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The paper presents the application of artificial neural networks (ANN) for description of the Ramberg-
Osgood (RO) material model, representing the non linear strain-stress relationship of ε(σ). A neural model
of material (NMM) is a feed-forward layered neural network (FLNN) whose parameters were determined
using the penalized least squares (PLS) method. A FLNN performing the inverse problem: σ(ε), using
pseudo empirical patterns, was developed. Two models of NMM were developed, i.e. a standard model
(SNN) and a model based on Bayesian inference (BNN). The properties of the models were compared
on the example of a reference truss structure. The computations were performed by means of the hybrid
FEM/NMM program, in which NMM developed previously described the current model of the material,
and made it possible to explicitly build a tangent operator Et = dσ/dε. The neural model of material was
applied to the analysis of the shakedown of load carrying capacity of an aluminum truss.
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1. INTRODUCTION TO MATERIAL MODELING

The main task of material modeling is appropriate formulation of constitutive relations to predict
the physical behaviour of a material. Constructing general constitutive relations is a complex issue.
The process of formulating a nonlinear material model consists of several phase, which include,
see [1]:

1. development of an initial concept of the model,

2. performance of laboratory tests,

3. mathematical expression of the structure of the model,

4. identification of the model parameters,

5. checking the quality of the model.
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The purpose of the conceptual phase of model formulation is to juxtapose all the requirements
of the model resulting from its future application, e.g., range of loading of benchmark structure,
scale of observation (micro or macro) as well as specification of the variety of factors including the
material behaviour, such as isotropic reinforcement, Bauschinger’s effect, cracking, etc.
The main objective of laboratory tests is to investigate the relationships between control variables

and physical permissible (measurable) variables of state.
A mathematical model of the material is a set of information about its physical properties

expressed using formalised mathematical description. In a general case, the material parameters
are unknown therefore they must be determined in the process of calibration by means of the data
obtained from experiment.
The identification of the material model parameters or the material model is based on solving

an inverse problem and it can be done by means of ANN.

2. APPLICATION OF NEURAL NETWORKS FOR MODELING OF MATERIALS

Neural networks enable solving various inverse problems, allowing simultaneous calculation of many
material parameters, see e.g. [2–4].
This approach uses a neural network FLNN, (also known as a multilayer perceptron (MLP))

developed in the off-line mode using the data sets derived from laboratory experiments. Neural
networks also enable taking into account the knowledge of experts from the scope of constitutive
relationship modeling.
The papers [5, 6] show that neural networks, treated as universal approximators of non-linear

functions, may be used to describe the constitutive equations of material. In this case, the material
stiffness matrix results from the neural model of the material (NMM), in the form of the mapping
realized by the neural network:

y = NMM(x) (1)

where x, y – input and output vectors.
The paper presents and compares the properties of two types of ANN: 1) standard neural

network (SNN) and 2) FLNN with Bayesian inference (BNN). Both networks were used to identify
the material model of an aluminum structure.

3. RAMBERG-OSGOOD MATERIAL MODEL

Ramberg-Osgood (RO) model of material allows one to extend the linear stress-strain relationship
for the scope of plastic deformation. This law assumes that plastic deformation develops from the
beginning of the load process. The nonlinear relationship between stress and strain ε(σ) is described
by an exponential coefficient of strengthening. Referring to the Eurocode [7], in case of materials
without explicit yield stress, such as aluminum alloys, the exponential law of Ramberg-Osgood
(RO) can be applied. In the example discussed in the paper, a modified RO model [5] was adopted,
wherein the relationship ε(σ) during the load process is described by a skeleton curve, see Fig. 1:

ε =
σ

E
+

2.5σ0
3E

( σ

σ0

)n
, (2)

where ε, σ – strain and stress, E – Young’s modulus, σ0 – yield strength, n – index exponent. The
process of unloading and reloading is described by a family of hysteresis loops, cf. [8]:

ε− εR =
σ − σR

E
+

4σ0
3E

(σ − σR
2σ0

)n
, (3)

where εR, σR – strain and stress at the start of the process of unloading/reloading. The curves
presented in Fig. 1 were prepared for the following data: σ0 = 71.6 MPa, n = 5, E = 59.5 GPa.
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Fig. 1. Skeleton curve and hysteresis loop for RO material model.

4. NEURAL NETWORK FOR REGRESSION

In the paper, two types of neural networks were applied: 1) SNN (standard neural network), 2) BNN
(Bayesian neural network). The adopted networks were used to reverse the power law of RO re-
lationship ε(σ), i.e., they implemented the mapping σ(ε) during the cyclic loading of the truss.
Because of the lack of experimental data, the stress and strain sets used to formulate ANN were
determined using numerical simulation. For this purpose Eqs. (2) and (3), describing a skeleton
curve and hysteresis loops, were used. In each case, the stress t = σ was the output of the network,
however the input x depended on the type of load process:

1. x = {ε} – for the skeleton curve,

2. x = {ε, σR} – for the hysteresis loop.
(4)

NMM was formulated using the Netlab toolbox for MATLAB [9] and MATLAB Neural Toolbox [10].
Two FLNN architectures (see Fig. 2) corresponding to (4) have been adopted for further analysis.

Two FLNN architecture: D-H-1

1) FLNNs : D = 1, H = 5

2) FLNNh : D = 2, H = 20

Fig. 2. Architecture of FLNN.

Implemented FLNN, with H neurons in the hidden layer may be described by equation [11]:

y(x;w) =

H∑

h=1

w
(2)
h Fh




D∑
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w
(1)
hj xj + w

(1)
0j


+ w

(2)
0 , (5)
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where Fh – activation function for the neurons of the hidden layer of the FLNN network, see Fig. 2,
H – the number of neurons in the hidden layer, D – number of input variables, w – vector of
network parameters (weights and biases).
In the case of one-dimensional problem, the neural material model describes the relationship

between stress and strain (5), from which the neural tangent operator Et can be determined [12]:

Et =
Sσ

Sε
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h=1

w
(2)
h


1− Fh


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


2
w

(1)
h1 , (6)

where Sσ, Sε – scaling factors.
It is worth emphasizing that the value of neural tangent operator Et is explicitly defined by the

network parameters and the known values of input and output. In this sense FLNN representing
the neural material model is no longer a “black box”.
Network parameters w in the (5) and (6) can be determined by minimising the sum-of-squares

error function with the penalty term that avoids over-fitting:

E(w) =
β

2

P∑

p=1

(y(xp;w)− tp)
2 +

α

2
||w||2, (7)

where P is the size of the data set and α, β are hyperparameters. In the case of deterministic
network, including FLNN, the parameter of regularization γ = α/β is applied. Such a classical
(non-Bayesian) approach allows prediction of the new t value by calculating y(x;w) by means of
parameter γ.

4.1. Bayesian neural network (BNN)

The Bayesian approach to neural networks learning and prediction is based on Bayesian inference.
In this approach all parameters of neural model are treated as random values.
Initially, we start with a priori probability distribution p(w|α) which expresses our knowledge

of the network parameters w before data is observed.
Once we observe the data set t, Bayes’ theorem can be used to update our beliefs and we obtain

the posterior probability density in the form:

p(w|t, α, β) = p(t|w, β) p(w|α)
p(t|α, β) , (8)

where p(t|w, β) is the likelihood function, p(t|α, β) is the marginal likelihood function (ML) (also
called evidence for hyperparameters) obtained by integrating overweight parameters:

p(t|α, β) =
∫

p(t|w, β) p(t|w, α) dw. (9)

Using Gaussian approximation the following expression for ML function is obtained:

p(t|α, β) =
(

β

2π

)N/2 ( α

2π

)W/2
∫
exp{−E(w)} dw, (10)

where W is the dimensionality of w and E(w) is the regularized error function defined as

E(w) ≈ E(wMAP) +
1

2
(w −wMAP)

T
A (w −wMAP) , (11)
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E(wMAP) = βED(wMAP) + βEW (wMAP) =
β

2

P∑

p=1

{tp − y(xP ;w)}2 + α

2
wTMAPwMAP, (12)

where matrix A is the Hessian matrix.
The optimal weights vector wMAP is computed applying the criterion of penalized least square

error, i.e., min
w

E(w).

Taking the logarithm of the ML function (10), we have:

lnML ≡ lnp(t|w, α, β) ≈ −E(wMAP)−
1

2
ln|A|+ W

2
lnα+

N

2
(lnβln(2π)) . (13)

Using MML criterion which corresponds to max
w

lnML the optimal model with Hopt neurons in

hidden layer of BNN is chosen.
The optimal hyperparameters α and β and weights w can be determined in an iterative way

using the evidence procedure that leads to the following formulae:

αnew =
γ

2EW (woldMAP)
, βnew =

N − γ

2ED(woldMAP)
, (14)

where γ is related to the eigenvalues of the Hessian matrix, ED and EW are defined by (11). The
details of the evidence approximation approach can be found in [11].

4.2. Formulation of neural material models

Two approaches to NMM selection and learning FLNN were compared using pseudo-experimental
data sets.

1. In the first approach the process of formulating SNNs: 1-5-1 was completed after S = 20 epochs
of learning. The least squares (LS) method and the Levenberg-Marquart algorithm were applied.
The values of mean square error (MSE) and average percentage error (APE) were respectively:
MSEs = 4.08e−5, APEs = 0.01%. SNNh: 2-20-1 was formulated after S = 600 epochs for
MSEh = 5.68e−4, APEh = 0.18%.

Optimal model SNNs was obtained using Ls = Vs = 200 training and validating patterns
whereas SNNh model was formulated by means of Lh = Vh = 3600 patterns.

Figure 3 presents the reference and predicted values of stress σ(ε) and the tangent operators
Et(ε).

2. In the second approach the process of formulating BNNs: 1-5-1 and BNNh: 2-20-1 was completed
after 10 re-estimation steps with 900 epochs of scaled conjugate gradient algorithm and penalized
least squares (PLS) method. In this case, the learning errors were respectively:MSEs = 1.77e−6,
APEs = 0.11% and MSEh = 2.60e−3, APEh = 2.9%. Both models were formulated by means
of Ls = 200 and Lh = 3600 learning patterns.

In Fig. 4 the reference and predicted values of stress σ(ε) and tangent operators Et are shown.

In the light of the combined results it can be concluded that both formulated networks: SNN
and BNN correctly reproduce the physical RO law and Et modulus. Tangent modulus Et was
determined directly using parameters of FLNN (8).
To formulate FLNN a large number of pseudo-experimental patterns was used. Therefore, the

regularization used in Bayesian approach does not play a significant role. The formulated networks
SNN and BNN have the same architecture and similar prediction properties.
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a) b)

Fig. 3. Reference and predicted values: a) of stress σ(ε), b) of tangent operators Et.

a) b)

Fig. 4. Reference and predicted values: a) of stress σ(ε), b) of tangent operators Et.

5. APPLICATION OF THE NEURAL MATERIAL MODEL IN CASE STUDIES

The neural material models SNN and BNN formulated previously have been integrated with a FEM
program. This FEM/NMM hybrid program was used for the analysis of two boundary problems
for a two-parameter, cyclic loading of plane trusses.

5.1. Case study 1

The comparison of the effectiveness of the formulated above NMMs has been made on the example
of a five element reference truss. A static scheme of the truss is shown in Fig. 5.
The truss was subjected to loads shown in Fig. 5. It was assumed that the vertical load P =

ΛP P⋆ and horizontal load H = ΛHH⋆ are treated as independent ones. The process of loading is
controlled by two load factors: ΛP , ΛH , whose values are calculated by means of increments ∆nΛP ,
∆c

mΛH , where n, m are numbers of load levels (step), number of cycle c is understood as a next
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Areas of truss members:

verticals:

A = 77.064 · 10−4 m2

horizontal and diagonals:

A = 25.688 · 10−4 m2

Loads:

P ⋆ = 50 kN, H⋆ = 25 kN

Fig. 5. Data of reference truss structure.

repetition of the load program. The loading program can be illustrated by means of the following
scheme:

(I) P0 = ΛPP
⋆ for ΛP : 0.0 → 10.0

(II) P0 + (ΛHH⋆)c for Λc
H : (0.0 → 4.0 → 0.0)c

(15)

where c = 1, 2, . . . , 10.

Determined by the test, a little more numerically effective NMMBNN network was used for
subsequent calculations. Tangent modulus Et derived from BNN was calculated with a smaller
error, thus the number of iterations in the Newton-Raphson algorithm was smaller than in the
FEM/NMMSNN program.

In Fig. 6 the equilibrium paths Λ(v2), Λ(u2) determined for node number 2 of the truss are
shown. The paths plotted with solid lines were computed using the program FEM/RO, and the
paths plotted with points were computed using hybrid program FEM/NMMSNN. The two paths
are very close to each other.

a) b)

Fig. 6. a) Equilibrium paths Λ(v2),Λ(u2), b) development of strain and stress in element number 3 in c = 2
cycles of load.

The analysis points out that after performing c = 2 load cycles, the field of plastic strain was
stabilized: the truss exhibits plastic shakedown effects [14]. This means that no subsequent change
of load (according to the program) will cause the increase of the plastic strain.
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5.2. Case study 2

NMMSNN used in the previous analysis, was used again in the analysis of a more complex problem
of the shakedown analysis. A truss structure made of the same material as the reference truss was
analyzed.
The geometry of the truss was taken from the real design of a tower with a tank, cf. [15]. The load

was assumed on the level to fulfil ultimately the limit state and serviceability limit state conditions.
In Fig. 7 the static scheme, loads and cross-sections of the profiles of the analyzed truss are shown.

Fig. 7. Data of truss structure from [15].

In this case the following program of the cyclic loading was adopted:

(I) P0 = ΛPP
⋆ for ΛP : 0.0 → 15.0;

(II) P0 + (ΛHrHr
⋆)c for Λc

Hr
: (0.0 → 10.0 → 0.0)c;

(III) P0 + (ΛHl
Hl

⋆)c for Λc
Hl
: (0.0 → 10.0 → 0.0)c,

(16)

whereH⋆
l = −H⋆

r – horizontal loads, P
⋆ – vertical load. Indices r, l indicate the direction of forcesH.

The loads listed above can be interpreted according to the civil engineering interpretation as dead
load P and wind action H. In this way the shakedown phenomenon can be analyzed.
As in the previous example, the analysis was performed twice: by means of the integrated system

FEM/NMMSNN and the FEM/RO program. In Fig. 8 the equilibrium paths determined for the
horizontal and vertical displacements of the node number 2 and the stress distribution in the 8th
element of the truss are presented.
In this case, too, the equilibrium points found by FEM/NMMSNN program are very close to the

equilibrium paths computed by means of the standard program FEM/RO. After four loading cycles
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a) b)

Fig. 8. a) Equilibrium paths Λ(v2), Λ(u2), b) development of strain and stress state in element number 8,
during four load cycles.

it was proved that the shakedown load capacity was achieved. This means the structure behavior
after adding the next horizontal loads H is elastic. This corresponds to the lack of plastic strains.

6. FINAL REMARKS AND CONCLUSIONS

1. In the paper it was shown that ANN can be used as a neural model of the material describing a
physical law of the material in the aluminum structures. The off line training technique, which
allows the use of experimental data, was applied to formulate the NMM. Two types of neural
networks: SNN and BNN were used for solving the inverse problem. The developed networks
have been integrated with the FEM program, thus forming a hybrid program FEM/NMM.

2. Developed ANN can be successfully applied to the shakedown analysis of aluminum truss.

3. The main aim of this study was to demonstrate the possibility of development of a hybrid
program FEM/NMMANN for the analysis of various boundary problems in the uniaxial stress
state.
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