distillation, and
intrinsic methods for DL. Ras et al. [72] divide explanatory methods into three
categories: rule extraction methods, attribution methods, and intrinsic methods.

More recently, Belle and Papantonis [116] presented a taxonomy of XAI with
a map of explainability approaches, dividing XAI by model types, explainabi-
lity categories, explainability principles, and common techniques. Cortez and
Embrechts [138] write about two main approaches: extraction of rules and use of
visualization. Some recent work on XAI taxonomy is presented by Bodria et al.
[113], Linardatos et al. [114], and Zhou et al. [115]. Banchekroun et al. [117]
propose three main categories of explainability: 1) pre-modeling explainability,
which focuses on the study of the input, 2) modeling explainability, which focuses
on the inner workings of the model (mathematical aspect), and 3) post-modeling
explainability, which focuses on data-driven methods.

6. Explainability methods

This section aims to provide a concise overview of the classification of modern
XAI attribution and distillation approaches and IML by summarizing their goals,
along with some basic methods and their objectives, see Fig. 1.



314 I. Namatēvs et al.

a) b) c) d)

e) f) g) h)

Fig. 1. Schematic conceptual examples of XDL approaches: a) local perturbation-based at-
tribution, b) propagation-based attribution output to input, c) propagation-based attribution
output to layers, d) propagation-based attribution neuron to input, e) decomposition, f) dis-

section, g) surrogate model, h) intrinsic approach.

The attribution approach focuses on measuring the feature relevance scores.
We divide the explainability methods of this approach into three subcategories:
perturbation-based explanations, propagation-based explanations, and
structural explanations. The first and the second belong to the output-input of
the deep network, and the third tries to use the internal structure of the deep net-
work for an explanation. The distillation approach focuses on reducing the com-
plexity of DNN models by transforming them into simple, easy-to-understand
surrogate models. We divide surrogates into three subcategories: local approxi-
mation explanations, rule-based explanations, and tree-based explanations.

The proposed IML and XAI classification for understanding the models of
DL is based on the fundamental algorithmic problem-solving approaches based
on black-box model explanation and glass-box perspective using common basic
post hoc and ante hoc methods. The task was to create a unified and generic
classifier based on the concepts of interpretation and explanation as well as scope,
modeling, and methodological perspective. The study of existing algorithms for
the explanation of black-box models is divided into the level of features, layers
and neurons. The proposed classification system is divided into post hoc and
ante hoc (intrinsic), which must support the requirements of XAI and IML. The
former is further divided into perturbation-based, propagation-based, surrogate
models, and meta-explanations, and the latter into attention mechanisms and
joint training of explanatory models. The set of methods covered here is not
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exhaustive, but sufficiently representative to discuss a number of issues referring
to the taxonomy of explainability, possible applications and technical challenges.

6.1. Perturbation-based methods

Perturbation-based local methods, see Fig. 1a and Table 2, express an expla-
nation by covering, removing, or changing the input features and/or activation
units of a DNN to measure the corresponding change in the model output. The
perturbation can be realized by permutation, which permutes the feature va-
lues, or by uniform distribution, where the feature values can be replaced by
a random sample from a uniform distribution. This information is then used to
evaluate the importance of the feature. Perturbation-based forward propagation
approaches make perturbations to individual inputs or neurons and observe the
effect on further network neurons, layers in the network and network output [139].
This means that perturbation-based methods try to evaluate the importance of
input pixels by measuring the classifier, and how our network reacts to changes
in the input. For example, if you mask a certain part of the input, how does it
affect a classification, or not.

Therefore, the idea behind these methods is to assess feature relevance by
testing the model response to the removal and perturbation of features [81]. For
example, relevance measures the strength of the connection between the input
or pixel to the specific network output [140]. While perturbation-based methods
allow direct estimation of the marginal effect of a feature, they tend to be very
slow as the number of features to test grows. What is more, given the nonlinear
nature of DNNs, the result is strongly influenced by the number of features
that are removed altogether at each iteration. Perturbation-based methods only
require the propagation of one forward and/or backward pass through the CNN
to generate an attribution visualization. In addition, perturbation-based methods
are mostly iterative optimization-based approaches that require multiple passes
through a network [141].

Definition: Explainability of the DL model can be described through
manipulation (altering, removing, deleting) of the input feature or
intermediate layers (activations).

The method of occlusion was proposed by Zeiler and Fergus [142]. The
idea behind this method is to divide the input, e.g., an image, into a grid of
regular, non-overlapping patches. Occlusion analyses depend on function value
instead of a gradient. To calculate attribution (feature relevance), a function
value is assigned to each patch when the patch region in the original image is
perturbed or replaced by a specific baseline or reference value. Then the differ-
ence in network output is calculated. The probability of the correct class reduces
significantly if the object of the image is occluded. When the patch covers the
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T
a
bl

e
2.

A
su
m
m
ar
y
of

th
e
p
er
tu
rb
at
io
n
ex
pl
an

at
io
n
m
et
ho

ds
fo
r
ex
pl
ai
ni
ng

bl
ac
k
bo

x.

C
at
eg
or
y

M
et
ho

d
A
ut
ho

rs
,y

ea
r
[R

ef
.]

C
od

e
M
od

el
co
m
po

ne
nt
s

L
oc
al

pe
rt
ur
ba

ti
on

-b
as
ed

ex
pl
an

at
io
n

O
cc
lu
si
on

se
ns
it
iv
it
y
(O

S)
Ze

ile
r,

Fe
rg
us
,2

01
3
[1
42
]

N
O
C

IM
G
,C

L
,S

M
,P

H
,M

A
,L

,C
N
N

M
ea
ni
ng

fu
lp

er
tu
rb
at
io
ns

(M
P
)

Fo
ng

,V
ed

al
di
,2

01
7
[1
40
]

N
O
C

E
C

[li
nk

]

IM
G
,
C
L
,
SM

,
P
H
,
M
S/

M
A
,
L
,

D
N
N

no
t
sp
ec
ifi
ed

E
xt
re
m
al

pe
rt
ur
ba

ti
on

s
(E

X
P
)

Fo
ng

et
al
.,
20
19

[1
43
]

[li
nk

]
IM

G
,C

L
,S

M
,M

A
,C

N
N

P
re
di
ct
io
n

di
ffe

re
nc
e

an
al
ys
is

(P
D
A
)

Zi
nt
gr
af

et
al
.,
20
17

[1
24
]

[li
nk

]
IM

G
,C

L
,S

M
,I
M
,P

H
,L

,C
N
N

R
an

do
m
iz
ed

in
pu

t
sa
m
pl
in
g
fo
r

ex
pl
an

at
io
n
(R

IS
E
)

P
et
si
uk

et
al
.,
20
18

[1
44
]

[li
nk

]
IM

G
,S

M
,M

S,
L
,C

N
N

U
ni
ve
rs
al

ad
ve
rs
ar
ia
l
pe

rt
ur
ba

-
ti
on

s
(U

A
P
)

M
oo

sa
vi
-D

ez
fo
ol
ie

t
al
.,
20
17

[1
45
]

[li
nk

]
IM

G
,M

A

E
pr
es
en
ta
ti
on

er
as
ur
e
(R

E
)

L
ie

t
al
.,
20
16

[1
46
]

N
C
C

E
M
B
,
C
L
,
se
qu

en
ce

ta
gg
in
g,

H
M

of
im

po
rt
an

ce
,S

H
,L

ST
M
,R

L
Fo

r
ev
er
y
m
et
ho

d,
th
er
e
is

a
re
fe
re
nc
e
lin

k,
co
de

lin
k:

no
offi

ci
al

co
de

(N
O
C
),

no
co
m
m
un

it
y
co
de

(N
C
C
),

ex
am

pl
e
co
de

(E
C
).

T
he

da
ta

ty
pe

on
w
hi
ch

it
is
po

ss
ib
le
to

ap
pl
y
it
:i
m
ag
e
(I
M
G
),
cl
as
si
fic
at
io
n,

(C
L
),
em

be
dd

in
g
(E

M
B
),
ex
pl
an

at
io
n
in
te
rf
ac
e:
sa
lie

nc
y
m
ap

s
(S
M
),

he
at
m
ap

s
(H

M
),

im
po

rt
an

ce
m
ap

s
(I
M
).

If
it

is
po
st

ho
c
(P

H
)
or

an
te

ho
c
(A

H
)
st
ag
e,

m
od

el
sp
ec
ifi
c
(M

S)
or

m
od

el
ag
no

st
ic

(M
A
),

an
d
lo
ca
l
(L

)
or

gl
ob

al
(G

)
sc
op

e.
F
in
al
ly
,
fo
r
w
hi
ch

ty
pe

of
D
N
N

th
e
m
et
ho

d
is

ap
pr
op

ri
at
e:

co
nv

ol
ut
io
na

l
ne

ur
al

ne
tw

or
k

(C
N
N
),
lo
ng

-s
ho

rt
-t
er
m

m
em

or
y
(L

ST
M
)
or
,r

ei
nf
or
ce
m
en
t
le
ar
ni
ng

(R
L
).

https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1704.03296
https://github.com/ajsanjoaquin/mPerturb
https://arxiv.org/abs/1910.08485
https://github.com/facebookresearch/TorchRay
https://arxiv.org/abs/1702.04595
https://github.com/lmzintgraf/DeepVis-PredDiff
https://arxiv.org/abs/1806.07421
https://github.com/eclique/RISE
https://arxiv.org/abs/1610.08401
https://github.com/LTS4/universal
https://arxiv.org/abs/1612.08220


Interpretability versus explainability. . . 317

critical area, the output prediction performance decreases significantly [78]. For
features contained in multiple patches, the corresponding output differences are
averaged to compute the attribution for that feature. The visualization shows
the sensitivity range of an image for its classification label [78]. The meaning-
ful perturbations (MP) method proposed by Fong and Vedaldi [140] applies
meta-predictors as explainers. This is an optimization-based method observing
how the output value of f(x) changes as input x is penalized by deleting specific
regions R. Attribution aims to identify which regions of an image x0 are used
to produce the output value f(x0). The idea is to not iterate over all possible
perturbations but to search locally for the best perturbation mask m∗, i.e., to
find the smallest deletion mask. The extremal perturbations (EXP) method
[143] is where the perturbations are optimized by choosing smooth perturbation
masks maximizing the model‘s confidence score. Extremal perturbations are re-
gions of an input image that maximally affect the activation of a certain neuron
in a DNN. Prediction difference analysis (PDA) [124] presents the method
in which conditional and multivariate sampling are used within the pixel neigh-
borhood of an analyzed feature to effectively remove information. Randomized
input sampling for explanation (RISE) [144] explains actual DNN black-
box models by estimating pixel saliency importance (importance map) of the
input image regions. The importance of pixels is estimated by blurring them
in random combinations, reducing their intensities to zero. The authors [145]
develop a fast saliency detection method called universal adversarial pertur-
bations (UAP) for image classifiers by manipulating the scores of classifiers
by masking salient parts of the input image. Li et al. [146] propose the rep-
resentation erasure (RE) method, which is used on the model by erasing
various parts of the input word-vector dimensions, intermediate hidden units,
or input words. Such representation erases NLP tasks, offers clear explanations
about neural model decisions, and provides a way to conduct error analysis on
the neural network.

6.2. Propagation-based methods

These types of methods, see Figs. 1b–1d and Table 3, try to explain any black-
box function f(x), e.g., a neural network object classifier. Since such a function
is learned automatically from data, we would like to understand what it has
learned to do and how it does so. For instance, to evaluate the importance of
a model, a DNN can be regarded as a function, and we can compute gradients and
sensitivity values or approximate the function using the functional perspective
of explanation.

These methods use two fundamental axiomatic approaches to the informa-
tion embedded in a neural network, i.e., gradients produced during the forward
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pass and the backward pass, or a propagation-based algorithm to estimate the
importance of the feature to be questioned. The first set, gradients (of the out-
put concerning the input), is a rational analoge of the model coefficients for
a DNN. Therefore, the product of the gradient and feature values is a reasonable
starting point for an attribution (method) [127, 176]. Gradients provide a local
explanation. The magnitude of the gradient shows the importance of the fea-
ture. The second set, the propagation-based methods, requires the propagation
of one forward and/or backward pass through a neural network, e.g., the CNN,
to generate an attribution visualization. These methods fall roughly into three
categories [102]: 1) gradients, 2) activations, and 3) a combination of gradients
and activations.

Definition: Explainability of the DL model can be explained by con-
sidering the deep network as a function (each neuron or group of neu-
rons) by using gradient and backpropagation axioms of the function
of interest to define the explanatory rule.

6.2.1. Gradient-based explanations. The sensitivity analysis (SA) method
[147] studies the effect of different input features on the output values by chang-
ing the input values (features) and checking what happens in the output [27, 123].
Sensitivity analysis [81] explains a prediction based on the model’s locally evalu-
ated gradient (partial derivative) [62], some other local measures of variation as
relevance scores [115] or class activation probabilities [122]. The gradient * in-
put (GI) is the attribution method [148], where the information of the gradient
of the neural network as a function (e.g., model) for each input dimension will
increase if tiny steps in this direction are taken. The algorithm consists of an
element-wise multiplication of the gradient times the input [83]. The gradients
indicate the importance of a dimension, but the inputs suggest how strongly
this dimension is expressed in the image. This method is preferable to gradients
alone as it leverages the sign and strength of the input. In integrated gradients
(IG) [132], instead of computing the gradients at the current value of the input,
we can integrate the gradients. The inputs are scaled up from some starting
value, e.g., all zero, to their current value [149]. The baseline input for the image
networks could be the black image, while for text models, it could be the zero-
embedding vector [150]. This method relies on integrating the gradients of the
output prediction with respect to the input over a series of chosen variants of the
input. The idea behind the guided backprop (GBP) [151], which is the feature
backpropagation method, is that neurons act as detectors of a particular feature.
During backpropagation, the negative gradients are removed. Guided Backprop
is proposed for use in CNNs with ReLU to visualize pixel-space gradients with
respect to the image. Smilkov et al. [130] propose the SmoothGrad (SG)
method, where the discontinuous gradient is smooth with a Gaussian kernel.
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The authors attempt a stochastic approximation that takes random samples in
a neighborhood of the input x and then averages their gradients. The method
samples the neighbouhood of the input to approximate the gradient. VarGrad
(VG) is a similar explanation method to SmoothGrad, taking into calculation
the variance V with noise-adding [10, 130]. Koh and Liang [59] propose the in-
fluence functions (IF) method taken from statistics measuring the sensitivity
of the model to changes in the distribution of the independent variable. IF shows
how the deep model parameters change as we upweight a training point by an
infinitesimal amount. The explanation is done using examples that the model
finds most similar or useful by calculating the gradient concerning each training
epoch. The perturbation of the input is done by applying a constant shift. The
internal influence (IIF) method is proposed by Leino et al. [152] and it is like
the integrating gradients method. The difference is that the integrating gradi-
ents refer to the network layer rather than the network input. Another method
presented by Leino et al. [152] is the influence-directed explanations (IDE)
method for deep networks. It peers inside the network to identify neurons with
a high influence on the model’s behavior and then uses visualization to explain
the concepts the neurons represent. The authors provide a novel distribution
influence measure to identify which neurons are most influential in determining
the model’s behavior in a given distribution of instances.

6.2.2. Activation-based explanations. The activation maximization (AM)
[67, 153] is an example-based explanation method, where examples are used to
explain the neural network. The input patterns can be explained by the activa-
tion of a unit. This method belongs to an optimization-based explanation with
visualization of important features in any layer of DNN. Zhou et al. [154] describe
the procedure of creating a class activation map (CAM) method, which can
generate the localization maps for the prediction through the classification layer.
The idea behind this method is that a predicted class score is mapped back to the
previous convolution layer to generate the class activation map. The maps are
created by using a global average pooling layer after the last convolution layers
in CNNs and before the final fully-connected layer (FC). The maps highlight the
class-specific discriminative image regions for image classification used by CNN.
The DeconvNet method is a calculation of abackward convolutional network
that reuses the weights at each layer from the output layer back to the input
image. The method makes it possible to create feature maps of an input image
that activate certain hidden units (hidden neurons) most linked to a particular
prediction [93]. Zeiler and Fergus [142] introduce an image-based DeConvNet
method that gives insight into the function of intermediate network layers and
the operation of the classifier. Simonyan et al. [123] introduce a gradient-based
DeconvNet method that computes the gradient of the output class score with
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respect to the input image. First, an image can be generated which maximizes
the class score. Then a class saliency map is computed to be specific for a given
input and output class. We assume that the salient regions are at locations with
high gradient magnitude. Shrikumar et al. [155] propose the DeepLIFT (deep
learning importance features)method to compute the relevance scores of fea-
tures in a multilayer neural network. DeepLIFT compares the activation of each
neuron j to its “reference activation” value j′ and assigns a relevance score R
according to the difference. The same approach is valid if one assigns the rele-
vance scores to input features based on the difference between an input x and
a “reference input” x′.

6.2.3. Gradient and activation-based explanations. The excitation back-
prop (EXB) [156] method modifies the backpropagation rules by passing the
neurons along top-down in the network hierarchy such that a backpropagated
signal is weighted by a convolution layers‘ activation, while bottom-up informa-
tion is used to compute the winning probability of each neuron. The method
exploits the selective tuning attention approach [157]. Selvaraju et al. [131] pro-
pose the Grad-CAM (GC) method, which is a generalization of CAM [154].
The method makes sense for convolutional models by providing visualization
of the class-specific gradient information of the output concerning the given
layer. GC and DeepResolve [158] are two gradient ascend-based methods [107].
The GC method uses the gradients of any target concept, i.e., car, flowing into
the final convolutional layer to generate a heatmap that can generate the influ-
ential regions in the image for predicting the concept. The activations can be
explained in any layer of a deep network. Such an attribution method is usu-
ally leveraged to the last convolution layer of the CNN, to produce a coarse
localization map of the important regions in the image. The importance val-
ues can be assigned to each neuron for a particular decision of interest. Grad-
CAM is a class-specific visualization for every class present in the image. The
result is a class activation heatmap (attention map) for an image classifica-
tion model. To compute more fine-grained feature importance, Selvaraju et al.
[131] propose the guided Grad-CAM (GGC) method, which leverages an
element-wise product between the scores obtained with guided backpropaga-
tion attributions, i.e., Guided Backpropagation and the scores obtained with
layer up-sampling. Other similar methods are Grad-CAM++ (GC++) [159]
a gradient-based visualization method and gradient SHAP (GSHAP) [160].
GradCAM++ is an extension of Grad-CAM that produces better visual ex-
planations of the predictions of the CNN. This method is especially helpful in
multi-label classification problems, while a different weight assigned to each pixel
makes it possible to capture the importance of each pixel separately in the gra-
dient feature map.
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6.3. Structural-based methods

Dissection, see Fig. 1f, translates qualitative visualization of units of rep-
resentations into quantitative explanations and measurements of explainability
[128]. Dissection-based explanations provide information on individual units in
a DNN. Decomposition, see Fig. 1e, [125, 161, 162] is the process of resolv-
ing a model relationship into its constituent individual components, e.g., input
and output parameters. The output prediction is redistributed backward in the
network to eventually assign relevance scores to each input variable [163]. While
DNN models enable superior performance, their lack of decomposability into in-
dividual intuitive components makes them hard to interpret [57]. Typically, this
category of methods is based on a decompositional approach [164] which can be
applied to any neural network whose output function is monotone, e.g., sigmoid
function. Decomposition splits the network at the neuron level. The neurons of
a network can be transformed into logical formulas, then aggregated to repre-
sent the network as a whole. Such an approach can be used in time series by
using perturbation techniques. Table 4 presents a summary of the structural
methods for explaining black box.

Definition: Explainability of the DL model can be explained by ex-
amining the inner structure of the deep network by decomposing or
dissecting it on a unit, layer, and/or specific neuron level.

6.3.1. Dissection-based explanations. Zhou et al. [165] develop the network
dissection method, which explains neural networks by assigning meaningful la-
bels to their representational units. The proposed method extracts and evaluates
the semantics of the hidden units, i.e., it quantifies which concept these neurons
encode [116, 166]. Network dissection quantifies the explainability of any net-
work by measuring the degree of correspondence between the activation of the
units and the ground-truth labels in a predefined dictionary of concepts [167].
The method defines the quality of explanation of concept c for a unit k by
quantifying the ability of k to solve the segmentation problem given by c us-
ing the IoU score. The value of IoUk,c is the accuracy of unit k in recognizing
concept c. Network Dissection translates the qualitative visualization of repre-
sentation units into quantitative explanations. Kim et al. [135] introduce testing
with the concept activation vectors (TCAV) method, which explains the in-
ternal state of a neural network through a combination of feature vectors. TCAV
shows the importance of high-level concepts, e.g., race, gender, color, texture,
etc., for a prediction class – similar to human communication. This method pro-
vides an explanation that generally applies to the class of interest, over and above
an image. TCAV learns concepts from examples. The notation of TCAV is a way
of translating between Eh and Em, where Eh is a high-level human-interpretable
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concept space and Em is an input vector space. TCAV uses directional deriva-
tives to compute classifier models, i.e., “conceptual sensitivity”, across an entire
class of inputs. The TCAV method considers directional derivatives in the space
of activations. The directions correspond to higher-level concepts that can be
interpreted by humans instead of input gradients [168]. These main concept di-
rections and directional derivatives can quantify the influence of a concept on the
prediction of a particular output class. Graziani et al. [169] redefine CAVs from
a classification problem to a regression problem by computing regression concept
vectors. Ghorbani et al. [170] develop the automatic concept-based explana-
tions (ACE)method for unsupervised clustering of objects by segmenting a sin-
gle object. First, the multi-resolution image is segmented into a pool of segments
that are all from the same class. Then, the activation space of the CNN is used as
a similarity spacer. After resizing each segment to the standard input size of the
model, similar segments in the activation space are clustered. Finally, the impor-
tance score is calculated for each concept based on its example segments. Bau
et al. [171] present GAN dissection, a segmentation-based network dissection
method for decomposing networks to understand and visualize GANs at different
levels of abstraction. An inferential process to understand a network can be built
from each neuron level to each object. The contextual relationship between dif-
ferent objects is controlled by identifying units or groups of units that are related
to semantic classes, e.g., ships in an image. This is the first systematic approach
for understanding internal representations across different layers of GANs by
using causal effects. The cluster explanations (CE) [172] method is based on
a concept called “neuralization propagation”. The cluster model, e.g., the k-means
cluster model, is first transformed into a neural network. Then the output of the
network is explained in terms of the input features using a reverse propagation
approach. The explorative generative boundary (E-GBAS) [173] method
defines generative boundaries that determine the activation nodes in the internal
layers. The internal layers of the network are characterized by collecting samples
within the region surrounded by generative boundaries.

6.3.2. Decomposition-based explanations. Bach et al. [125] propose the layer-
wise relevance backpropagation (LRP) method to explain a neural network
classifier decision by pixel-wise decomposition. The method explains individual
predictions of DNN in terms of input variables such as text, images, or videos.
Based on the connecting weights, the prediction confidence has been redis-
tributed in the opposite direction,. For example, LRP calculates a single pixel to
the prediction made by the network in the image classification tasks. Later the
method has been extended to RNN architectures such as LSTMs and GRUs by
proposing a specific propagation rule applicable to multiplicative connections.
This method, based on the feature relevance technique, delivers insightful ex-
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planations in the form of input space relevance for understanding feed-forward
neural networks [52]. The central idea of relevance propagation uses conservation
property (conservation propagation or principle) to propagate the outcome deci-
sion back without using gradients [174]. More specifically, this property declares
that each neuron receives a portion of the network output and redistributes it
to its forerunner in an equal amount until the input features are reached [125].
We can evaluate the explainability of a deep model by using Taylor decom-
position, which is a general function analysis tool in mathematics. The Taylor
expansion is a method to decompose a composite function into its component
functions associated with different combinations and degrees of an input variable.
Montavon et al. [161] consider each neuron as an object that can be decomposed
and expanded, then aggregated and backpropagated through the network [28].
In this case, we get a product of the gradient and input relative to the root
point as a relevance score: Ri = [f ′(x̃)]i · (xi − x̃i). Note that when the func-
tion is highly non-linear a Taylor-type decomposition is applied to one layer or
a subset of layers, approximating the relevance propagation. Deep Taylor de-
composition (DTD) [161] is a method that explains the model’s decision by
decomposing the function value f(x) as a sum of relevance scores [78]. The key
idea of DTD is that if a decision is too complex to explain, it is necessary to
decompose the decision function learned by a deep network into a set of simpler
subfunctions and explain each subfunction separately. This can be done either by
structurally imposing the neural network connectivity or training and explain-
ing each subfunction separately. PatternNet and PatternAttribution [175]
aim at computing the contribution of the input “signal” direction per neuron by
learning it from data. Such a signal contains information about the output class
as well as filtering out the rest of the input, for example, the background of the
image. PatternNet is a layer-wise back-projection method that projects back
the likely signal to the input space. Whereas, PatternAttribution is a neuron-
wise contribution method that produces explanations consisting of contributions
of the estimated signal to the classification scores [110]. Pattern Attribution is
based on deep Taylor decomposition. Nam et al. propose [97] the relative attri-
bution propagation (RAP) method that decomposes the predictions of the
output of DNN by separating the relevant (positive) and irrelevant (negative)
attributions according to the relative influence between the layers.

6.3.3. Time-series explanations. Oreshkin et al. [176] propose theN-BEATS
method for a very deep neural network architecture to explain univariate time
series points. The method is based on the principle of double residual stacking,
which uses previously organized building blocks organized in stacks. The build-
ing block predicts the expansion coefficients both forward (forecast), θf , and
backward (backcast), θb. The explanation of the time series was performed by
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backcasting and forward casting the residual links of the deep stacking of FC
layers of the neural network. Schlegel et al. [177] propose a perturbation on
time series (PoTS) technique for time series in which a time point is set to
zero and time intervals around the relevant time points are acted upon.

6.4. Surrogate models

Distillation methods attempt to create surrogate models that must generate
a separate, glass box model that is trained to mimic the input-output leverage of
the internal representations of the original DNN [145]. We look for approximation
of complex model f by the simple model g in the neighborhood of our data point.
In other words, we need to get a good approximation in local neighborhoods.
We divide surrogate model methods for DL into the following three categories:
local approximation-based explanations, rule-based explanations, and tree-based
explanations. A summary of the surrogate model methods for explaining black
box is presented in Table 5.

Local explanations (also known as proxy or per-decision explanations)
provide a separate explanation for each decision of the model, i.e., they explain
only a single prediction [121]. Local explanations can be further divided into
approximation-based and example-based explanations. In approximation-based
explanation (approach), new data points near the data point whose prediction
needs to be explained from the model are sampled (explanation data points),
and then a linear model, e.g., LIME [85], is fitted or a rule set is extracted. Rule
extraction based on explanations attempts to extract rules from DNNs. One
of the most commonly used rule formats consists of “IF...THEN” or “IF...ELSE”
statements with “AND/OR” or “YES/NO” statements to make decisions [178].
The rules are merged to create a set of rules that can explain the behavior of the
network based on its inputs [72]. Tree-based explanations use types of mimic
learning to distill knowledge from DL models with tree structure. Decision trees
are structured as graphs where the internal nodes represent conditional tests on
input features, and the leaf nodes represent model outcomes. Rule extraction is
a common method for extracting rules from tree modules [179].

Definition: The explainability of the DL model can be illustrated
by approximating the original DL model with a simple model with
a proxy function.

6.4.1. Perturbation-based surrogate explanations. Ribeiro et al. [85] propose
the local interpretable model-agnostic explainer (LIME), which is based
on generating and classifying a large set of randomly perturbated input images
and recognizing how the prediction changes. This method is based on a local
approximation of the function of an individual model [180]. Authors show that
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the LIME method can be used to identify regions of the input that are most
influential for a decision in a variety of model types and problem domains. LIME
is used for explaining image segmentation, random sampling, and multiple linear
model fitting [181]. The data is used to construct a local linear model that serves
as a simplified proxy for the entire input [9]. LIME explains a prediction by
fitting a localized linear model to approximate the classification boundary for
a given prediction [182]. The LIME method does not require access to internal
weights, activations, or other hyperparameters of the network [56]. The output
of LIME is a list of explanations reflecting the contribution of each feature to the
prediction of a data sample, i.e., superpixels with the highest positive weights as
explanations. This provides local explanatory power and allows one to determine
which feature changes will have the greatest impact on the prediction.

Ribeiro et al. [183] present another method that explains complex models
with high-precision rules called “anchors”. An anchor explanation is a rule that
“anchors” the prediction locally enough – so that changes in the other feature
values of the instance do not matter. The counterfactual impact evaluation
method (CIE) is a local explanation method for comparing different predic-
tions of the DNN [184]. The method explains why one decision is made instead
of another [14]. A counterfactual explanation is an alternative input where the
model’s input differs from the given input [121]. The counterfactual explanation
of a prediction can be defined as the smallest change in feature values, which
changes the prediction to a predefined outcome [14]. The most striking feature
of the model is the explanation of the reasons for a particular classification re-
sult [185]. The method for DNN can be used with any data type [14]. SHapley
additive exPlanations (SHAP) values, also known as Shapely values, use
coalition game theory to distribute the payoffs of a game. When applying SHAP
values to a DL problem, the “game” is a prediction of a DL model, the “players”
in the game are input variables for a given instance, and the “payoff” is equal,
subtracting the base value. The method applies an additive feature attribution
principle to create a model that is an explainable approximation of the original
model. The SHAP values assign an importance value to each feature, basically
the linear combination of input features, for a given prediction [160]. The SHAP
values measure the average marginal effect of including inputs over all possible
orders in which inputs can be included [139]. In short, the Shapley values use
coalitions to see what contribution a feature value makes to the final prediction.
They explain how to get from the base value E[f(z)], which would be predicted
if we knew no features of the current output f(x), to the outcome. The Shapley
explanation values for the input features always sum to the function f(x) of
the model. The values never decrease for an input xi if the feature is changed
so that xi makes a strong contribution to f(x) [186]. Lundberg and Lee [160]
combine the DeepLIFT method and Shapely values under the name Deep SHAP
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approximating SHAP values under the assumption that the input features are in-
dependent and the deep model is linear. Deep SHAP combines computed SHAP
values for smaller components into values for the entire network. There are other
SHAP modifications [160], such as kernel SHAP and tree SHAP. Elenberg et al.
[187] propose the streaming weak submodular maximization (STREAK)
method for black-box classifiers as a combinatorial maximization problem where
a streaming algorithm is used to maximize a weakly submodular objective func-
tion (function maximization). This method is similar and faster than LIME and
uses the superpixel approach. First, the image is segmented into regions. Then,
for a subset of these regions, a new image containing only these regions is fed
into the model. The algorithm explains the given label of the image in the model.
Another local approximation method is knowledge distillation (KD) [188],
which uses knowledge compression of an ensemble into a single model to approx-
imate the predictions of a complex ensemble learned using a surrogate model.

6.4.2. Graph-based explanations. Zhang et al. [189] propose the and–or
graph method, where explanations are represented in terms of extracted rea-
soning logic. The model provides explanations by distilling them into object
parts of a graph for a pre-trained CNN. After the semantic patterns in the in-
put are extracted, the graph for the explanation is created. The nodes in the
graph represent specific parts of the object’s pattern, while the edges represent
co-activations between sub-patterns. The graph explains the semantic hierarchy
of CNN entities by representing which object parts (nodes) are activated and
where the parts are located in the corresponding feature maps. Zhang et al.
[190] propose a different approach to distill into a graph that extracts an ex-
planatory graph for interpreting CNN that automatically disentangles object
parts from each filter without annotations. The proposed method can be used to
learn explanatory graphs for various CNNs, e.g., VGGs, residual networks, and
the encoder of a VAE-GAN.

6.4.3. Rule-based explanations. The adversarial black-box explainer ge-
nerating latent Exemplars (ABELE) [191] is an explainer based on local
image rules. It provides an explanation for the reasons for the proposed classifi-
cation by exploiting the latent space learned by an adversarial autoencoder for
the neighborhood generation process. The rule extraction from deep neural
networks (DeepRED) method [192] by Zilke et al. deals with feature extrac-
tion from a neural network with multiple hidden layers. Rules are extracted and
merged for each layer in the DNN by using simplification and decomposition
strategies. Another commonly used method for extracting rules is rule extrac-
tion by reverse engineering RxREN [193], which prunes input and applies
an algorithm, the C4.5 logical model [24], a statistical method for building a par-
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simonious decision tree. Conjunctive normal form (CNF) or disjunctive
normal form (DNF) [194] is a two-step Boolean rule-based classification ex-
traction method that connects a complex model to one. Murdoch and Szlam
[195] introduce the word importance scores method to track the importance
of given text input to the LSTM for given explainable text output. As a re-
sult, a rule-based classifier is created using extracted phrases to visualize the
important words. Guidotti et al. [191] propose a local rule-based explainer
(LORE) for the black-box outcome for tabular data. This method provides
explanations in the form of logical rules and counterfactual rules. The counter-
factual rule set shows the conditions that can be varied at instance x to change
the decision for output y. Ming et al. [196] propose RuleMatrix to explain
ML models using rule surrogates and matrix-style visualization. The rule-based
explanation is composed of several steps.

6.4.4. Tree-based explanations. The CRED (continuous/discrete rule
extractor via decision tree induction) [197] method uses a decision tree
approach to describe DNN behavior. This method has two steps, in each of
which a decision tree is created. CRED is applied more for shallow networks
than for deep networks. Soft decision trees [198] create binary trees of pre-
determined depth, where each branching node represents a hierarchical filter
that influences the classification of input. As a first step toward explainable
reinforcement learning, this method provides a form of explaining how deep
control policy operates using a network distillation approach to transfer knowl-
edge from a computationally complex environment into smaller, more explain-
able segments [188, 199]. Bastani et al. [200] propose the model extraction
(ME) method for explaining the overall reasoning process performed by the
model by approximation approach utilizing a much more explainable model.
The explainers of the method are decision trees (DTs), which are generated by
using the classification and regression tree algorithm (CART) logical model and
Gaussian distribution fitted to the input data. Frosst and Hinton [198] propose
soft decision tree (SDT) transforming a decision tree into DNN. The DNN
is trained by stochastic gradient descent as a soft decision tree that mimics the
input-output function. The decision tree makes hierarchical decisions based on in-
put data and ultimately selects a particular statistical probability distribution
over classes as its output. Tan et al. [201] propose global additive explanation
(GAE), distiling the black-box model into lower-dimensional components and
study how the model parameters influence model performance. The method gen-
erates global additive explanations that describe the relationship between input
features and model prediction. Other prominent methods worth to be mentioned
are automated reasoning (AR) [202] and partial aware local modeling
(PALM) [203].
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7. Interpretability modeling

The intrinsic (also self-explained, predefined, or built-in), see Fig. 1h, ap-
proach aims to generate an interpretation of the model by rendering an expla-
nation of the internal representations of DNNs along with their output using
methods that are part of the DNN architecture [121]. In such an approach, the
IML should be able to automatically offer human-friendly, interpretable explana-
tions along with its predictions and be directly linked to domain knowledge [204].
Explanations should be intrinsic to the process of designing the model architec-
ture and are, by definition, ante hoc [110]. This means that an explanation per-
spective is included in the neural network design and training before the neural
network is modeled. This approach is, by definition,model-specific [2]. The de-
sign of self-explanatory DNN systems and models often consists of subnetworks
called modules [205, 206] or special layers, e.g., the prototype layer in CNN,
which should arrange tasks. Another term for modules found in the literature
is a capsule. In capsules, each subnetwork is responsible for a specific high-level
feature, and these features are combined to form even higher-level features, cre-
ating a word/parse tree structure [199, 207, 208]. Each module or such layer
provides specific features for the interpretability of the whole DL system.

The intrinsic approach can be divided into the following interpretable method
groups:

• Attentional-based mechanism. The attention mechanism deals with
sequence-based tasks and uses a conditional distribution over a given input
sequence of variable size by a weighted combination of all encoded input
vectors, with the highest weights assigned to the most relevant vectors as
attributes. When an attention mechanism is used to compute a represen-
tation of a single sequence, it is usually referred to as self-attention or
intra-attention [208].

• Joint training. Joint training adds an “explanation task” to the original
model task and trains the explanation task together with the original task.
Joint training of the explanatory model means training the original model
from DL on several different tasks simultaneously to optimize more than
one function of the model. The additional task(s), called multi-tasks, are
designed together with several types of formats for an explanation. The
tasks can be organized directly or indirectly.

The attention-based mechanism group is divided into:
• Monomodal interpretation. Single-module or one-module interpre-

tations consider the output of the attentional mechanism during a for-
ward pass. The explainability score can be judged by how much atten-
tion is weighted by different input features at different stages of model



Interpretability versus explainability. . . 333

inference. The multimodular explanatory approach attempts to divide the
DNN structure into smaller parts of neural networks, with each part as-
signed to a specific task. Each independent neural network serves as a mod-
ule and operates on separate inputs to perform a subtask of the tasks.

• Multimodal interpretation.
The joint training group is in the literature [121] divided into the interpretation
of such additional tasks with:

• Text explanations. This type of intrinsic approach provides textual ex-
planations in a natural language format.

• Model prototyping, Model prototyping is a task that explains the model
based on the comparison between the model behavior and the prototype.
These self-explanatory algorithms provide the class of model outputs as
a weighted combination of prototypes. Prototype models are used for ex-
plainable computer vision, text and table classification tasks.

• Association explanations. Association explanation associates input fea-
tures with objects and concepts that cannot be tested or interpreted by
humans.

Definition:The explainability of a DL model can be clarified by divid-
ing a DNN into subnetworks (modules) by providing dedicated func-
tionality for each subnetwork or by self-explanatory modeling through
defined tasks.

7.1. Attention-based mechanism

Table 6 presents a summary of the attention mechanism interpretation me-
thods.

7.1.1. Monomodal interpretation. Vaswani et al. [209] present image cap-
tion beneration with attention mechanism, a “transformer” model for lan-
guage translation as a sequence transduction model based on the transformer
approach. The model is entirely built on a self-attention mechanism technique
in encoder-decoder architecture adding additive model structures such as scaled
dot-product. Recently Liu et al. [210] show that it is feasible to train the standard
transformer with many layers. Using the adaptive model initialization (ADMIN)
technique to stabilize training and unleash its full potential, they build very
deep transformer models for neural machine translation (NMT) with
up to 60 encoder layers and 12 decoder layers. Zhang et al. [211] propose the
self-attention generative adversarial network (SAGAN) to model im-
age generation tasks. SAGAN adds self-lttention layers to a general adversarial
network (GAN) to strengthen both the generator and discriminator of the net-
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work, improve the model’s relationships between spatial regions, and capture
global dependencies. The self-attention module in the image context is explic-
itly designed to learn and interpret the relationship between a pixel and all
other pixels or pixel patches. Mishra et al. [212] introduce simple neural at-
tention meta-learner (SNAIL) with a positioning option in the transformer
model by combining the self-attention mechanism in “transformer” with tem-
poral convolutions. SNAIL belongs to the field of meta-learning explanation
methods and can be used not only for supervised learning but also for rein-
forcement learning tasks. Choi et al. [217] present a RETAIN (reverse time
attentIoN) model used to explain time series. The model is based on a two-
stage neural attention approach in which influential patterns from the past are
detected and labeled. It uses two RNNs, each with an attentional mechanism
responsible for explaining the focus of the neural network and how a choice was
influenced. Other prominent solutions belonging to the group of monomodal
explanations can be found in the works of Hoover et al. [213]: visual analy-
sis of transfer models, He et al. [214]: the aspect-level sentiment classifi-
cation (ASC), Devlin et al. [215]: the bidirectional encoder representations
from transformer (BERT) and Letarte et al. [216] present the self-attention
network (SANet), an attention-based length-agnostic model for text clas-
sification.

7.1.2. Multimodal interpretation. Xu et al. [218] present the neural image
caption with visual attention (NICVA) method for image caption genera-
tion that attempts to merge attentions. The algorithm of the method consists of
two variants of the attention mechanism: a stochastic “hard” and a deterministic
“soft” attention mechanism. The first is a stochastic “hard” attention mechanism
that maximizes an appropriate lower bound. The second is a deterministic “soft”
attention mechanism that uses backpropagation. A similar approach is proposed
by Vinyals et al. [219]: the multimodal interaction (MMI) method. It com-
bines computer vision and machine translation to generate natural language
sentences to describe an image. This deep attention mechanism network consists
of deep CNN for image classification tasks, followed by RNN language genera-
tion. An excellent example of a multimodal explanation is presented by Andreas
et al. [205]: the neural module network (NMN), which uses the VQA ap-
proach. The attention mechanism is applied to images to create the captions. The
modularity of the proposed DNN architecture consists of the encoder-decoder ap-
proach. Xie et al. [220] propose explainable visual entailment (EVE), which
uses an attention mechanism to recover semantically meaningful regions across
different feature spaces, e.g., between images and text. EVE combines image and
ROI information to model fine-modal information. Such regions also correspond
to the reason for a statement. Park et al. [221] present the pointing and jus-
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tification explanation (PJ-X) method, which incorporates an explanatory
attention mechanism to explain the responses to VQA tasks. The architecture
of the multimodal explanation includes a textual justification consisting of two
modules of two “pointing” mechanisms: answering with pointing and explaining
with pointing. Other good solutions that belong to the multimodal explanation
technique can be found in the work of Masharka et al. [222]: a transparency
by design network (TbD-net ) that assembles visual attention masks to answer
a question about objects in a scene. Using these attentions, we can perform rea-
soning operations. Anderson et al. [223] implement a combined bottom-up and
top attention model that can compute attention at the level of objects and other
salient image regions. For each generated word, the model visualizes the atten-
tion weights on individual pixels and outlines the regions with the highest at-
tention weight. Teney et al. [224] propose a model for visual question answering
based on the principle of a joint embedding (GRU) of the input question and
image, followed by a multi-label classifier over a set of response options.

7.2. Joint training

Table 7 presents a summary of the joint training interpretation methods.

7.2.1. Text explanations generation. Hendricks et al. [225] present the vi-
sual explanation (VA) method, which focuses on the discriminative properties
of images, classifies images, and provides accurate textual explanations of why
the image belongs to a particular class. This explanation-discriminative model
generates images and provides class-relevant explanations for classification de-
cisions. Their proposed model consists of the combination of two LSTM RNNs.
The first RNN is trained on the image descriptions, i.e., generates words based on
the previously generated word. The second one feeds the output of the first RNN
with the image features and the image category predicted by the CNN and gen-
erates the next word based on this input. The architecture of the model consists
of a recurrent explanation generator and a fine-grained visual feature extraction
classifier. The visual explanation method describes the visual content of a par-
ticular image with appropriate information to explain why an image belongs to
a particular category. Kim et al. [226] present the attention alignment (AA)
method, which produces explanations in the form of attention maps with textual
descriptions. This method consists of an attention-based video-to-text algorithm
that generates textual explanations of the model as natural language text. The
network architecture consists of two main components: controller and explana-
tion matching. There are two approaches for directing attention: explanation
with strongly directed attention (SAA) and explanation with weakly directed



338 I. Namatēvs et al.
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attention (WAA). The model predicts the control commands for the vehicle, i.e.,
a change in course, at each time step, whereas an explanation model generates
natural language explanations for the justifications. For example, an explana-
tion consists of an action description, e.g., “the car is driving in the left lane”,
supported by an action explanation, e.g., “to pass the school bus”, and a vi-
sual explanation in the form of an attention map. Liu et al. [227] propose the
generative explanation framework (GEF), which makes classification deci-
sions while generating textual explanations for feature labels. The “explanatory
factor” in the model structure is intended to help make the generated expla-
nations class-specific. Other prominent solutions belonging to text and image
explanation methods can be found in the work of Zellers et al. [228] visual
commonsense reasoning (VCR). The purpose of this method is to provide
explanations in a multichoice manner. The model, called recognition to cognition
(R2C), is given an image with its objects, a semantic question, and four answer
choices. The model must decide which answer is correct and provide interpreta-
tion accordingly. It must decide which is the best rationale that explains why its
answer is correct.

7.2.2. Model prototyping. Model prototyping or prototyping-based reason-
ing is specifically designed for classification tasks and traces back to a classi-
cal form of case-based reasoning, e.g., nearest neighbor-based technique and,
prototype-based technique [230]. Prototype-based reasoning refers to the task of
predicting future events (i.e., new patterns) based on particularly informative
known data points. A prototype-based classifier generates classifications based
on the similarity between the given input and each prototypical observation in
the dataset [229]. This is usually done by identifying prototypes, i.e., represen-
tative examples that are used to make a prediction. These methods are inspired
by the fact that predictions are based on individual, previously seen examples
that mimic human decision-making. In prototype classification, prototypes are
not limited to one observation in the dataset, but can be generalized to a combi-
nation of multiple observations or a latent representation learned in the feature
space [121]. To provide intrinsic explanations, the model architecture is designed
to allow joint training of prototypes along with the original task. Model explain-
ability is achieved by tracing the reasoning path for the given prediction to each
prototype learned by the model.

Li et al. [229] propose an explainable prototype image classifier prototypeDL
(PDL), whose predictions are based on the principle of similarity of input to
a small set of prototypes learned during neural network training. Observations
are classified based on their proximity to a prototypical observation. The model
contains the transformed input, which is derived through encoding, and the input
reconstructed by decoding, which is used for prototyping the classifier. In ad-
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dition, the prototype classifier network, consisting of the prototype layer p, the
fully connected layer w, and the softmax layer s, generates the classification.
Each prototype can be visualized by the decoder through the training process.
Chen e al. [230] present the prototypical part network (ProtoPNet)method
for image classification tasks. The network dissects the initial image by finding
prototypical parts and combining the knowledge from the prototypes to make
a final classification. The architecture of the explainable DNN consists of four
components: a standard CNN, a prototype layer (a prototype classifier), a fully
connected layer, and the output. ProtoPNet is not only able to reveal the parts
of the input it is looking at, but also points us to prototypical cases that are
similar to those parts. The prototypical layer, where the source image is learned,
extracts various features of the output image. These are then compared with
the training images to produce a recognition map indicating the similarity be-
tween the images. The prototype classifier generates model predictions based
on the weighted sum of the individual similarity score between the image patch
and a learned prototype. ProtoPNet has a built-in case-based reasoning pro-
cess that generates explanations during classification. More recently, Hase et al.
[231] have presented an HP net model that uses hierarchically organized pro-
totypes to find explanations for predicting an image at each level of the class
taxonomy.

7.2.3. Interpretation associations. Lei et al. [232] combine two modular com-
ponents: the generator and the encoder, to extract parts of the input text called
rationales and try to solve a sentiment classification problem. The generator
gives a distribution over possible rationales, e.g., which text fragments might be
candidates for rationales. Both the generator and the coder are trained together
to obtain explanations using different regularizations. The coder assigns task-
specific values to the text for prediction. The model’s explanation is associated
with a set of critical input words for prediction. Alvarez-Melis and Jaakkola [233]
propose the self-explaining neural network (SENN)method, which is based
on learnable explainable concepts that link input features to semantically based
concepts. SENN gives a raw input that learns to generate both class prediction
and explanations as input feature-to-feature mapping. SENN consists of three
components. The first is a concept encoder that converts the input features into
a small set of explainable features. The second is an input-dependent parameter
that generates attribution scores. Finally, the third component is an aggregation
function that produces a prediction. Dong et al. [234] provide an attentive en-
coder/decoder framework for video recording tasks that can automatically learn
explainable features of each neuron of the deep network associated with a “topic”.
For example, the topic “road” would be a road with related words such as road,
vehicle, or pedestrian.
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8. Explanation toolboxes

During the last few years, a significant number of toolboxes for DL explana-
tions have been proposed. A detailed collection of XAI toolboxes was referred to
in 2018 by Alber et al. [235], in 2019 by Arya et al. [27], Nori et al. [236], and
Spinner et al. [237], in 2020 by Das et al. [119], and in 2021 by Linardatos et al.
[114], see Table 8.

Table 8. XAI Toolkits.

Software package Available from
AI Fairness 360 (AIF360) https://github.com/Trusted-AI/AIF360
AI Explainability 360
(AIX360)

https://github.com/Trusted-AI/AIX360

Alibi Explain https://github.com/SeldonIO/alibi
Analysis by synthesis (ABS) https://github.com/bethgelab/AnalysisBySynthesis
Captum https://github.com/pytorch/captum
DALEX https://github.com/ModelOriented/DALEX
DeepExplain https://github.com/marcoancona/DeepExplain
Deep visualization tool https://github.com/yosinski/deep-visualization-toolbox
ELI5 https://github.com/TeamHG-Memex/eli5
explainX https://github.com/explainX/explainx
FAT Forensics https://github.com/fat-forensics/fat-forensics
InterpretML https://github.com/interpretml/interpret
iNNvestigate https://github.com/albermax/innvestigate
H2O.ai https://github.com/h2oai/mli-resources
L2X https://github.com/Jianbo-Lab/L2X
Rectified gradient https://github.com/1202kbs/Rectified-Gradient
Saliency relevance propagation https://github.com/Hey1Li/Salient-Relevance-Propagation
Sensitivity analysis library
(SALib)

https://github.com/SALib/SALib

Skater https://github.com/oracle/Skater
tfexplain https://github.com/sicara/tf-explain
treeinterpreter https://pypi.org/project/treeinterpreter/
XAI https://github.com/EthicalML/xai

9. Conclusions

The proposed classification for Deep Learning interpretability and explain-
ability is based on and reflects the current discourse on interpretability and ex-
plainability principles, theories and methods. Explanation methods are a promis-
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https://github.com/SeldonIO/alibi
https://github.com/bethgelab/AnalysisBySynthesis
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https://github.com/ModelOriented/DALEX
https://github.com/marcoancona/DeepExplain
https://github.com/yosinski/deep-visualization-toolbox
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https://github.com/explainX/explainx
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https://github.com/interpretml/interpret
https://github.com/albermax/innvestigate
https://github.com/h2oai/mli-resources
https://github.com/Jianbo-Lab/L2X
https://github.com/1202kbs/Rectified-Gradient
https://github.com/Hey1Li/Salient-Relevance-Propagation
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ing approach to uncover the hidden intelligence of how DNNs work. In the con-
text of the complexity behind these methods, a lack of knowledge about which
explainable method or which interpretable model is best suited for implementa-
tion, as well as a low level of abstraction, as many explainability methods, involve
several explainable techniques, may prevent human users from using and imple-
menting them for practical applications and research. To mitigate these short-
comings, it is important to provide a systematic classification of interpretability
and explainability. With this in mind, we focused on three specific problems of
explainability previously identified to enrich existing studies of explainability.

The first concern was to provide specific definitions for the concepts of in-
terpretability and explainability in DL. Here we showed a reasonable argument
to distinguish these two main concepts from XAI and IML. The second concern
was to establish a classification for explaining and interpreting DL systems and
models. Here we presented approaches, models and methods that form a clas-
sification for explaining and interpreting DL, especially DNNs. We hope that
the proposed classification distills the important issues, related work, methods,
and concerns related to the explainability of black-box models and creating in-
terpretable glass-box. The third concern is to describe the definitions of each
category of a proposed classification for explainable and interpretable DL.

This article did not provide a definitive answer to all problems of explain-
able and interpretable DL. For example, state-of-the-art performance across the
range of DNNs understanding studies requires a variety of different explainabil-
ity topologies, i.e., there is not one “best explainer” for all deep networks. We
see several challenges for the future, not only for the exploration of explainable
and interpretable DL but also for a comprehensive understanding and trust in
the nature of transparent AI. The first issue concerns the human user: the use of
explanations must be human-machine friendly interaction. The second issue is
fairness. The introduction of these concepts at each step of deep modeling must
be considered by design. The third issue is the evaluation of the quality and
metrics of explanations. Another problem is the low level of abstraction of the
explanation, i.e., the use of abstractions to simplify explanations. Finally, there
is a need for a general theory of explainable AI: what approaches and techniques
can be developed for well-developed explanation methods.

Ultimately, both deep model end-users and the DL research community
should develop new, more friendly explainability models, methods and techniques
in the future, and integrate explanations into a comprehensive AI system to mi-
tigate complexity and improve system performance. We hope that the proposed
explainable DL classification will be actively used as a step toward trustworthy
AI and, as a prerequisite for artificial general intelligence.

Other challenges of XAI that are outside the scope of this article include
objective metrics, assessing the quality of explanations, criteria for a good ex-
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planation, and how to recognize the importance of a feature that contributed to
a particular prediction or that is locally relevant to that prediction. For exam-
ple, the remove and retrain (ROAR) approach proposed by Hooker et al. [29]
could be a reliable feature estimator. There is also great potential for intrinsic
methods.
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185. K. Sokol, P. Flach, Counterfactual explanations of machine learning predictions: Oppor-
tunities and challenges for AI safety, [in:] Proceedings of the AAAI Workshop on Artificial
Intelligence Safety, Vol. 2301, 2019.

186. P. Hall, On the art and science of explainable machine learning: Techniques, recommen-
dations, and responsibilities, arXiv, 2020, arXiv:1810.02909v4.

187. E.R. Elenberg, A.G. Dimakis, M. Feldman, A. Karbasi, Streaming weak submodularity:
Interpreting neural networks on the fly, arXiv, 2017, arXiv:1703.02647v3.

188. G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv,
2015, arXiv:1503.02531v1.

189. Q. Zhang, R. Cao, Y.N. Wu, S.-C. Zhu, Growing interpretable part graphs on ConvNets
via multi-shot learning, arXiv, 2017, arXiv:1611.04246v2.

190. Q. Zhang, X. Wang, R. Cao, Y.N. Wu, F. Shi, S.-C. Zhu, Extracting an explanatory graph
to interpret a CNN, IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(11): 3863–3877, 2020, doi: 10.1109/TPAMI.2020.2992207.

191. R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, F. Giannotti, Local rule-
based explanations of black box decision systems, arXiv, 2018, arXiv:1805.10820.

192. J.R. Zilke, E.L. Mencía, F. Janssen, DeepRED – Rule extraction from deep neural
networks, [in:] Discovery Science 19th International Conference Proceedings (LNAI),
Vol. 9956, pp. 457–473, 2016.

193. M.G. Augasta, T. Kathirvalavakumar, Reverse engineering the neural networks for rule
extraction in classification problems, Neural Processing Letters, 35(2): 131–150, 2012.

194. G. Su, D. Wei, K.R. Varshney, D.M. Malioutov, Interpretable two-level Boolean rule
learning for classification, arXiv, 2016, arXiv:1511.07361v1.

195. W.J. Murdoch, A. Szlam, Automatic rule extraction from long short term memory net-
works, [in:] International Conference on Learning Representations, Toulon, France, April
23–26, 2017.

196. Y. Ming, H. Qu, E. Bertini, RuleMatrix: Visualizing and understanding classifiers with
rules, arXiv, 2018, arXiv:1807.06228v1.

197. M. Sato, H. Tsukimoto, Rule extraction from neural networks via decision tree induction,
[in:] Proceedings of International Joint Conference on Neural Networks (IJCNN), Cat.
No. 01CH37222, Vol. 3, pp. 1870–1875, 2001, doi: 10.1109/IJCNN.2001.938448.

198. N. Frosst, G. Hinton, Distilling a neural network into a soft decision tree, arXiv, 2017,
arXiv:1711.09784v1.

199. Q. Cao, X. Liang, K. Wang, L. Lin, Linguistic driven graph capsule network for visual
question reasoning, arXiv, 2020, arXiv:2003.10065v1.

200. O. Bastani, C. Kim, H. Bastani, Interpretability via model extraction, arXiv, 2018, arXiv:
1706.09773v4.

201. S. Tan, R. Caruana, G. Hooker, P. Koch, A. Gordo, Learning global explanations for
neural nets model distillation, arXiv, 2018, arXiv:1801.08640v2.

202. H. Bride, J. Dong, J.S. Dong, Z. Hóu, Towards dependable and explainable machine
learning using automated reasoning, [in:] 20th International Conference on Formal En-
gineering Methods (ICFEM), Gold Coast, QLD, Australia, 2018.

https://arxiv.org/abs/1810.02909v4
https://arxiv.org/abs/1703.02647v3
https://arxiv.org/abs/1503.02531v1
https://arxiv.org/abs/1611.04246v2
https://doi.org/10.1109/TPAMI.2020.2992207
https://arxiv.org/abs/1805.10820
https://arxiv.org/abs/1511.07361v1
https://arxiv.org/abs/1807.06228v1
https://doi.org/10.1109/IJCNN.2001.938448
https://arxiv.org/abs/1711.09784v1
https://arxiv.org/abs/2003.10065v1
https://arxiv.org/abs/1706.09773v4
https://arxiv.org/abs/1706.09773v4
https://arxiv.org/abs/1801.08640v2


Interpretability versus explainability. . . 355

203. S. Krishnan, E. Wu, PALM: Machine learning explanations for iterative debugging,
[in:] Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics, 2017, doi:
10.1145/3077257.3077271.

204. C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, C. Zhong, Interpretable ma-
chine learning: Fundamental principles and 10 grand challenges, arXiv, 2021, arXiv:
2103.11251v2.

205. J. Andreas, M. Rohrbach, T. Darell, D. Klein, Neural module networks, arXiv, 2017,
arXiv:1511.02799v4.

206. R. Hu, M. Rohrbach, J. Andreas, T. Darrell, K. Saenko, Modeling relationship in refer-
ential expressions with compositional modular networks, arXiv, 2016, arXiv:1611.09978.

207. S. Sabour, N. Frost, G.E. Hinton, Dynamic routing between capsules, [in:] 31st Confer-
ence of Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 2017.

208. H. Xue, W. Chu, Z. Zhao, D. Cai, A better way to attend: Attention with tress for video
question answering, arXiv, 2019, arXiv:1909.02218v1.

209. A. Vaswani et al., Attention is all you need, arXiv, 2017, arXiv:1706.03762v5.

210. X. Liu, K. Duh, L. Liu, J. Gao, Very deep transformers for neural machine translation,
arXiv, 2020, arXiv:2008.07772v2.

211. H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adversarial
networks, arXiv, 2019, arXiv:1805.08318v2.

212. N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel, A simple neural attentive meta-learner,
arXiv, 2018, arXiv:1707.03141v3.

213. B. Hoover, H. Strobelt, S. Gehrmann, exBERT: A visual analysis tool to explore learned
representations in transformers models, arXiv, 2019, arXiv:1910.05276.

214. R. He, W.S. Lee, H.T. Ng, D. Dahlmeier, Effective attention modeling for aspect-level
sentiment classification, [in:] Proceedings of the 27th International Conference on Com-
putational Linguistics, Santa Fe, New Mexico, USA, August 20–26, 2018.

215. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional
transformers for language understanding, arXiv, 2019, arXiv:1810.04805v2.

216. G. Letarte, F. Paradis, P. Giguère, F. Laviolette, Importance of self-attention for senti-
ment analysis, [in:] Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pp. 267–275, 2018.

217. E. Choi, M.T. Bahadori, J.A. Kulas, A. Schuetz, W.F. Stewart, J. Sun, RETAIN: An
interpretable predictive model for healthcare using reverse time attention mechanism,
arXiv, 2017, arXiv:1608.05745v4.

218. K. Xu et al., Show, attend and tell: Neural image caption generation with visual atten-
tion, arXiv, 2016, arXiv:1502.03044v3.

219. O. Vinyals, A. Toshev, S. Bengio, D. Erhan, Show and tell: A neural image caption
generator, arXiv, 2015, arXiv:1411.4555v2.

220. N. Xie, F. Lai, D. Doran, A. Kadav, Visual entailment: A novel task for fine-grained
image understanding, arXiv, 2019, arXiv:1901.06706.

https://doi.org/10.1145/3077257.3077271
https://arxiv.org/abs/2103.11251v2
https://arxiv.org/abs/2103.11251v2
https://arxiv.org/abs/1511.02799v4
https://arxiv.org/abs/1611.09978
https://arxiv.org/abs/1909.02218v1
https://arxiv.org/abs/1706.03762v5
https://arxiv.org/abs/2008.07772v2
https://arxiv.org/abs/1805.08318v2
https://arxiv.org/abs/1707.03141v3
https://arxiv.org/abs/1910.05276
https://arxiv.org/abs/1810.04805v2
https://arxiv.org/abs/1608.05745v4
https://arxiv.org/abs/1502.03044v3
https://arxiv.org/abs/1411.4555v2
https://arxiv.org/abs/1901.06706


356 I. Namatēvs et al.
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