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Two problems are presented in the paper concerning axial loading of R/C columns: I) prediction of critical
loads, II) identification of concrete strength. The problems were analyzed by two methods: A) Gaussian
Processes Method, B) Advanced Back-Propagation Neural Network. The results of the numerical analysis
are discussed with respect to numerical efficiency of the applied methods.
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1. INTRODUCTION

R/C columns are building elements that carry loads from the upper to lower floors down to founda-
tions. Many laboratory tests and theoretical investigations have been devoted to the evaluation of
the load bearing capacity of R/C columns, see [1]. Artificial neural networks (ANN) turn out to be
an efficient tool in both the direct analysis (prediction of critical loads) and reverse analysis (iden-
tification of material and its defects). ANN can also be applied in the analysis of these problems
due to a great number of external and internal parameters which have to be taken into account.
The main goal of the paper is to compare the numerical efficiency of two methods: i) Gaussian

Processes Method (GPM), and ii) Advanced Back-Propagation Neural Network (ABPNN). The
GPM is a Bayesian Method slightly similar to the Radial Basis Function NN. In GPM the kernel
basis functions are applied and the covariance matrix of input patterns is the main attribute of the
method, see [2]. In the case of ABPNN, the extended error measure and barrier term, weighted by
an hyperparameter, are attributes of this neural network.
Two data banks were taken from [1] corresponding to: 1) PEER data bank [3] and 2) K. Chudyba

data bank [4]. From these data banks only axially loaded columns with rectangular cross-sections
were adopted.
In order to have a high quality of both computational tools, the Levenberg-Marquardt learning

method was used for the training of ABPNN and other advanced algorithms from the MATLAB
Neural Network Toolbox [5] were applied. The algorithms of NETLAB, published in [6], were
adopted for the learning of the GPM models.

2. APPLIED COMPUTATIONAL METHODS

2.1. Gauss Processes Method

GPM is a Bayessian method related to the application of kernel functions, cf. [7, 8]:

k(xm,xn) = k‖xm − xn‖, (1)
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where xm, xn – points m, n in the input space. Function (1) is used for constructing the covariant
matrix CN with components:

cmn = k(xm,xn) + σ2
ν · δmn, (2)

where σ2
ν regularization parameter corresponding to the variance of the target data distribution.

On the base of data set DN composed of N patterns we wish to predict a new pattern point
of the target value tN+1 for the known input xN+1. The conditional distribution p

(
tN+1|t

)
, where

t = {tn}Nn=1, can be found as Gaussian distribution:

p
(
tN+1|xN+1,DN

)
= N

(
tN+1|mN+1, σ

2
N+1

)
, (3)

where the mean and variance are computed by the following formulas:

mN+1

(
xN+1

)
= kTC−1

N t σ2
N+1 = c− kTC−1

N t, (4)

where vector kT = {kn}Nn=1 and scalar c = k
(
xN+1,xN+1

)
+ 1/σ2

ν are used, cf. [7].

Computations in our paper are based on the estimation of either the Squared Exponential
covariance function(SE) or the Rational Quadratic function RQ, see [8]:

SE : c (xm,xn) = ν0 · exp
(
−1

2

D∑

i=1

ai (x
m
i − xni )

2

)
+ b, (4SE)

RQ : c (xm,xn) = ν0 ·
(
1 +

D∑

i=1

ai (x
m
i − xni )

2

)−ν

+ b, (4RQ)

where the model parameters
{
ν0, b, a1, ..., aD, σ

2
N , ν

}
are to be positive. They can be evaluated

by procedures given in [8].

In our paper scalar target tn corresponds to either predicted critical loads Pcr or to identified
concrete strength fc.

2.2. Advanced Back Propagation Neural Network

Two ABPNNs of architecture I −H − 1 were adopted, where I – number of inputs, H – number
of neurons in a single hidden layer with the bipolar sigmoid activation function. Single outputs
with identity activation function correspond to either the predicted critical load Pcr or to identified
concrete strength fc.
Advanced neural networks ABPNNs are related to the standard BP network MLP (Multilayer

Perceptron), see [6], but with an extended network error:

E(w) =
γ

2

1

P

P∑

p=1

(yp − tp)2 +
1− γ

2

W∑

i=1

w2
i , (5)

where yp – computed output for the p-th pattern, γ – regularization parameter, automatically
optimized by procedures listed in [5], wi – weights of synaptic connections and values of neural
biases.
The Levenberg-Marquardt learning method was adopted, as a numerically efficient method,

cf. [5].
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3. DATA ADOPTED FOR THE NUMERICAL ANALYSIS

Pattern pairs (xp, tp) were selected from two data banks: 1) PEER [7] P1 = 65 patterns was
completed, 2) Chudyba’s data bank containing P2 = 27 patterns. From among these patterns
P3 = 3 patterns were eliminated since they gave responses non-consisted with the other patterns.
Thus, the primary set has PP = P1 + P2 − P3 = 89 patterns.
Following [1] the input vector xp and scalar output y correspond to the following problems:

1. Prediction of critical load Pcr:

x(6×1) = {Ca, fc} , y = Pcr; (6)

2. Identification of concrete strength:

x(6×1) = {Ca, Pcr} , y = fc. (7)

The common parameter vector is:

Ca = {B,H,L, ρ, fy} , (8)

where B, H – width and height of rectangular cross-section and L – length of column, ρ – rein-
forcement percentage and fy – steel yielding stress.

4. NUMERICAL ANALYSIS

4.1. Application of ABPNN

In the paper a relative network error was introduced:

Re =
1

S
·

S∑

p=1

∣∣∣∣
(
yp

tp
− 1

)
100%

∣∣∣∣, (9)

where S – number of patterns for subsets completed of selected patterns p.
A random split of primary pattern PP into the learning and training sets composed of L =

0.7PP ∼= 62 patterns and T = 0.3PP ∼= 27 was made. After the cross validation the number of
hidden neurons was found separately for problems (6) and (7). In the case of prediction of force
the number of hidden neurons was HI = 6 and for identification of concrete strength HII = 10.
Corresponding to six inputs and one output, the neural networks had W I = 49 and W II = 87
parameters. This number of hidden layers give the total number of generalized weights (connection
weights plus biases) equal W I = 49 and W II = 87. Such a number of the network parameters
turned out to be too height in comparison with the number of learning patterns L = 62. That is
why artificial noisy patterns were added to the learning and testing patterns, following the approach
developed at the Rzeszow University of Technology, see e.g. [7].
In the presented paper it was assumed that geometrical input data B, H, and L were measured

with the accuracy ±1.0 mm. In such a way the perturbations of noisy data were randomly selected
from two ranges, [−1.0, 0.0] and [0.0, 1.0]. Together with the primary patterns the noisy set was
composed of PN = (2 + 1) × 3 × 3 × 89 = 2403 patterns. In this way the ranges of the input
components were extended, as shown in Table 1.
In Table 2 there are shown results for three different sets, after random selection of learning and

testing patterns; i.e, i) PP = 89, L = 69, T = 27 patterns, ii) PN1 = 2403, L ≈ 0.7 PN1 = 1682,
T ≈ 0.3 PN1 = 721 patterns, iii) PN2 = 2403, L = T ≈ 0.5 PN1 = 1201.
The patterns listed above were applied for the learning and testing of the networks, related

to two analyzed problems. Because of the random selection of primary values and weights, the
computations by means Levenberg-Marquardt method were repeated twenty times, separately for
each analyzed problems. In Table 2 average results from twenty learning processes are given.
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Table 1. Ranges of input values.

Initial range of values Range of values after elimination
of three patterns

Width of cross-section B [mm] 80–350 80–305

Height of cross-section H [mm] 80–350 80–350

Height of column L [mm] 80–2134 80–1800

Percentage of reinforcement ρ [%] 1.01–4.69 1.27–4.69

Concrete compressive strength fc [N/mm
2] 21.0–99.5 21.0–69.6

Yield strength of steel fy [N/mm
2] 336.0–587.1 336.0–587.1

Critical force Pcr [kN] 95–2176 95–1090

Table 2. Relative errors Re [%] for input sets for prediction of critical loads Pcr

and identification of concrete strength fc.

Input sets
Number
of patterns

Prediction of Pcr Identification of fc

Soft models ReL [%] ReT [%] Soft models ReL [%] ReT [%]

PP
PP = 89
L = 62 (70%)
T = 27 (30%)

ABPNN: 6-6-1 26.56 45.33 ABPNN: 6-10-1 6.61 7.60

GPM-RQ 9.44 39.02 GPM-RG 6.98 10.18

PN1
PP = 2403
L = 1682 (70%)
T = 721 (30%)

ABPNN: 6-10-1 13.06 13.82 ABPNN: 6-10-1 4.53 4.66

GPM-RG 3.29 3.59 GPM-RG 1.42 1.93

PN2
PP = 2403
L = 1201 (50%)
T = 1202 (50%)

ABPNN: 6-10-1 13.93 12.62 ABPNN: 6-10-1 4.01 4.97

GP-SE 4.15 3.65 GP-SE 2.49 3.24

4.2. Application of GPM

The numerical analysis carried out for a variety of civil engineering problems, see e.g. [8], has proved
a great numerical efficiency of GPM. In comparison with other Bayessian methods, the application
of GPM is computationally cheap (a comparatively low number of mathematical operations). The
other feature of GPM is that the evaluation of approximation errors is similar to that reached by
more refined Bayessian approaches, cf. [8].
The application of GPM to the primary pattern set PP gave errors similar, or even smaller than

in the case of ABPN application, see Table 2. The added noisy patterns improved the accuracy of
GPM much more considerably than when ABPN was used.

4.3. Comparison of application of GPM and ABPNN on the pattern set PN2

In order to compare the numerical efficiency of GPM vs. ABPNN, attention is focused on the
application of a noisy set PN2, in which the number of learning patterns L = 0.5 PN2 was applied,
although the errors of learning and testing are slightly worse than for the set PN1 completing
L = 0.7 PN1 patterns both for the learning and testing processes, see Table 2.
The comparison is based on distribution of patterns within the error bounds, see Figs. 1–3. The

definition of the error bounds ReB corresponds to the relation to relative errors for the percentage
of total numbers of points (tp, yp) placed in-between straight lines for which the inequalities are
|Rep| ≤ ReB% satisfied, where:

Rep =

(
yp

tp
− 1

)
100%. (10)
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a) b)

c) d)

e) f)

Fig. 1. a, b, c, d) Bound errors for application of ABPNN for prediction Pcr and identifying fc input pattern
sets computed for primary and noisy patterns PP and PN2; e, f) Comparison of Success Ratio Curves for data

sets PP vs. PN2.
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a) b)

c) d)

e) f)

Fig. 2. a, b, c, d) Bound errors for application of GPM for prediction Pcr and identifying fc input pattern
sets computed for primary and noisy patterns PP and PN2; e, f) Comparison of Success Ratio Curves for data

sets PP vs. PN2.
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a)

b)

Fig. 3. Comparison of Success Ratios for data set PN2 applying ABPNN and GPM
for prediction Pcr and identification fc.

Having defined ReB , the cumulative error called as the Success Ratio SC (ReB) is defined as:

SC = (SRe/S) 100%, (11)

where SRe – number of points (tp, yp) within the bounds ±ReB , S – total number of points
corresponding to the learning and testing data sets, completed of either L or T pattern points,
respectively. In Fig. 1a,b, the distribution of points is shown separately for the problems of simu-
lation of the axial load Pcr, and identification of concrete strength fc. These figures also illustrate
the bounds ReB = ±20, ±50%.
Below, in Fig. 1 e,f the cumulative curves for both problems of prediction and identification by

ABPNN are presented. Looking at the SC(ReB) relations corresponding to the testing data, it is
clearly visible that the buckling values of the force Pcr can be predicted with a higher accuracy, i.e.
RepB% errors than identification of concrete strength fc. For instance if the Success Ratio for the
input set PP is assumed to be SC = 80% than the related testing errors equal ReBPcr(PP) = 39%,
ReBfc(PP) = 12.8%. For SC = 90%, the following values of errors were computed: ReBPcr(PP) >
50%, ReBfc(PP) = 16.1%.
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The interpretation of the above figures can be expressed as follows. If we adopt the Success Ratio
SC = 80% and apply the ABPNN and testing set composed of 0.3PP = 27 patterns for predicting
the critical load Pcr then 80% of testing patterns points are placed within bounds |ReB | = 39%.
In the case of the noisy set of patterns PN2 the assumption of SC = 90% gives ReBPcr(PN2) =

12.5%, and ReBPcr(PN2) = 7.76%.
After the application of GPM, the errors listed above are lower than those errors obtained for the

use of ABPNN. For instance, adopting the noisy set of data PN2 the application of GPM leads to
the error bounds: ReBPcr(PN2) = 4.34%, and ReBfc(PN2) = 9.72%, see Fig. 2. The corresponding
results for ABPNN are ReBPcr(PN2) = 39.1% and ReBfc(PN2) = 17.9%.
In Fig. 3 the Success Ratio Curves SC (Re) are shown for the data set PN2. They graphically

illustrate a comparison of GPM versus ABPNN. In case of load Pcr prediction, the superiority of
the application of GPM over the ABPNN is clearly visible.
For SC = 90% the boundary error ReBPcr(PN2) = 4.34% was obtained for the GPM versus

ReBPcr(PN2) = 39.1% after the use of ABPNN. Quite similar results were obtained for the fc
identification. Assuming SC = 90% the bound errors were computed ReBfc(PN2) = 9.72%, versus
ReBfc(PN2) = 17.9%, if either GPM or ABPNN were respectively applied.

5. FINAL REMARKS AND CONCLUSIONS

1. The main problem of a successful numerical analysis are statistically numerous and consistent
data. The adopted data do not fully satisfy the mentioned requirements. This concerns especially
Chudyba’s data [4] since they were completed in a selected area of input data. That is why this
set cannot be explored for good testing of results obtained only by means of PEER data bank.

2. Introduction of noisy data turned out to be a good remedy for the drawback caused by sta-
tistically non-representative primary data. A great effort, devoted to the elimination of bad
influences of random selection of initial weight on output values, was partially successful by
a repeated random selection of networks weights and adoption of average values of the ob-
tained outputs. The selection of appropriate learning and testing pattern sets seems much more
complicated. That it why in this field the noisy data gave very satisfactory results.

3. An initial trend of smaller errors identification of concrete strength fc than those errors in the
prediction of load Pcr, was partially improved also by introduction of noisy data.

4. The conclusion formulated above is supported by the estimation of average errors listed in
Table 1. They clearly point out the superiority of GPM over ABPNN. This is also proved by
the Success Ratio Curves drawn in Fig. 3.
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