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Application of linear normal modes to the nonlinear area provides an in-depth investi-
gation of structures. In this paper, a straightforward approach is proposed to investigate
nonlinear normal modes (NNMs) thoroughly and focus on all possible solutions and bifur-
cations, independent of all initial assumptions and prior solutions. In this context, after
discretization of the response domain over an appropriate resolution, a periodicity algo-
rithm is suggested to capture the solutions that meet the NNMs criteria. Afterward, the
frequency and energy of the system during accepted responses and degrees of freedom
(DOFs)’ relations are derived. Finally, after verifying the proposed approach and acquir-
ing new internal resonances, the frequency-energy plots and NNMs of a nonlinear elastic
system with more substantial nonlinearities and a two-story steel structure with nonlinear
material are studied. It is worth noting that the periodicity algorithm and capturing all
possible solutions and bifurcations are among the apparent novelties of the current paper.
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1. Introduction

Any attempt to apply traditional linear analysis to obtain real-world nonlin-
ear systems, at best, contributes to suboptimal analyses, which cannot meet the
demands of new developments and modern achievements efficiently. One of the
most prominent and physically meaningful mathematical approaches is apply-
ing eigenvalue and eigenvector concepts to motion equations of linear problems,
known as natural frequencies and linear normal modes (LNMs), respectively. Ex-
panding these concepts to nonlinear motion equations, even with a continuously-
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changing stiffness matrix, fails at finding NNMs and their corresponding conti-
nuously-changing frequencies. This is because, in such problems, NNMs are
curves (and no longer straight lines), and a linearized method cannot be used
to satisfy nonlinear complexities. In this context, extending LNMs to NNMs re-
quires an in-depth conceptual relationship between them, which could be met
through a joint basic definition based on one of their common properties. Among
them, the superposition principle, which allows obtaining any final solution of
an excited conservative linear system from a linear combination of LNMs [8],
and orthogonality, which means that the product of two different LNMs in
the phase space is always equal to zero [21], are not applicable to the non-
linear area.

However, beyond familiar linear concepts, facing bifurcations in the frequency-
energy subspace [5] could provide a situation of exchanging energy between two
separate NNMs, known as internal resonance [17, 41], which could trigger the
number of NNMs to exceed the number of DOFs [11, 18]. It is worth mentioning
that these modal interactions do not have any linear counterpart and usually
occur when harmonics of responses resonate with each other. In contrast, inva-
riance is a joint concept between both LNMs and NNMs and relies on the fact
that if the motion is initiated coincidently on one mode, the other modes remain
off during the oscillation [27]. In this context, the vibration-in-unison as a joint
concept between LNMs and NNMs is employed to form the basic definition of
NNMs by Rosenberg [28] to pave the way for linking all DOFs to a master DOF,
and by extending the borders of this definition, several analytical and numerical
techniques were developed to calculate NNMs.

From an engineering viewpoint, all the theoretical investigations can be justi-
fiable in the circumstances of proper applications. As the concept of NNMs can
cover a vast portion of nonlinear areas, and their linear counterpart as a familiar
subject paved the way for a deep conceptual understanding of this concept, en-
gaging in such a rich field of study could contribute to determining unknowns of
the nonlinear realm. In this context, NNMs can be used to form reduced-order
models (ROMs) [23, 32], modal analysis [19, 42], damage detection [2, 33], and
extract the modal characteristics [20, 35, 40]. Besides, some interesting real-world
case studies such as the investigation of an F-16 aircraft [6, 22], nonlinear rotor-
dynamics of mechanical rotary systems [3], rubble-pile asteroids [4], rail track
systems [7, 10], wind turbines [42], and nonlinear dynamics of bridges [1] have
been presented recently to investigate their nonlinear dynamics through normal
modes.

However, considering uncertainties of NNMs besides the complexities of the
current approaches and their dependencies on some assumptions, especially tak-
ing LNMs as the starting point and only following their continuous path, sparked
the idea of an independent approach to investigate NNMs thoroughly without
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any initial assumption, which satisfies the basic definition of NNMs indepen-
dently. In this paper, a domain-based approach is proposed to investigate all
NNM candidates thoroughly and pays a great attention on all possible solu-
tions. To this end, after discretizing the response domain through an appropri-
ate resolution, numerical integration techniques are employed to obtain motion
equations responses. Afterward, a novel algorithm is proposed to check the re-
sulting response’s periodicity and subsequently calculate the frequency of the
periodic ones. Based on that, the relation between displacements and veloci-
ties of DOFs with respect to the others and the system’s total energy during
each periodic solution ate stored and used to form NNMs and frequency-energy
plots (FEPs). Finally, after verifying the proposed approach over a well-known
problem with nonlinear geometry and finding some new internal resonances, the
FEPs, quasi-continuous demonstration of NNMs over energy, and the relation
of DOFs in phase space of a system with nonlinear elastic materials and large
deformations [38] are presented.

Although previous methods have calculated NNMs with high precision, the
objective of the present paper is to introduce a new independent and straight-
forward point of view toward NNMs. Meanwhile, the suggestion of a novel al-
gorithm for checking the periodicity of responses without a need of the period
time as input (such as shooting technique) and producing that as an output, its
ability to find all possible responses, bifurcations, and their corresponding inter-
nal resonances are among the novelties of the current paper. It is worth noting
that applying the independent approach with low resolution as a complement
tool could provide a valuable framework to verify other methods’ results quickly,
and employing higher resolutions contributes to observing all periodic solutions
independent from starting point and bifurcations difficulties during a more sig-
nificant amount of time, which seems inevitable in the face of uncertainties. In
the following sections, first, the foundations of the NNMs concept and the proce-
dure of the proposed independent approach ranging from periodicity algorithm
to evaluation of the system’s total energy, are discussed in Sec. 2. Afterward, the
proposed approach is applied to a known system to validate the whole proce-
dure in Sec. 3. Finally, the FEPs and NNMs of a nonlinear elastic system with
more substantial nonlinearities and a two-story steel structure with nonlinear
materials are illustrated in Sec. 4 and discussed in Sec. 5.

2. Nonlinear normal modes

2.1. Definitions

Theoretical advances in nonlinear sciences formed the concept of NNMs, pio-
neered by Rosenberg [29]. Rosenberg extended LNMs of conservative systems to
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the nonlinear area and, based on that, defined NNMs as the relation between
different DOFs during “vibration in unison” of the system (i.e., synchronous oscil-
lations), which relies on the fact that all DOFs have an equal period during vibra-
tion and thus reach their extremum and zero positions simultaneously. Through
this definition, each DOF can be expressed as a function of other DOFs. There-
fore, by taking one of them as the “master” coordinate, all the other DOFs can be
defined as dependent variables. The relations between each two DOFs (the men-
tioned functions) are called “modal curves,” which are nonlinear. If special spatial
symmetries exist, this concept can be simplified to straight modal lines, in which
the NNM is called similar. As discussed in [11], this definition suffers some re-
strictions and does not contribute to all desired points. To this end, an extended
version definition of “non-necessarily synchronous periodic oscillations” was pro-
posed, which constructs the NNMs from periodic responses even with non-equal
period values at each DOF.

The periodic-based nature of Rosenberg’s definition made it restricted to
the conservative systems. So, the necessity of a modified definition for non-
conservative systems made Shaw and Pierre generalize the previous one [30].
The authors considered an NNM as a 2-D invariant manifold in phase space. The
mentioned manifold passes through a stable equilibrium point, where the cor-
responding LNM passes through it too, but with the geometry of a plane, and
the nonlinear manifold’s curve is tangent to the LNM’s plane at that point. This
definition has a more general concept as it is applicable to both damped and un-
damped systems. In recent years, Krack [14] proposed a novel definition suited to
systems under external harmonic excitation and negative linear damping, which
relies on adding a damping term with the required sign and magnitude to the
process of checking periodicity. Finally, although various definitions exist in the
literature, NNMs have a unique conceptual foundation, and in the case of each
problem, a compatible definition should be adopted. In this context, since the
existing knowledge of damping mechanisms suffers many restrictions, the design
process used in the industry, even in linear systems, is usually based on con-
servative systems. Thus, in this paper, NNMs are considered as the relation of
DOFs during non-necessarily synchronic periodic oscillations.

2.2. Methodology

Among many calculation techniques, analytical-based methods, as pioneer-
ing ones, could be categorized into different classes. The first method uses an
energy-based formulation to obtain NNMs by defining NNMs as certain functions
of the relationship between displacements of slave DOFs and a master DOF to
eliminate time derivations from the equations of motion and calculate the de-
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sired functions [13]. The next popular approach is based on the invariant mani-
fold technique, which closely resembles the previous energy-based formulation
and tries to eliminate explicit time dependence. In this context, a pair of dis-
placement and velocity are taken as master coordinates, the remaining variables
as slaves to them to approximate a local solution using polynomial expansion
of those master coordinates [31]. The Multiple scales method is a perturbation
method that has received considerable attention in calculating NNMs. It attacks
governing differential equations directly and attains the solution in the form of
an asymptotic expansion over transformed motion equations through a small
non-dimensional parameter [16].

On the other hand, attaining exact analytical solutions for many nonlinear
and complex motion equations seems very expensive and even impossible. So,
the arrival of computers paved the way for calculating approximate solutions and
solving nonlinear problems through numerical methods. The harmonic balance
method could be considered a semi-analytical approach, based on the expansion
of the unknowns and parameterized through a finite Fourier series and frequency-
domain approaches to find NNMs [9]. Surprisingly, there have been few attempts
to employ numerical methods in calculating NNMs. In this regard, implement-
ing both the multiple scales and the invariant manifold approach and applying
them to finite element models is another efficient numerical approach for obtain-
ing NNMs of non-conservative systems [15, 26]. The part-by-part continuation of
periodic solutions is called sequential continuation. Combining this concept with
a shooting technique contributed to an approach to solve the nonlinear boundary
value problem numerically, which resulted in a family of NNMs and has received
considerable attention recently [34, 36, 39].

All the mentioned numerical techniques are based on some initial assump-
tions; especially, they usually take the LNMs as starting point and follow their
continuous path. Besides, Lyapunov [18] proved that the number of DOFs is
the minimum possible number of modes, and in the case of NNMs, this number
can exceed that value, which increases the uncertainty about finding all possible
answers through the existing approaches. This uncertainty highlights a need for
a thorough domain-based approach in order to investigate all possible solutions.
To this end, a straightforward approach was proposed, which tries to eliminate
the dependence of the process on the starting point, step-size-based convergence,
and other initial assumptions. So, the present study’s primary aim is to find all
possible responses in a discretized manner that satisfying the NNMs criteria in
the general system (1) under undamped free vibration. So, initially, a proposed
algorithm to capture accepted points based on the adopted definition of NNMs
is discussed, which in contrast to the Shooting Technique, does not require the
frequency value as input and calculates the frequency of periodic responses in-
dependently. Afterward, the whole process of finding NNMs, including assigning
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resolution to the domain, numerical integration details, and total energy calcu-
lation, is presented:

[M ] {ẍ(t)}+ [K] {x(t)}+ {fnl(x(t))} = 0, (1)

where x and ẍ are displacement and acceleration vectors, K is the corresponding
linear stiffness matrix, M is the mass matrix, and fnl is the nonlinear restoring
force vector.

2.2.1. NNMs criteria. The first step is to specify the basic definition of the
NNMs problem and develop a path to apply the adopted definition numerically.
In this context, Rosenberg’s initial definition cannot cover the situations in which
each DOF of a system vibrates periodically, and the oscillation frequencies of dif-
ferent DOFs are not equal, such as during internal resonance. Besides, the lack
of knowledge about damping mechanisms contributes to the fact that real-world
structural designs are usually based on conservative systems. So, the previously
mentioned extended version of Rosenberg’s definition of non-necessarily syn-
chronous periodic oscillations of conservative systems is employed in this study
as the criterion of being an NNM. In other words, all the initial conditions of
the system (1) that contribute to periodic answers are taken as desired points,
even if each DOF has a different period value (T ).

To this end, a procedure for evaluating motion responses is necessary to check
its periodicity as the confirmation filter. In this context, the most pervasive ap-
proach is the shooting technique, which takes the period value, namely T , as
input and checks if the residual of the response between zero and T time is less
than the accepted error or not. So, an initial guess is required for T , produced
from the T of previous continuous solutions in other methods. However, this
dependency on an initial assumed T makes the Shooting Technique inappropri-
ate to be a powerful independent NNM-finder tool. In this paper, an alternative
algorithm is suggested to check the periodicity of the given response, and then
if the NNMs criteria are satisfied, the corresponding period time of that solu-
tion is found. Finally, a step-by-step procedure is presented below to explain the
proposed filter in detail, and Fig. 1 shows a graphical demonstration of the men-
tioned steps in one of the DOFs at one point corresponded with the system (5),
excited with initial values of x1(0) = 1.34, x2(0) = 17.05 at zero time under
undamped free vibration.

A step-by-step procedure is as follows:
1. Find all peaks of the response, which could be met through the findpeaks

command in MATLAB or consider all local maximums in the whole re-
sponse [37].
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Fig. 1. Graphical demonstration of applying NNMs criterion to x1 of a point
with (x1(0) = 1.34, x2(0) = 17.05).

2. Among them, find the absolute peaks, in which their difference with the
largest absolute amount of the response, namely maximum (x), is less than
an accepted error value. This value is calculated by multiplying a user-
defined coefficient as the “accepted error percentage (εp)” to maximum (x).
The use of percentage value as an accepted error instead of a constant value
is due to increasing the applicability of the same algorithm to different
problems with different scales of numbers.

3. If the number of absolute peaks exceeds three, the difference between the
time of the first and second ultimate peak should be compared to the cor-
responding value of the third and second ultimate peak.

4. If the discrepancy between the first and second interval of time is less than
the accepted value for error, the response is periodic, and its period is
equal to the mentioned interval of time. Here again, the accepted error
value for time is calculated by multiplying the user-defined coefficient as
the “accepted error percentage (εt)” by the first time interval.

5. Continue steps 1 to 4 for all DOFs.
6. If all the DOFs have periodic motions, regardless of equal periods or not,

the initial conditions that cause these responses are passed through the
NNMs criteria filter.

2.2.2. Body of process. All previous numerical methods start their contin-
uous process from an initial point arising from LNMs. In addition to their ad-
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vantages, since NNMs’ numbers could exceed the number of DOFs [11] and
there is no proven upper bound for it, a question remains unanswered: do the
previous methods’ results cover all possible answers? By accepting a standard
definition for conservative systems, eliminating all the restrictive assumptions
is the first step in answering this question and having a thorough analysis.
So, the only way to eliminate the dependence on initial points is to evalu-
ate all potential points. In this context, first, the continuum domain of the
problem should be determined and discretized by defining a response resolu-
tion, which means dividing the variables domain into an adequate number of
elements and transforming a continuum domain into a discretized calculable
one. The more significant number of parts is taken, the higher accuracy can
be obtained. By contrast, higher resolution means more calculation expenses
and more accurate responses. After applying a balanced resolution and crossing
variables to each other, all candidate solutions are prepared and ready to be
analyzed.

As mentioned before, each potential point includes initial excitation values
for each DOF as their initial conditions to solve the undamped free-response
of motion equations (ODEs). Afterward, to check every point’s competency,
a numerical integration approach is required to solve the system of differential
Eq. (1). In this context, MATLAB’s built-in ode45 and ode15s commands pave
the way for a simple numerical integration far from the complexity of applying
other methods based on the explicit Runge–Kutta formulation Dormand–Prince
pair. To define the system of differential equations corresponding to the cur-
rent problem, the ODE solvers require a transformation from second-order to
first-order ODEs ({y′} = f (t, y)). In this context, by defining z as the state
vector (2), including the mentioned candidate solutions, and recasting the sys-
tem (1) into the state space (3), the required prerequisite of the ODE solver
is met:

z =

{
{x}

{ẋ}

}
2n∗1

, (2)

ż = g(z) =

{
{ẋ}

{ẍ}

}
2n∗1

=

{
{ẋ}

−[M ]−1 [[K] {x(t)}+ {fnl(x(t))}]

}
2n∗1

, (3)

where n indicates the number of DOFs, x indicates displacements, ẋ indicates
velocities and ẍ indicates accelerations corresponding with DOFs of the sys-
tem (1). Another required user-defined value is the time interval of integration,
namely tspan, which determines the integration’s start and finish time. Relative
error tolerance, namely RelTol, is a positive scalar value and measures the rela-
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tive error concerning the magnitude of each solution component. Absolute error
tolerance, namely AbsTol, determines ignorable values of the solution, which is
a positive scalar or vector with the same size as the solution. Taking e as the
error of the i-th iteration of the ODE solver, it would be an acceptable error if
it satisfies the condition given in (4). In stiffed problems, the ode15s command
can be used too, but in most cases, the previously mentioned version meets all
the demands:

|e(i)| ≤ max (RelTol ∗ abs(y(i)), AbsTol(i)). (4)

As a candidate is selected after the segmentation of the domain, its corre-
sponding response can be obtained using the mentioned numerical integration
process, and its competency to be an NNM can be checked by NNMs criteria
(Subsec. 2.2.1). It is worth noting that after stimulating the system (1) based
on assigning initial displacement and velocity to each DOF and solving the
corresponding ODEs through the numerical integration process, the response
of each DOF is a diagram with displacements on the y-axis and time on the
x-axis. By assuming a synchronous vibration for a periodic response, the pe-
riod time of all DOFs will be equal, and consequently, their peaks will coincide.
In this context, starting the periodic response from each point on the diagram
will contribute to the same response, and this sparks the idea of making all
velocities equal to zero and starting the response from a peak in all DOFs,
which reduces the independent variables significantly. However, as mentioned
in Subsec. 2.1, in some situations, such as during internal resonances, the re-
sponses would be non-synchronic, and the period time of each DOF’s periodic
response would be different from the others. In this case, the peaks will not
occur simultaneously, and applying zero value to all initial velocities will im-
pose a latent restriction on the final outcoming NNMs. In conclusion, although
assigning zero values to initial velocities during low energies (around LNMs)
will not affect the results, they should be checked for non-zero values in higher
energies, and one of the DOFs’ initial velocities is valid to be considered equal
to zero.

If all filters of being an NNM are passed, the next step is to calculate the
current energy of that NNM. Potential and kinetic energy form the total energy of
a system, and as the system is conservative, this value remains constant during
the whole motion. The potential energy can be calculated by integrating the
stiffness function of each spring and then combining them altogether. In the case
of kinetic energy, the corresponding energy can be found based on Newton’s
law by integrating the inertia force, which contributes to 0.5miẋ

2
i , regardless of

its linear or nonlinear stiffness. Figure 2 shows all the mentioned steps of the
proposed algorithm briefly in a flowchart.
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Fig. 2. Flowchart of the proposed algorithm.

3. Verification

3.1. A known nonlinear system

The pseudo-arc length sequential continuation method is one of the most
prevalent approaches in this field of study, confirmed by experimental investiga-
tions [24]. Hence, a well-known undamped mechanical system with cubic non-
linearities evaluated in [25] is adopted, and the suggested approach is applied to
that to validate its corresponding results and search for new bifurcations. The
mentioned system is shown in Fig. 3, and its governing motion equations are
presented in Eq. (5):[

1 0

0 1

]{
ẍ1

ẍ2

}
+

[
2 −1

−1 2

]{
x1

x2

}
+

{
0.5x3

1

0

}
= 0, (5)

where x and ẍ indicate the corresponding displacement and acceleration of each
DOF, respectively. It is worth mentioning that in small values of x, the impact of
the term x3 on response is ignorable, and by eliminating the nonlinear restoring
force vector from the motion equations (5), familiar motion equations of a linear
system emerge. In this context, by solving the linear eigenvalue problem, two
LNMs and their corresponding natural frequencies could be obtained through
the eig command in the MATLAB framework to check if the nonlinear system’s
response during low energy values is compatible with them.
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Fig. 3. Schematic representation of the studied undamped nonlinear system.

In particular, assigned values for evaluating the system (5) are presented.
Initially, the upper and lower bounds of both initial x1 and x2 were taken equal
to −20 and +20 with a balanced resolution equal to 0.01. Moreover, the initial
value assigned to ẋ1 is set to zero, and the bounds of ẋ2 at zero time cover
from −100 to +100 with a resolution of 0.05. By crossing mentioned values and
working on each point separately, the domain is discretized and x1, x2, ẋ1 and
ẋ2 of each point as initial values for numerical integration of governing ODEs
under free vibration motion are determined. Regarding numerical integration,
the desired interval for numerical integration and, consequently, for each point’s
response, namely tspan, is from t = 0 to 100 seconds. Furthermore, relative error
tolerance, namely RelTol, is taken equal to 10−6 and absolute error tolerance,
namely AbsTol, is taken equal to 10−9. The value for both the accepted error
of peaks, namely εp, and the accepted error of periods, namely εt, was taken
equal to 0.1% (0.001). To prepare the previously mentioned ODEs (5) for the
ode45 command of MATLAB, Eq. (6) shows the required transformation and
the expected answer after applying ode45 at each step of numerical integration:

ż =



ẋ1

ẋ2

ẍ1

ẍ2


⇒



ż1

ż2

ż3

ż4



=



ẋ1

ẋ2

−1

m1
(2x1 − x2 + 0.5x3

1)

−1

m2
(2x2 − x1)


ode45−−−→



x1

x2

ẋ1

ẋ2


over t at i-th point. (6)

Regarding the frequency-energy dependency of the system (5), the corre-
sponding value for the period time of periodic solutions will result from the
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periodicity algorithm, and the total energy of those responses could be met
through the sum of kinetic and potential energies. Since the studied system is
conservative, the total energy is a constant value during all motion. So, in the
current problem, the total energy of periodic solutions has been calculated at
the zeroth time of motion. In this context, each mass kinetic energy can simply
be calculated by integrating the mẍi term, which results in 0.5miẋ

2
i for each

mass. Moreover, the potential energy in Fig. 3 directly stems from the absorbed
energy in each spring, and regardless of compression of tension, their correspond-
ing absolute values should be added together. Considering x1, (x2−x1), and x2 as
displacement of the left, middle, and right springs, respectively, the total energy
of the system (5) can be calculated from (7):

Kinetic energy

Total energy =
︷ ︸︸ ︷
0.5m1ẋ

2
1 + 0.5m2ẋ

2
2

Potential energy

+

︷ ︸︸ ︷ˆ (
k1x1 + 0.5x3

1

)
dx1 +

ˆ
(k2(x2 − x1)) d(x2 − x1) +

ˆ
(k3x2)dx2 . (7)

3.2. Results

To validate, the proposed approach with the mentioned calculation constants
is applied to the system (5) studied in [25]. In this context, Fig. 4 shows the

s

Fig. 4. Verification of the independent approach through FEP.
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whole system’s FEP. In this context, the previous studies’ results [25] are drawn
as solid lines, where a great agreement between current and previous results is
evident. The upper purple curve is the extension of out-of-phase LNM, which
means that the signs of initial displacements at the zeroth time are opposite, and
subsequently, DOFs move in opposite directions. It is called S11− where the S
letter comes from the symmetrical trait of periodic motion, and U is commonly
used for unsymmetrical ones. Besides, the negative sign indicates out-of-phase
motion, while a positive sign is required for in-phase ones. A periodic solution
with a period equal to T is still periodic under a period equal to multiples of T .
So, the numbers in front of the letter are employed to show which coefficient
of the primary response is running and, in the case of internal resonances, to
show the origin and destination NNMs, in which the energy exchange occurs.
Dash lines of FEP are multiplications of base S11− based on different multiples
of T . It is worth noting that the horizontal line in the starting part of NNMs
agrees with the constant value for the natural frequency of LNMs, and the as-
cending trend of the response is due to the hardening behavior of geometrical
nonlinearity, which is latent in motion equations of the system (5).

The points near multiplications of both in-phase and out-of-phase paths
would face an energy exchange known as internal resonance. This phenomenon
is a unique consequence of nonlinear analyses, which cannot be found in their
linear counterparts. To have a closer look at different parts of the presented FEP,
the close-up of the first bifurcation is illustrated in Fig. 5, where the unstable
points are displayed as black dash lines, and the main stable points of the first
internal resonance are captured appropriately.

s

Fig. 5. Close-up presentation of the first internal resonance.
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3.3. New internal resonances

Investigation of lower parts of FEP is practically impossible due to the little
distance between the points, where the occurrence of internal resonances is highly
probable. To this aim, the FEP was converted to a period-energy plot and is
shown in Fig. 6.

s

Fig. 6. Period-energy plot of the system (5).

Dash lines are multiplications of both S11+ and S11−, and the occurrence
of some new internal resonances between them is salient. Again, to have a closer
look at them, Fig. 7 illustrates two of them in detail.

a)

[Fig. 7a]
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b)

Fig. 7. Detailed illustration of a) 3:5 and b) 4:7 internal resonances.

To conclude, not only a great agreement between the results of the current
approach and previous well-known methods is obvious, but also the proposed
approach revealed some new bifurcations and internal resonances during the
clear paths. Additionally, both could be considered to validate the proposed
numerical independent approach and pave the way for investigating the dynamics
of a system with more substantial nonlinearities consisting of nonlinearly elastic
materials, as presented in the next section.

4. Numerical investigations

4.1. An elastic system with more substantial nonlinearities

After validating the proposed approach, a two-DOF system with more sub-
stantial degrading nonlinearities in all elements is considered and evaluated to
demonstrate the capabilities of the independent approach. In this context, all
springs are assumed to be made of elastic materials with fifth-order degrading
nonlinearity, as shown in Fig. 8, where xi indicates the displacement and mi

indicates the mass of i-th DOF, which is set equal to 4000 kg. Motion equa-
tions of the mentioned system could be formed based on the free-body diagram
of each DOF, in which the inertia-based terms are related directly to absolute
displacements, and the stiffness-based elements come from their corresponding
relative displacements. In this context, the first step is to determine the force-
displacement relation of each spring, as presented in Eq. (8):
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fS1 =

(
2.25e13 ∗∆5

1

)
−
(
2.8e10 ∗∆3

1

)
+ (1.44e7 ∗∆1)

fS2 =
(
4.7e12 ∗∆5

2

)
−
(
9.4e9 ∗∆3

2

)
+ (7.95e6 ∗∆2)

}
. (8)

m2

m1

S2

S1

x1

x2

Fig. 8. Schematic illustration of springs with fifth-order degrading nonlinearity.

Furthermore, dynamical motion equations of an undamped system could be
met through the free-body diagram, which is presented in Eq. (9):{

fext(1) = fI(x1) + fS1(x1 − 0)− fS2(x2 − x1)

fext(2) = fI(x2) + fS2(x2 − x1) + 0

}
. (9)

Afterward, by substituting (8) in (9) and considering the inertia force equal
to miẍi, Eq. (10) shows the motion equations of the system illustrated in Fig. 8
under free vibration:

4000ẍ1 +
(
2.25e13 ∗ x5

1

)
−
(
2.8e10 ∗ x3

1

)
+ (1.44e7 ∗ x1)

+
(
4.7e12 ∗ (x1 − x2)5

)
−
(
9.4e9 ∗ (x1 − x2)3

)
+ (7.95e6 ∗ (x1 − x2)) = 0

4000ẍ2 +
(
4.7e12 ∗ (x2 − x1)5

)
−
(
9.4e9 ∗ (x2 − x1)3

)
+ (7.95e6 ∗ (x2 − x1)) = 0


. (10)

Finally, the system (10) is defined as the input of the independent approach,
and the previously-mentioned coefficients are assigned to calculation variables
to investigate its nonlinear dynamics.
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4.1.1. Frequency-energy plot. Direct separation of the DOFs’ displacements
and time in motion equations is impossible due to energy-frequency dependence.
Hence, the relation between frequency and energy can provide an appropriate
tool to demonstrate the details of nonlinear responses during NNMs and, con-
sequently, interpret nonlinear dynamics. To this aim, Fig. 9 illustrates the fre-
quency of periodic responses against their corresponding total energy.

Energy (Log) [J]

Fig. 9. Frequency-energy plot corresponding with the system (10).

Each red point indicates a periodic synchronic response and each blue point
indicates a periodic non-synchronic response with a different period time value
for each of the DOFs. Moreover, green and yellow dash lines are multiplications
of in-phase and out-of-phase NNMs, respectively. It is worth mentioning that the
starting part of each NNM during lower energies coincides with its corresponding
LNM, and the decrease of frequencies over the increase of energy is due to the
degrading behavior of the material’s resistance. The aggregation of target points
with lower frequencies could cause the data gathering to face difficulties, espe-
cially in tracking possible patterns. In this context, period-energy plot could sort
out the complexities of those areas and illustrate the solutions more properly, as
presented in Fig. 10.

The proximity of the NNMs’ multiplications would contribute to energy ex-
change between them, called internal resonance. In the current problem, the
most apparent internal resonances are 1:2 and 2:5, which means that the energy
exchange occurs from the first multiple of in-phase NNM toward the second mul-
tiple of out-of-phase NNM for 1:2 and from the second multiple of in-phase to
the fifth multiple of out-of-phase for 2:5. Figure 11 shows the mentioned internal
resonances in detail.
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Fig. 10. Period-energy plot corresponding with the system (10).

a)

Energy (Log) [J]

b)

Energy (Log) [J]

Fig. 11. Detailed illustration of a) 1:2 and b) 2:5 internal resonances.
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4.1.2. Nonlinear normal modes. Classical LNMs are usually presented as ra-
tional constant numbers between DOFs, contributing to linear functions to define
the relationship between those DOFs. By increasing the vibration domains of
DOFs, while the system oscillates in the linear zone, the mentioned constant
ratios are fixed, so the mentioned linear functions will not face any changes, and
they will be sufficient to represent the LNMs of a system during the whole linear
domains. However, in the nonlinear area, the relations between DOFs are not
only curves, and the curves also change for different domains of DOFs. In other
words, if all DOFs’ displacements of a system in the nonlinear area are multiplied
by a fixed number, the curves demonstrating the relation of DOFs will also be
changed. The illustration of NNMs in previous studies has been limited to the
modal curves of a few numbers of points on each NNM. In this paper, NNMs
are separated into different sections, and modal curves of each point on each
part are illustrated with respect to its corresponding energy to form a quasi-
continuous framework. In this manner, NNMs of the initial and final parts of the
out-of-phase and in-phase corresponding with the presented FEP are illustrated
in Figs. 12 and 13, respectively, and quasi -continuous modal curves of 1:2 and
2:5 internal resonances are presented in Fig. 14. It is worth noting that 2-D
projections of the first and the last NNMs are demonstrated on top of each.

4.1.3. Modal curves in phase space. Although the mentioned graphs improve
the depiction of displacements relationships as indicators of each motion, the role
of velocities as other variables in the initial conditions of ODEs should not be
ignored, as highlighted in the invariant manifold approach. In that regard, closed
modal curves in phase space are in planes tangent to the corresponding plane
of LNMs at lower displacements and velocities and change to curved planes by
increasing those values. In this context, by taking the displacement of the first
DOF as the master coordinate, the velocities of DOFs are presented with respect
to that and illustrated in Figs. 15 to 17.

4.2. A two-story steel structure with nonlinear material

To focus on more practical investigations, a full-scale experimental steel struc-
ture is employed, and its finite elements method (FEM) model is established in
ABAQUS based on the dimensional details and material properties presented
in [12], as shown in Fig. 18.

In the presence of nonlinear materials, the loading and unloading behaviors of
the structure obey different stiffness functions, and correspondingly, the motion
equations face continuously-changing stiffness components. In this context, the
piecewise linearized equations illustrated in Fig. 19 fitted on hysteresis curves of
both stories, which consist of a line with a slope equal to linear stiffness as the
initial part, and a line with a slope equal to softened stiffness as the second part.
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Fig. 12. NNMs of out-of-phase motion during the initial (top) and ultimate (bottom) parts.
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Fig. 13. NNMs of in-phase motion during the initial (top) and ultimate (bottom) parts.
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Fig. 14. NNMs of 1:2 (top) and 2:5 (bottom) internal resonances.
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Afterward, the motion equations of the mentioned structure are presented
in Eq. (11), where fI indicates inertia function, fS indicates stiffness function,
X indicates displacement, Ẍ indicates acceleration, fSP indicates the force of
start point on fitted hysteresis, xSP indicates the displacement of start point
on fitted hysteresis, L = 1 indicates loading state, L = 0 indicates unloading
state, xintL indicates the displacement corresponding with the intersection of
two lines with different slopes during loading, xintU indicates the displacement
corresponding with the intersection of two lines with different slopes during
unloading, and the numerical index denotes the number of DOFs:

{
fI (X1) + fS1 (X1 − 0)− fS2 (X2 −X1) = 0

fI (X2) + fS2 (X2 −X1) + 0 = 0

}
→


fI1 = 1000Ẍ1

fI2 = 1000Ẍ2

fS1 = A1x1 +B1

fS2 = A2x2 +B2

,




A1 = 650000, B1 = fSP1 − 650000xSP1

if L1 = 1 and x1 ≤ xintL1

A1 = (200000 + fSP1) / (0.06 + xSP1) , B1 = 200000−A10.06
if L1 = 1 and x1 > xintL1

A1 = 650000, B1 = fSP1 − 650000xSP1

if L1 = 0 and x1 ≥ xintU1

A1 = (200000− fSP1) / (0.06− xSP1) , B1 = −200000 +A10.06
if L1 = 0 and x1 < xintU1



A2 = 650000, B2 = fSP2 − 650000xSP2

if L2 = 1 and x2 ≤ xintL2

A2 = (200000 + fSP2) / (0.06 + xSP2) , B1 = 200000−A20.06
if L2 = 1 and x2 > xintL2

A2 = 650000, B2 = fSP2 − 650000xSP2

if L2 = 0 and x2 ≥ xintU2

A2 = (200000− fSP2) / (0.06− xSP ) , B2 = −200000 +A20.06
if L2 = 0 and x2 < xintU2





, (11)



xintL1 = 200000−((200000+fSP1)∗0.06/(0.06+xSP1))−fSP1+650000xSP1

650000−((200000+fSP1)/(0.06+xSP1))

xintU1 = −200000+((200000−fSP1)∗0.06/(0.06−xSP1))−fSP1+650000xSP1

650000−((200000−fSP1)/(0.06−xSP1))

xintL2 = 200000−((200000+fSP2)∗0.06/(0.06+xSP2))−fSP2+650000xSP2

650000−((200000+fSP2)/(0.06+xSP2))

xintU2 = −200000+((200000−fSP2)∗0.06/(0.06−xSP2))−fSP2+650000xSP2

650000−((200000−fSP2)/(0.06−xSP2))


.
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Fig. 15. Modal curves of out-of-phase motion during the initial (a) and ultimate (b) parts
in phase space.
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Fig. 16. Modal curves of in-phase motion during the initial (a) and ultimate (b) parts
in phase space.
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Fig. 17. Modal curves of 1:2 (a) and 2:5 (b) internal resonances in phase space.
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Fig. 18. FEM of the experimental steel structure studied [12].
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Fig. 19. Piecewise linearized equations fitted on hysteresis curves.

Finally, the FEPs corresponding with the expansion of the first and second
LNMs and the close-up part of the internal resonance 1:3 are illustrated in
Fig. 20. Additionally, the relationships between DOFs, namely NNMs, corre-
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Fig. 20. FEPs corresponding with the two-story structure (top), and detailed illustration
of 1:3 internal resonance (bottom).

sponding with the in-phase oscillation (S11+) and the mentioned internal reso-
nance (S13) are presented in Fig. 21.

It is worth noting that the degradation of frequency corresponding with each
NNM branch during energy increase is compatible with softening stiffness, as
expected. Additionally, the presented approach for formulating the hysteresis
curves by piecewise linear functions could pave the way for investigating the
NNMs of structures with nonlinear materials, especially civil structures.
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Fig. 21. NNMs of the system (11) corresponding with parts of in-phase oscillation (top)
and 1:3 internal resonance (bottom).

5. Conclusion

NNMs are appropriate tools for analyzing and interpreting structures’ non-
linear behavior, including various applications in nonlinear areas, such as inves-
tigating nonlinear dynamics of different real-world systems, damage detection,
forming ROMs, and extracting modal characteristics. In this paper, the relation
of DOFs during non-necessarily synchronic periodic oscillations was considered
as the basic definition, and the periodicity algorithm was suggested to determine
if an input response over time can get through the NNMs criteria, regardless of
a pre-assumed period time. Afterward, a procedure was proposed to find the
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NNMs from the discretized domain of the problem, which formed the indepen-
dent approach. Regarding verification, after analyzing a well-known problem,
great agreement was observed between the results of the current approach and
the previous methods, and even some new internal resonances were obtained.
Finally, an elastic system with more substantial nonlinearities and a two-story
full-scale steel structure with nonlinear materials were investigated, and their
corresponding FEPs and NNMs were extracted.

According to the obtained results, the system’s frequency is reduced by the
increase of total energy due to the decrease in resistance of nonlinear material,
except during the occurrence of internal resonances. Compatibility of the re-
sults during low energies of FEP with LNMs confirms that the resulting NNMs
are the nonlinear extensions of their linear counterparts. The independent ap-
proach’s ability to capture bifurcations was confirmed by finding two main 1:2
and 2:5 internal resonances, which occur between different multiplications of
NNMs. LNMs are like pictures with a fixed linear relation between DOFs over
different energy values in linear problems. However, in nonlinear ones, NNMs as
modal curves change continuously from point to point, and demonstrating them
on 2-D graphs contributes to losing a portion of reality, so a video based on
total energy could be a better tool to depict NNMs in detail. In this paper, the
relations of different DOFs’ displacements, namely NNMs, are demonstrated in
a quasi-continuous environment over the system’s total energy. Additionally, the
employed approach for formulating hysteresis could pave the way for investigat-
ing the NNMs of structures with nonlinear materials, especially civil structures.

In general, the advantages of the independent approach are as follows:
• Independent from previous solutions and limiter assumptions in finding

the next point.
• Covering all possible candidate solutions, even outlying ones.
• No exposure to convergence issues and uncertainties of continuous meth-

ods.
• Employing a novel periodicity checker algorithm, independent from the

need for a pre-assumed period time.
• Capable of capturing all possible in-range internal resonances.
On the other hand, the relatively low speed during high resolutions could

be considered as the limitation of the suggested approach. Finally, the proposed
NNM-finding path is the only way to obtain a thorough investigation and clear
the effects of dependence on initial assumptions. In other words, to ensure the
comprehensiveness of solutions, such an approach is inevitable until the unique-
ness and number of NNMs are proven theoretically. Moreover, the independent
approach with higher resolutions could be employed as a reliable tool for extract-
ing the NNMs comprehensively, and adopting lower resolutions could provide an
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appropriate framework to validate the results of other approaches and case stu-
dies, especially novel ones.
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