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In this paper an evolutionary algorithms (EA) application to the physically based approximation (PBA)
of experimental and/or numerical data is considered. Such an approximation may simultaneously use the
whole experimental, theoretical and heuristic knowledge about the analyzed problems. The PBA may be
also applied for smoothing discrete data obtained from any rough numerical solution of the boundary
value problem, and for solving inverse problems as well, like reconstruction of residual stresses based on
experimental data. The PBA presents a very general approach formulated as a large non-linear constrained
optimization problem. Its solution is usually complex and troublesome, especially in the case of non-
convex problems. Here, considered is a solution approach of such problems based on the EA. However,
the standard EA are rather slow methods, especially in the final stage of optimization process. In order
to increase their solution efficiency, several acceleration techniques were introduced. Various benchmark
problems were analyzed using the improved EA. The intended application of this research is reconstruction
of residual stresses in railroads rails and vehicle wheels based on neutronography measurements.

Keywords: evolutionary algorithms, solution efficiency increase, experimental data smoothing, large non-
linear constrained optimization problems.

1. INTRODUCTION

In this work, we consider analysis of experimental and numerical data using the physically based
approximation (PBA) [8, 13] and accelerated evolutionary algorithms (EA). The PBA allows for
simultaneous use of all information about the analyzed problems. This approach may take into
account all available experimental data obtained by means of various measurement techniques,
their statistics as well as all theoretical and/or heuristic knowledge about the considered problems.
In general, the PBA is formulated as a constrained optimization problem [8, 13]. Usually such
a problem may be large, non-linear and may involve numerous equality and inequality constraints.
Its solution is usually complex and troublesome, especially in the case of non-convex problems.
So far several attempts of application of the EA to the solution of such problems were made and
presented at conferences. Short information about general ideas of considered methods may be
found in extended abstracts of those conferences [17, 18]. Here, we are describing general concepts
of the PBA approach, the EA acceleration techniques, and chosen results of numerical tests.

The EA are precisely understood here as decimal-coded genetic algorithms consisting of three
standard operators: selection, crossover and mutation [3, 10]. In contrast to most deterministic
methods, the EA may be successfully applied to non-convex optimization problems. However, gen-
eral solution efficiency of the standard EA is rather low, especially when approaching to the optimal
solution. Therefore, our long-term research [4] is focused, first of all, on a significant acceleration of
the optimization process. We have already proposed, and preliminarily tested, several acceleration
techniques based on simple concepts [4, 15, 16].

The final objective of our research is development of efficient optimization algorithm for a wide
class of large non-linear constrained problems. However, we have also in mind practical, engineering
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applications, like residual stresses analysis [6, 13] in railroad rails and vehicle wheels. Tensile residual
stresses are of great importance in reliable prediction of rail and wheel service life resulting from
its fatigue failure [13]. Both theoretical and experimental investigations of residual stresses may be
expressed in terms of non-linear constrained optimization problems [8, 12]. Theoretical model of
residual stresses analysis in bodies under cyclic loadings is based on shakedown theory and may be
found in [13, 14]. This work, however, involves only an inverse approach based on the experimental
data measurements and the PBA.
We are presenting here, however, a preliminary approach to application of the improved EA to

sample benchmark problems of the PBA. Particularly, considered are analysis of beam deflections
and residual stresses reconstruction in the thick-walled cylinder based on pseudo-measured data ob-
tained for cyclic loadings. The purpose of such an analysis of the PBA problems was to investigate
practical chances of obtaining efficient solutions in this way for real large complex problems. A va-
riety of tests provided encouraging results. However, this is only the first step of such investigation.
Further research is needed.

2. PBA – METHOD FORMULATION

In the PBA all information of the considered problem may be used. The whole available knowledge is
introduced in the functional and related constraints, consisting of the experimental and theoretical
parts. The problem is posed in the following general way, as a non-linear constrained optimization
problem [8]:
find the stationary point of the functional

Φ = λΦ
E
+ (1− λ)Φ

T
, λ ∈ [0, 1] , (1)

satisfying the equality constraints (usually of theoretical nature)

A(σ) = 0, (2)

and the inequality constraints (usually of experimental nature)

B(σ) ≤ e. (3)

Here, Φ
T
(σ) = ΦT (σ)/ΦT

ref and Φ
E
(σ) = ΦE(σ)/ΦE

ref are the theoretical and experimental parts
of the functional, scaled to be dimensionless quantities, σ is the required solution, and λ is a scalar
weighting factor.

Experimental requirements

The experimental part of the functional (1) is defined [8] as the weighted averaged error resulting
from discrepancies between the measured data and its approximation, as follows:

ΦE(σ) =
1

N

N∑

n=1

F

[
f (σ(rn))− f exp

n

en

]
, (4)

where σ represents the required unknown field, f is a ‘measured’ function of σ, f exp
n is its experimen-

tal value at the point rn, en is an admissible experimental error, N is a number of measurements,
F (x) = p(x) − p(x − x) is a data scattering function defined by the probability density function
p(x− x), and x is the expected value.
The enhanced field σ(r) cannot differ too much from experimental data. Thus, the constraints (3)

are defined as local requirements:

|f (σ(rn))− fn| ≤ en, n = 1, 2, ..., N. (5)
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It is useful to impose also an averaged global constraint:

√
ΦE ≤ eE . (6)

Admissible experimental errors eE and en, n = 1, 2, ..., N should be evaluated taking into account
the true statistics of measurements.

Theoretical requirements

The theoretical part of the functional (1) is based on a known theory and/or on a heuristic principle
[8]. For instance, in mechanics, ΦT (σ) can be represented by a well-known energy functional that
has to be minimized, e.g., the total complementary energy of statically admissible stresses. On the
other hand, as a heuristic principle, e.g., requirement of smoothness may be introduced. In such
case, the minimal average curvature κ can be used hence

ΦT =
1

Ω

∫

Ω

κ2dΩ, (7)

where

κ2 =
1

2π

2π∫

0

(
∂2f

∂ν2

)2

dϕ. (8)

Theoretical constraints are usually presented as equality conditions (2).

Specific formulation proposed

One of the main difficulties in the general formulation (1)–(3) is the problem of how to establish
the weighting factor λ, i.e., how to determine a reasonable balance between experiment and theory
involved. Specific formulations addressing this problem may be found in [8, 13].

3. EA AND ACCELERATION TECHNIQUES

The optimization problem formulated above may involve large number of decision variables and
requires efficient solution methods. Acceleration of the EA-based solution approach may be ob-
tained in several ways. General efficiency may be increased by means of an appropriate hardware,
software, and algorithm improvements. Hardware acceleration techniques include distribution and
parallelization of calculations on various multiprocessor systems, e.g., computer clusters, GP GPUs
or FPGA devices. Efficient software implementations dedicated for particular hardware architec-
tures are crucial as well. However, our research is mainly concentrated now on introduction of new
algorithms and improvements of certain existing ones. Distributed and parallel computations are
used as well, but mostly as a support for new acceleration techniques.
Algorithmic acceleration of the optimization process may be obtained in various ways including:

development of new, problem-oriented evolutionary operators, e.g. gradient mutation, development
of hybrid methods [2, 5] combining the EA with deterministic techniques, application of standard
parallel and distributed calculations [9, 11], choice of the most efficient combination of particular
variants of selection, crossover and mutation operators, and evaluation of the best values of the
EA parameters. Moreover, we have recently proposed, and preliminarily tested, several acceleration
techniques based on simple concepts [4, 15, 16], i.e., solution smoothing and balancing, a’posteriori
solution error analysis and related techniques, non-standard use of distributed and parallel calcula-
tions and adaptive step-by-step mesh refinement. Some of them are problem- (or class of problems)
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oriented, other are of more general character. Some of these techniques are addressed to optimiza-
tion of functionals, where a large set of nodal values of a function is searched. Particular attention
has been paid to the application of a’posteriori solution error estimation and related techniques [15].
A brief overview of the proposed solution approach and the state of the art may be found in [4].
They are also briefly discussed below.

3.1. Smoothing and balancing

If additional information about solution smoothness is available, it may be used to improve the
optimization process in various ways [4, 16]. For instance, an extra procedure based on an appro-
priate approximation method, like moving weighted least squares (MWLS) technique [19, 20], or
any other equivalent method, may be applied in order to smooth raw results obtained from the
standard EA. However, in problems of mechanics each smoothing may result in global equilibrium
loss of a considered body. Restoration of equilibrium may be done by artificial balancing of body
forces performed directly after smoothing. Information about smoothness may be also used in the
selection process [4]. A new criterion based on a mean local solution curvature may be introduced
to any selection operator.

3.2. A’posteriori error analysis and related techniques

The EA-based optimization is a stochastic process; therefore solutions obtained from independent
populations may differ from each other. The weighted average of the best solutions taken from
such populations is expected to be more precise than majority of its particular components. More-
over, the averaged solution may be used as a reference one for a’posteriori error estimation [1,
15]. Calculations may be intensified in large error zones using information about the magnitude
and the distribution of local errors. It is done by appropriately modified mutation and crossover
operators [15]. Information about estimated global error is used by selection operator. Moreover,
representation of the best solutions, collected at the same time from all populations involved,
may also be very useful, and improve the solution process [15]. Both solution averaging and error
analysis may be well supported by parallel and distributed calculations in addition to other stan-
dard advantages provided by multiprocessor systems. All independent populations are calculated
simultaneously in a parallel way. Calculations carried out in each population may also be parti-
tioned among processing units. Such an approach essentially improves efficiency of the solution
process.

3.3. Adaptive step-by-step mesh refinement

Solution time needed for optimization of functional is in many problems strictly dependent on
the number of decision variables used, i.e. on the mesh density in the domain. Therefore, the basic
concept of an adaptive step-by-step mesh refinement [4] is to start analysis from a coarse mesh,
where solution is obtained much faster than in the fully dense case. However, such a solution
for the sought function is usually not precise enough. In order to increase its precision the mesh
is refined by inserting new nodes, based on the results of the error analysis. During the whole
optimization process the mesh may be refined many times, until sufficient density is reached ev-
erywhere. Initial function values at the inserted nodes in each refinement are found by means of
an appropriate approximation technique, e.g., MWLS, built upon the coarse mesh nodal values.
Furthermore, the mesh refinement strategy may also be useful for the a’posteriori error analysis [4].
Refined and smoothed solutions may be used as the initial reference ones for a’posteriori error
evaluation.
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4. BENCHMARK PROBLEMS

A variety of benchmark problems was chosen in order to evaluate the efficiency of the proposed
acceleration techniques and their possible combinations [4]. In particular, we have analyzed the-
oretical approach for evaluation of residual stresses in an elastic-perfectly plastic bar subject to
cyclic bending, and in the thick-walled cylinder made of the same material, and subject to cyclic
loadings, like internal pressure, torsion and tension [4]. These problems were analyzed as 1D (taking
into account existing symmetries), and as 2D ones as well.
We have also investigated several benchmark tests using simulated pseudo-experimental data

and the PBA approach, including smoothing of beam deflections, and reconstruction of residual
stresses in the thick-walled elastic-perfectly plastic cylinder subject to cyclic loadings [17, 18].

4.1. Benchmark test 1 – smoothing of beam deflections

Given are free-supported beam displacements wexp
j , measured at points xj, j = 1, 2, 3, ..., N−1.

Searched are nodal values of smoothed displacements w. The following, particular PBA problem is
considered: find the stationary point of the functional

Φ(w) = λΦ
E
(w) + (1− λ)Φ

T
(w), λ ∈ [0, 1] , (9)

where

ΦE(w) =
1

N − 1

N−1∑

j=1

(
wj − wexp

j

ej

)2

, (10)

ΦT (w) =
1

L

L∫

0

κ2dx ≈ 1

L

L∫

0

(w′′)2dx ≈ 1

N

N∑

j=0

(w”j)
2, (11)

satisfying:

w0 = wN = 0, (boundary conditions), (12)

∣∣∣wj −wexp
j

∣∣∣ ≤ ej , j = 1, 2, 3, ..., N−1, (admissible local error constraints), (13)

√
ΦE(w) ≤ eE , (admissible global error constraint). (14)

4.2. Benchmark test 2 – residual stresses reconstruction in the thick walled cylinder

Strains εexpi , experimentally measured in the 2D cross-section of the thick walled cylinder under
cyclic internal pressure are given. Find residual stresses σ = {σr

r , σ
r
t , σ

r
z} in the 2D cross-section.

The following formulation in the polar coordinate system is used:
find the stationary point of the functional

Φ(σ) = λΦ
E
(σ) + (1− λ) Φ

T
(σ), λ ∈ [0, 1] , (15)

where

ΦE(σ) =
1

N

N∑

i=1

(
εappi (σ)− εexpi

ei

)2

, (16)



32 J. Orkisz, M. Głowacki

ΦT (σ) =
1

Ω

∫

Ω

κ2(σ)dΩ, (17)

satisfying equality constraints:

∂σr
r

∂r
+

σr
r − σr

t

r
= 0, (equilibrium equation), (18)

σr
r|a = 0, σr

r|b = 0, (boundary conditions), (19)

σr
z = ν(σr

r + σr
t ), (incompressibility equation) (20)

and inequality constraints:

|εexpi − εappi (σ)| ≤ ei, (admissible local errors), (21)

√
ΦE ≤ eE , (admissible global error). (22)

The mean solution curvature is calculated using the following definition, given in the Cartesian
coordinates:

κ2(f) =
1

4
(fxx + fyy)

2 +
1

8
(fxx − fyy)

2 +
1

2
f2
xy (23)

and transformed to the polar coordinate system.

5. NUMERICAL RESULTS

At first a choice of the most efficient combination of the standard EA operators was sought. Search-
ing the best combination of operators and adjusting their parameters, acceleration up to several
times may be reached. Using the best combination found, namely rank selection, heuristic crossover,
an non-uniform mutation, particular already mentioned techniques were investigated yielding effi-
cient acceleration of the optimization process. Some results of our efficiency analysis were described
in [4, 15]. Brief overview is presented below.
Numerous numerical tests carried out clearly show a possibility of increasing solution efficiency

using all proposed acceleration techniques. Acceleration of computations was measured using speed-
up factors defined in [15]. Application of our smoothing technique based on the MWLS allowed
to obtain up to 4 times efficiency increase. In those tests balancing procedure based on the linear
correction function was used. A wide discussion of a’posteriori error analysis and related techniques
for improving efficiency was given in [15]. Using these techniques the speedup about 2-4 was reached.
However, when appropriately combined with additional smoothing procedure, the speed-up raised
up to about 7.5 times [15]. The numerical analysis was done using mostly 1D and 2D bar bending
benchmark problems. However, recent research using further benchmarks, like pressurized cylinder
(1D and 2D), has also confirmed earlier observations. The greatest acceleration till now was obtained
for solution approach using a step-by-step mesh refinement combined with the other techniques.
When a series of denser and denser meshes was appropriately used, the speed-up factor of about
120 was gained [4].
Summarizing, preliminary results of the executed tests clearly show a significant improvement

of the optimization process in comparison with the standard EA. It is also worth noticing, that
the improved EA allowed obtaining solutions in cases when the standard EA failed, e.g. for too
large number of decision variables.
In this paper, we are presenting results of application of the improved EA to the sample bench-

mark problems of the PBA, formulated in Sec. 4. The main objective of executed tests was to
find, whether the applied algorithms were efficient enough to solve such large problems. The final
objective of our research is such improvement of the EA so that they can efficiently deal with
optimization problems using up to several thousands of decision variables.
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5.1. Smoothing of simulated beam deflections

Numerical data used in this experiment were randomly generated using the true solution of loaded
free-supported beam as a base curve. The random data generator used Gaussian distribution. Such
a simulation of the experiment allowed for controlling the admissible data errors. Generated pseudo-
measurements were smoothed next using the PBA approach. In Fig. 1 you may see the original
and smoothed solutions obtained when using data with admissible errors up to 10% (Fig. 1a) and
up to 20% (Fig. 1b).

a)

b)

Fig. 1. Smoothed solutions obtained for data with admissible errors up to 10% (a) and up to 20% (b).

Using the PBA we may effectively smooth numerical and experimental data, reducing mean
square and maximum errors. In Fig. 2 you may find absolute errors calculated on non-smoothed
and smoothed data. Data sets used in that numerical experiment were generated by increasing
the admissible errors from 2% up to 100%. The true errors where calculated using the following,
standard norms:

ems =

(
1

N

N∑

i=1

(wi −wi)
2

)1/2

, (mean square), (24)

emax = max
i=1, ...,N

{|wi −wi|} , (maximum), (25)

where wi is the true solution.
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Fig. 2. Mean square and maximum errors calculated for non-smoothed and smoothed solutions.

5.2. Smoothing of real beam deflections

Real experimental deflections may be obtained, e.g., by vision measurement systems. Results of such
optical measurements may be smoothed in very similar way and applied, e.g., for load identification.
Such an experimental measurement technique was developed, e.g., in the Department of Robotics
and Mechatronics at the AGH University of Science and Technology [7]. The results have been
shared with us. In Fig. 3 one may see smoothed solutions using various boundary conditions. In the
first case, the constraints were exactly the same, as in (12)–(14). In the second one, we assumed
that the beam was fully clamped and added additional conditions for derivatives.

Fig. 3. Smoothed solutions obtained for real experimental data.
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5.3. Residual stresses reconstruction in the thick walled cylinder

Randomly generated pseudo-measurements were also used in a set of tests concerning residual
stresses reconstruction in the thick walled cyclically pressurized cylinder. For numerical data gen-
eration, a strain gauge technique was simulated. Assumed were delta type rosettes, giving three
components of strains. All calculations were carried out in the 2D domain. However, for the clar-
ity of presentation, only the data and results in 1D radial cross-section of the domain are shown.
Methodology of executed tests was the same as in the case of beam deflections smoothing.

Figure 4 shows samples of generated pseudo-data with admissible errors up to 20%. Radial, hoop
and axial residual stresses calculated in the PBA analysis of these data are shown in Fig. 5.

a)

b)

c)

Fig. 4. Generated pseudo-measurements of strains.
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a)

b)

c)

Fig. 5. Calculated radial (a), hoop (b) and axial (c) residual stresses.

In Fig. 6 one may see residual stresses obtained using pseudo-measurements of strains generated
with various admissible errors. Only radial stresses are shown here.

Due to stochastic nature of the generated pseudo-measurements, and also stochastic nature
of evolutionary computations applied, all tests should be repeated many times. Figure 7 shows
results obtained using 10 independent data sets. Dispersion of the calculated random results and
their averaged values are also shown. Such tests allow to draw a conclusion that the improved EA
approach applied to the PBA problems gives repeatable results.
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a)

b)

c)

Fig. 6. Radial residual stresses obtained using randomly generated strains with admissible errors up to 5%
(a), 10% (b), and 50% (c).

Fig. 7. Radial residual stresses calculated using 10 independent data sets.
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6. FINAL REMARKS

Results obtained indicate a clear possibility of practical application of the improved EA to the
PBA of experimental and/or numerical data for large optimization problems, the inverse ones
including. The accelerated EA were successfully used for sample benchmark problems. Application
of the accelerated EA to the PBA is still at the initial stage of research development; however,
preliminary results are very encouraging. Continuation of this research is needed. Further research
includes continuation of various efforts oriented towards acceleration of the EA-based solution
process, and application of this approach to large, non-linear, constrained optimization problems
(convex and non-convex) resulting from the PBA applied to experimentally measured data for real
engineering problems, e.g., residual stress analysis in railroad rails and vehicle wheels.
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