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This paper presents a methodology for solving boundary problems with uncertainty pa-
rameters based on the use of interval perturbation numbers. This methodology allows
for the analysis of very complex problems with different uncertain parameters. The fuzzy
boundary element method (FBEM) using ε̄-number will be called the ε-fuzzy boundary
element method (ε-FBEM). A detailed discussion of the problems of computing and appli-
cations will be presented on the example of the fuzzy boundary integral equation arising
from the boundary problem for the potential problems with heterogeneous, fuzzy bound-
ary conditions of Dirichlet and Neumann type, fuzzy internal sources, fuzzy boundary,
and fuzzy fundamental solution.

The presented methodology can be used to solve various engineering problems (e.g.,
in civil engineering [9], power engineering [7, 15] and others) – e.g., to analyze the tem-
perature distribution in structural elements or elements located in the vicinity of objects
or devices. In the latter case, the increased temperature may be a symptom of a severe
failure (e.g., power transformer overload, core overexcitation, or an internal fault), which
cannot be tolerated due to the threat to the object itself as well as the entire power sys-
tem operation. The proposed method may be used for electrical equipment diagnosis and,
consequently, as a power system failure prevention [5, 6, 14].

In this paper, calculation methodology is illustrated with the example of an area
bounded by a square, on the left boundary of which a certain temperature is set, while on
the rest of the boundaries the conditions are equal to zero. The authors’ dedicated com-
puter program written in the Fortran programming environment [13] allows the calculation
of the temperature and temperature derivative for any number of boundary elements using
ε̄-FBEM.
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1. Introduction

Civil and power engineering requires a very high level of safety (compare, e.g.,
[5, 14, 15]). It should be noted that when the physical problem is converted to an
ordinary (deterministic) boundary problem, it usually cannot be known exactly
that the model is perfect – particularly for building structures or for electrical
machines and devices. The boundary problem cannot be known exactly, and the
displacement, temperature, or related features, such as the stress or heat fluxes
obtained on the basis of a number of necessary measurements, may bear errors.
Quantitative and qualitative analysis of these errors leads to the use of fuzzy
numbers instead of random real variables. This, in turn, leads to problems with
fuzzy boundary values and, consequently, to diffuse boundary integral equations.

The method of calculation will be presented on the example of the task of
solving the Poisson equation:

∇2u = ξ in Ω, (1)

where ∇2(·) is the Laplace operator, and ξ(·) is a function defined in the area of
Ω by the boundary Γ.

The correct formulation of the problem solution of task (1) requires rele-
vant boundary conditions. For definiteness, we assume that data are Dirichlet
boundary conditions in the following form:

u(x ) = u0(x ), for x ∈ Γ1 (2)

and Neumann (natural) boundary conditions may be written as:

q(x ) = ∂u(x )/∂n = q0(x ), for x ∈ Γ2, Γ = Γ1 ∪ Γ2. (3)

If we use the method of boundary equations to solve this boundary problem of
potential theory in the area Ω with known boundary conditions at the boundary
of this area Ω, we obtain the appropriate integral equation.

If we assume that the weighting function is a fundamental solution u∗(x ) of
the Laplace Eq. (3) and q∗(x ) = ∂

∂nu
∗(x ), the corresponding boundary equation

will obtain the following form:

c(x )u(x ) +

ˆ

Γ

q∗(x ,y)u(y) dΓ(y) =

ˆ

Γ

u∗(x ,y)q(y) dΓ(y)

+

ˆ

Ω

u∗(x ,y)ξ(y) dΩ(y), (4)

where ξ(x ), x ∈ Ω is a known function of heat source density. Boundary integrals
are defined in the sense of the Cauchy principal values.
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In this paper, the basic principles of the new concept in the boundary ele-
ment method, called the fuzzy boundary element method (FBEM), are discussed.
The problems of computing and applications are presented on the example
of the fuzzy boundary integral equation arising from the boundary problem for
the problems of heterogeneous interruption, Dirichlet and Neumann type fuzzy
boundary conditions, fuzzy internal sources, fuzzy boundary and fuzzy funda-
mental solution.

The methodology is proposed to solve boundary problems in conditions of
uncertainty parameters based on the use of perturbative interval numbers. The
calculation uses newly proposed algebra ε-interval numbers, which are discussed
in detail in [13]. The proposed methodology allows the analysis of very complex
tasks with very diverse uncertain parameters.

2. Fuzzy boundary conditions and internal sources

It may be assumed that the values of some boundary magnitudes and the
sources’ density function are uncertain and the uncertainty may be modeled by
using fuzzy variables [2].

Let ũ0, q̃0 and ξ̃ be fuzzy functions, then a set of solutions may be defined as:

Uλ(x ) :=



u : c(x )u(x )+

ˆ

Γ

q∗(x ,y)u(y) dΓ(y)+

ˆ

Ω

u∗(x ,y)ξ(y) dΩ(y)

=

ˆ

Γ

u∗(x ,y)q(y) dΓ(y),

u0(z )∈u0λ(z )|z∈Γ1 , q0(z )∈q0λ(z )|z∈Γ2 , ξ(z )∈ξλ(z )|z∈Ω


. (5)

The “exact” fuzzy solution ũ1(x ), x ∈ Γ is defined as follows:

µ(y ; ũ1(x )) := sup{λ : y ∈ Uλ(x )}, x ∈ Γ, y ∈ R. (6)

In this case, we obtain a membership function of the “exact” fuzzy solution ũ1(x ),
x ∈ Γ as the relation (6), which defines the membership function of the first kind
of fuzzy solutions for the potential problem defined in the deterministic area.

Since the shape of the set Uλ(x ), for λ ∈ [0, 1] may be very complicated, we
generally search for its upper approximation in the form of the smallest interval.
Let us assume that we are looking for the interval type solutions:

ũλ(x ) = [ũ−λ (x ), ũ+
λ (x )], x ∈ Γ, (7)

where 0 ≤ λ ≤ 1.
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Taking λ-cuts, 0 ≤ λ ≤ 1 of the fuzzy Eq. (5) we obtain a formally infinite
set of interval boundary integral equations in the following form:

c(x )
[
ũ−λ (x ), ũ+

λ (x )
]

+

ˆ

Γ

q∗(x ,y)
[
ũ−λ (y), ũ+

λ (y)
]
dΓ(y)

=

ˆ

Γ

u∗(x ,y)
[
q̃−λ (y), q̃+

λ (y)
]
dΓ(y)

+

ˆ

Ω

u∗(x ,y)
[
ξ̃−λ (y), ξ̃+

λ (y)
]
dΩ(y), x ∈ Γ. (8)

Let us substitute ũ0, q̃0 and ξ̃ for the magnitudes u0, q0, ξ, respectively, and
assume that all operations are performed by using the fuzzy values. In this way,
we will consider a fuzzy version of Eq. (4), known in the literature [9, 13] as the
fuzzy boundary integral equation:

c(x )ũ(x ) +

ˆ

Γ̃

q∗(x ,y)ũ(y) dΓ(y) =

ˆ

Γ̃

u∗(x ,y)q̃(y) dΓ(y)

+

ˆ

Ω̃

u∗(x ,y)ξ̃(y) dΩ(y), x ∈ Γ. (9)

In Eq. (9), all the operators are fuzzy, and the integral is also understood in the
sense of the main fuzzy values.

3. Fuzzy boundary conditions, internal sources
and boundary

Let us, in addition to fuzzy boundary conditions and internal sources, take
into account the fuzzy nature of the boundary of the area.

By the fuzzy boundary Γ̃ of the fuzzy area Ω̃ ∈ F(R3), we understand the
fuzzy subset of the variety designated herein as M, i.e., mapping M in [0, 1].
Each such a representation is related to its membership function.

We assume that the values of the boundary magnitudes, internal sources and
boundary are vague; therefore, we use fuzzy variables to describe them.

Next, we can completely formally treat the integral equation as in Eq. (9),
and substitute the fuzzy values ũ0, q̃0, ξ̃ and Γ̃ for u0, q0, ξ, Γ, respectively:

c̃(x )ũ(x ) +

ˆ

Γ̃

q∗(x ,y)ũ(y) dΓ(y) =

ˆ

Γ̃

u∗(x ,y)q̃(y) dΓ(y)

+

ˆ

Ω̃

u∗(x ,y)ξ̃(y) dΩ(y), x ∈ Γ̃. (10)
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All operations are treated in the fuzzy sense. Fuzzy integrals are understood
in the sense of the main fuzzy values. The equation of the form (10) was called in
the literature the fuzzy boundary integral equation with a fuzzy boundary [8–11].

The conditional set of solutions has the following form:

Rλ(x |Γ) :=



(u, q) : c(x )u(x ) +

ˆ

Γ

q∗(x ,y)u(y) dΓ(y)

+

ˆ

Ω

u∗(x ,y)ξ(y) dΩ(y) =

ˆ

Γ

u∗(x ,y)q(y) dΓ(y),

u0(z )∈u0λ(z )|z∈Γ1 , q0(z )∈q0λ(z )|z∈Γ2 ,

ξ(z )∈ξλ(z )|z∈Ω, Γ ∈ M


(11)

provided that Γ ∈ M. Let r3(x ) := [u3 (x ) , q3 (x )], x ∈ Γ.
We assume further that the family of sets Rλ (x |Γ), 0 < λ ≤ 1 generates

a fuzzy function, which will be called the fuzzy conditional solution with collec-
tive values r̃3 (x |Γ), x ∈ Γ ∈ M.

It can be proven that it occurs if the following conditions are true, namely
Rλ (x |Γ), 0 < λ ≤ 1 represents the λ-cross sections of the fuzzy function then
and only then, if:

Rλ(x |Γ) is a non-empty, compact and convex subset of R2; (12)

Rλ(x |Γ) ⊆ Rµ(x |Γ) ∀ 0 ≤ µ ≤ λ ≤ 1; (13)

{λk} is a non-decreasing sequence convergent to λ
then Rλ(x |Γ) = ∩k≥1Rλk(x |Γ). (14)

Note that some difficulties may arise in complying with these conditions,
which often occur in applications. In such cases, we can settle for an approxima-
tion from the top or bottom of a set of solutions.

The conditional solution with fuzzy values r̃3 (x |Γ), x ∈ Γ, Γ ∈ M can be
defined in accordance with the following formula:

µ(y |r̃3(x |Γ)) := sup{λ : y ∈ Rλ(x |Γ)}, x ∈ Γ ∈ M, y ∈ R. (15)

Due to the fuzzy nature of the area boundary, to obtain the final solution mem-
bership function, the fuzzy values should be “composed”. We note here that there
are many ways of such a composition since there is no unique definition of the
relation between various fuzzy variables (see, e.g., [3, 4]).

In order to determine the considerations, we use the min-max rule of submit-
ting fuzzy relationship and we obtain a function of “exact” fuzzy solutions r̃3(x ),
x̃ ∈ Γ̃ as:

µ(y ; r̃3(x̃ )) := supΓ∈M

(
µ(Γ; Γ̃) ∧ µ(y ; r̃3(x |Γ))

)
, y ∈ R1, x̃ ∈ Γ̃. (16)
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Formula (16) describes a fuzzy membership function solution of the boundary
problem of the first kind of fuzzy area defined by the potential.

4. Fuzzy fundamental solutions, boundary conditions,
internal sources, and boundary

Let us assume, as in Sec. 3, ũ0, q̃0, ξ̃ and an area Ω̃ with a fuzzy boundary Γ̃,
in which we consider our task as the fuzzy functions. In addition to the fuzzy
boundary conditions, fuzzy internal sources, and fuzzy area, we want to take into
account the fuzzy nature of the fundamental solutions.

Completely formally, we can write down the analyzed fuzzy boundary equa-
tion similarly to the Eq. (10), substitute the fuzzy magnitudes ũ0, q̃0, ξ̃ for u0,
q0, ξ, Γ, respectively, and write it down in the form that takes into account the
fundamental fuzzy solution ũ∗(·):

c̃(x )ũ(x ) +

ˆ

Γ̃

q̃ ∗(x ,y)ũ(y) dΓ(y) =

ˆ

Γ̃

ũ∗(x ,y)q̃(y) dΓ(y)

+

ˆ

Ω̃

ũ∗(x ,y)ξ̃(y) dΩ(y), x ∈ Γ̃, (17)

and then treat all the operations in the fuzzy sense. Equation (17) will be called
a fuzzy boundary integral equation in the area of fuzzy parameters.

By a fuzzy fundamental solution ũ ∗ (·) of the fuzzy Laplace equation for an
isotropic medium, we mean a fuzzy solution satisfying the equation of the form:

λ̃∇2ũ ∗ = −δ̃ (|x − y |) , λ̃ ∈ F(R), x ,y ∈ Rn, (18)

where δ̃(x ), x ∈ Rn represents a fuzzy δ-Dirac distribution and n = 2 or n = 3.
In a more general form for the anisotropic medium (n = 2) by a fuzzy fun-

damental solution, we mean a solution of the partial equation:

λ̃xx
∂2ũ

∂x2
+ λ̃yy

∂2ũ

∂y2
= −δ̃ (|x− ξ, y − η|), (19)

where λ̃xx, λ̃yy ∈ F(R). Similarly, as with the conventional Laplace equation
ũ∗ (·) is a scalar fuzzy function. For simplicity, the point of the heat source is
denoted as y = (ξ, η) ∈ R2.

5. ε-fuzzy boundary elements method

In this chapter, the methodology of solving boundary problems under uncer-
tainty parameters based on the use of interval perturbation numbers is described.
For the calculations, the algebra of ε-interval numbers will be applied [13].
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The described methodology allows for the analysis of complex tasks with
very diverse uncertain parameters. To illustrate the computational capabilities
of this method in the analyzed specific boundary potential (the task of heat
conduction), we assume that there exist:

• fuzzy boundary conditions ũ0, q̃0,
• fuzzy internal sources ξ̃,
• fuzzy fundamental solution ũ∗ (·),
• fuzzy boundary Γ̃.

5.1. ε-FBEM in a perturbation formulation

Fuzzy Eq. (17) will be analyzed in a conditional manner already described,
assuming that the fuzzy boundary Γ̃ ∈ M. With a fixed Γ, we write down Eq. (17)
as a family of λ-sections in the form:

c̃λ(x )ũλ(x ) +

ˆ

Γ

q̃ ∗λ (x ,y)ũλ(y) dΓ(y) =

ˆ

Γ

ũ ∗λ(x ,y)q̃λ(y) dΓ(y)

+

ˆ

Ω

ũ ∗λ(x ,y)ξ̃λ(y) dΩ(y), x ,y ∈ Γ, λ ∈ [0, 1]. (20)

We define a conditional set of solutions:

Rλ(x |Γ) :=



(u, q) : c(x )u(x ) +

ˆ

Γ

q∗(x ,y)u(y) dΓ(y)

+

ˆ

Ω

u∗(x ,y)ξ(y) dΩ(y) =

ˆ

Γ

u∗(x ,y)q(y) dΓ(y),

u0(z )∈u0λ(z )|z∈Γ1 , q0(z )∈q0λ(z )|z∈Γ2 ,

ξ(z )∈ξλ(z )|z∈Ω,

u∗(x ,y) ∈ u∗λ(x ,y)|x ,y∈R2×R2 ,

q∗(x ,y) ∈ q ∗λ(x ,y)|x ,y∈R2×R2



(21)

assuming that Γ ∈ M.

5.2. ε-fundamental solution

By a fuzzy fundamental solution ũ∗ (·) of the fuzzy Laplace equation for an
isotropic medium we mean a fuzzy solution satisfying the equation of the form:

λ̃∇2ũ ∗ = −δ̃(|x − y |), λ̃ ∈ F(R), x ,y ∈ Rn, (22)

wherein δ̃(x ), x ∈ Rn represents a fuzzy δ-Dirac distribution and n = 2 or n = 3.
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For simplicity, the point of the heat source is denoted as y = (ξ, η) ∈ R2 or
y = (ξ, η, ζ) ∈ R3.

In a more general form for the anisotropic medium (n = 2), by a fuzzy
fundamental solution we mean a solution of the partial equation:

λ̃xx
∂2ũ

∂x2
+ λ̃yy

∂2ũ

∂y2
= −δ̃(|x− ξ, y − η|), (23)

or for n = 3 in the form:

λ̃xx
∂2ũ

∂x2
+ λ̃yy

∂2ũ

∂y2
+ λ̃zz

∂2ũ

∂z2
= −δ̃(|x− ξ, y − η, z − ζ|), (24)

where λ̃xx, λ̃yy, λ̃zz ∈ F(R). Similarly, as with the conventional Laplace equation,
ũ ∗ (·) is a scalar fuzzy function. For simplicity, the point of the heat source is
denoted as y = (ξ, η) ∈ R2 or y = (ξ, η, ζ) ∈ R3.

5.3. ε-interval boundary equations – calculation methodology

Let us recall that the fuzzy Eq. (17) will be analyzed in a conditional manner
already described, assuming that the fuzzy boundary Γ̃ ∈ F(M). To focus the
attention on the proposed methodology assumptions, let us repeat Eq. (20),
which for a fixed Γ is treated as a family of λ-sections:

c̃λ(x )ũλ(x ) +

ˆ

Γ

q̃ ∗λ (x ,y)ũλ(y) dΓ(y) =

ˆ

Γ

ũ ∗λ(x ,y)q̃λ(y) dΓ(y)

+

ˆ

Ω

ũ ∗λ(x ,y)ξ̃λ(y) dΩ(y), x ∈ Γ, λ ∈ [0, 1]. (25)

Therefore, the main problem is the solution of the family of boundary Eq. (26).
The previously described mathematical difficulties mean that a family of interval
equations for Γ ∈ M, 0 ≤ λ ≤ 1 will be considered in the sense of ε-intervals.

Let us assume that we are looking for an ε-interval type solution in the form
of a family of λ-ε-sections

ũλ(x ) = ŭλ(x ) + rad(ũλ(x ))ε, x ∈ Γ, Γ ∈ M, (26)

where 0 ≤ λ ≤ 1.
Let:

ũ0λ(x ) = ŭ0λ(x ) + rad(ũ0λ(x ))ε, x ∈ Γ1, (27)

q̃0λ(x ) = q̆0λ(x ) + rad(q̃0λ(x ))ε, x ∈ Γ2, (28)

ξ̃λ(x ) = ξ̆λ(x ) + rad(ξ̃λ(x ))ε, x ∈ Ω, (29)

c̃λ(x ) = c̆λ(x ) + rad(c̃λ(x ))ε, x ∈ Ω, (30)
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and for λ-ε-sections of ε-fundamental solutions:

ũ ∗λ(x ) = ŭ∗λ(x ) + rad(ũ∗λ(x ))ε, x ∈ Rk, k = 2, 3, (31)

q̃ ∗λ (x ) = q̆ ∗λ (x ) + rad(q̃ ∗λ (x ))ε, x ∈ Rk, k = 2, 3. (32)

Bearing in mind that λ-sections of fuzzy numbers are intervals, we write Eq. (25)
in the ε-interval form:

cλ(x )uλ(x ) +

ˆ

Γ

q ∗λ(x ,y)uλ(y) dΓ(y) =

ˆ

Γ

u ∗λ(x ,y)qλ(y) dΓ(y)

+

ˆ

Ω

u ∗λ(x ,y)ξλ(y) dΩ(y), x ∈ Γ, λ ∈ [0, 1], (33)

where all operations are in the ε-interval sense, whereas integrals are ε-extensions
of ε-surface integrals.

6. The problem of conductivity with the uncertainties
of interval type

Let us consider the case of the restricted area in the shape of a square, whose
boundary is divided into 16 fixed elements. On the left edge of the boundary, we
set the temperature equal to 300◦C, while on the remaining edges, the boundary
conditions are equal to zero (see Fig. 1). Values u and q are continuous; however,
for the numerical calculations they are approximated by the node values on each
boundary element Γj .
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Fig. 1. A diagram showing the shape of the tested area with marked examined boundary
points (nodes) and pre-defined boundary conditions.

The above data correspond to deterministic boundary conditions and do
not contain any uncertain elements. The program to which they were introduced
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makes it possible to calculate the temperature and the temperature derivative for
any number of boundary elements using ε-FBEM. At the same time, the program
compares these results with the theoretical results and calculates the resulting
calculation error, which is the difference between the theoretical results and those
obtained from ε-FBEM. Data regarding the boundary geometry and boundary
values of temperature and flow (a derivative of temperature) are all variants
2ε-perturbation values. The results have been developed graphically and shown
in Fig. 2.
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Fig. 2. Comparison of the temperature (a) and the temperature derivative (b)
calculated by ε-FBEM with the theoretical result.

Another procedure of the same program (see the Appendix) was used to
estimate the temperature and its derivative at the boundary points with the
uncertainties of the boundary conditions (Subsecs. 6.2 and 6.3), the uncertainty
of the boundary (Subsec. 6.4) and the occurrence of uncertainty for both the
boundary and the boundary conditions (Subsec. 6.5). A graphical interpretation
of the results is presented for each example.

6.1. Numerical solution without a disorder

The calculations were performed for a case wherein, on the left boundary of
the area (see Fig. 1), the temperature was set at 300◦C (the other boundary con-
ditions are zero), then the temperature and temperature derivative consecutively
were calculated for 12, 16 and 40 nodes at the boundary of the area. The re-
sults of calculations carried out by ε-FBEM were compared with the theoretical
results. The maximum error for the calculated temperature on the boundary is
8.414669E-01 at 40 nodes, at 16 nodes, this error is: 1.861275, and at 12 nodes:
2.249790. Similarly, the calculation results were compared to the temperature
derivative. Here, the errors are successively at 40 boundary elements: 2.555412,



Chosen possibilities of ε-fuzzy boundary elements method application. . . 417

with 16 elements: 2.785511, and with 12 elements: 2.969486. It may be seen that
the solution error decreases with an increasing number of nodes on the boundary.

The results of calculations for 16 nodes on the boundary are shown in Fig. 2.

6.2. Perturbation of boundary conditions

Recall that the interval number ā can be an ordered pair of real numbers
(ǎ, ∆a)r, where ∆a is the radius of the interval. Suppose further that the radius
of the interval is an n-perturbation number (pure n-perturbation), i.e.:

rad(a) = ∆a = ε1 δa1 + ε2 δa2 + ...+ εn δan, δa1, δa2, ..., δan ≥ 0. (34)

If we define n symbolic independent perturbation intervals εi := [−εi, εi],
i = 1, 2, ..., n, then an interval number of type a, which is defined by the rela-
tion (34), will be called interval number n-perturbation (nε-interval number)
and may be written as:

a = ǎ+ δa1ε1 + δa2ε2 + ...+ δanεn. (35)

More information on perturbation numbers can be found in [10].
Let us now consider the case as in Subsec. 6.1, and assume the possibility of

temperature disturbance on the boundary of 10◦C (temperature perturbations
were given on the boundary: (300, 10, 0)). Calculations were carried out as before
for 12, 16 and 40 boundary elements.

The maximum error for 40 boundary elements: 8.414669E-01+ε1 · 2.805507E-02,
for 16 elements: 1.861275 + ε1 · 6.204832E-02 (see Fig. 3), and for 12 elements:
2.249790 + ε1 · 7.499290E-02. The maximum error for the temperature deriva-
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Fig. 3. The results of ε-FBEM calculations: a) temperature and b) temperature derivative,
with marked boundary solution perturbation for perturbation of boundary conditions.
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tive of 40 boundary elements is 2.555412 + ε1 · 8.518851E-02, for 16 elements:
2.785511 + ε1 · 9.284532E-02 (see Fig. 3), and for 12 elements, this error is
2.969486 + ε1 · 9.898412E-02.

The results of the calculations for 16 nodes located on the boundary are
shown in Fig. 3.

6.3. Perturbation of boundary conditions depending on two groups
of parameters

Let us again consider the case as in Subsec. 6.1, assuming the possibility of
dual disturbance of temperature on the boundary, i.e., for all elements on the
left boundary of the area uncertainty of temperature in the range of 10◦, and
further temperature uncertainty for subsequent elements on the left boundary of
values: 20◦, 15◦, 15◦ and 20◦ (temperature perturbation (double) on the bound-
ary: (300, 10, (20, 15, 15, 20)) are established. The calculations were performed
for 16 boundary elements.

Figure 4 shows the results of ε-FBEM calculations for the temperature and
temperature derivative in the subsequent nodes with marked perturbations.
The maximum error for the temperature is 1.861275 + ε1 · 6.204832E-02 + ε2 ·
2.113348, and for the temperature derivative the maximum error is 2.785511 +
ε1 · 9.284532E-02 + ε2 · 5.889031.
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Fig. 4. The results of ε-FBEM calculations for a) temperature and b) temperature derivative
with marked boundary solution perturbation for perturbation of boundary conditions

depending on two groups of parameters.

6.4. Area boundary perturbation

Above, we dealt with the cases where the uncertainty is associated with
the boundary conditions (in the tested examples, the uncertainty refers to the
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temperature). It is clear, however, that the uncertainty may also relate to the
tested boundary. Therefore, calculations with the interval uncertainty of the area
boundary were performed (type I boundary perturbation). This is illustrated in
Fig. 5, wherein the uncertainties here are related to the coordinates of vertices
of the boundary and are selected arbitrarily.
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Y

Fig. 5. Boundary with perturbations located at the vertices.

For the square with uncertainties in the vertices, as in Fig. 5, the boundary
conditions were given as in Subsec. 6.1 and the temperature calculations were
carried out for 16 boundary elements, using ε-FBEM. The maximum error of
calculations performed here is equal to 1.861275+ε1 ·3.352861 (Fig. 6). Similarly,
in 16 nodes for this case, the temperature derivative is calculated. For these
results, the maximum error is 2.785511 + ε1 · 6.593236E-01 (Fig. 6).

6.5. The complex state of uncertainty: disturbance of area boundary
and boundary conditions

In this example, the uncertainty was introduced for boundary conditions as
well as the uncertainty of the area boundary. The temperature perturbation
(indicated in the following figures as PERT-2) is the same as in Subsec. 6.2,
and the boundary perturbation (designated in the following figures as PERT-1)
has the character described in Subsec. 6.4. The results of the computation of the
temperature in 16 boundary nodes are shown in Fig. 7.

The maximum error, which here is the sum of errors for both perturbations,
is 1.861275 + ε1 · 3.352861 + ε2 · 1.187952. Similarly, in 16 computational points
for the temperature derivative, the maximum error, which is the sum of errors for
both perturbations, is 2.785511 + ε1 · 6.593236E-01 + ε2 · 1.759512 (Fig. 7).
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Fig. 6. The results of ε-FBEM calculations for a) temperature and b) temperature derivative
with a marked boundary solution perturbation for area boundary perturbation.
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Fig. 7. The results of ε-FBEM calculation calculations for a) temperature and b) temperature
derivative, with marked boundary solution perturbation for Subsec. 6.5.
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6.6. The task of conductivity with the uncertainties of fuzzy type

Let us consider again the case of the restricted area in the shape of a square,
whose edge is divided into 16 fixed elements. On the left boundary edge, the
temperature was assumed to be equal to 300◦C, while at the remaining bound-
aries, the conditions are equal to zero (see Fig. 1). For such an area, uncertainties
of a fuzzy type were introduced for a preset temperature (Subsec. 6.6.1), and
for a given area boundary (Subsec. 6.6.2). In the following examples, the results
of the achieved temperature and temperature derivative under the influence of
these uncertainties, depending on the assumed shape of the membership func-
tion, are shown. For clear visualization of the results, we refer only to their
graphic interpretation for the selected nodes.

6.6.1. Uncertainty of boundary conditions. In this example, for a given bound-
ary of the area, a fuzzy type uncertainty of boundary conditions with a member-
ship function in the shape of a symmetrical triangle (as in Fig. 8) was introduced.
The temperature values at nodes 1 and 12 and the temperature derivative at
nodes 5 and 16 for the subsequent sections α are shown in Figs. 9 and 10.
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Fig. 8. Membership function assumed as a symmetrical triangle.
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Fig. 9. Temperature values for membership Fig. 10. Temperature derivative values
function in the shape of a symmetrical for membership function in the shape

triangle. of a symmetrical triangle.
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Next, the same task as in the previous case was performed for the membership
function of an asymmetric triangle shape (see Fig. 11). The calculation results
for temperature are shown in Fig. 12 and for temperature derivative in Fig. 13.
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Fig. 11. Membership function in the shape of an asymmetrical triangle.
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Fig. 12. Temperature values for membership Fig. 13. Temperature derivative values
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triangle. of an asymmetrical triangle.

Analogously, the same task as the previous one, has been performed for the
membership function in an asymmetric trapezoidal shape (see Fig. 14). The re-
sults of calculations for temperature are shown in Fig. 15 and for temperature
derivative in Fig. 16.

6.6.2. Uncertainty of the fuzzy type of boundary conditions and the boundary
of the area. In the example analyzed here, for the given area boundary, the fuzzy
type uncertainty was introduced for both the boundary conditions and the area
boundary (similarly to Subsec. 6.5), with the membership function in the shape
of a symmetrical triangle (as in Fig. 11). The temperature and temperature
derivative values for successive α sections in selected nodes of the area boundary
are shown in Figs. 17 and 18. It can be observed that due to the imposed “double”
uncertainty, the solution changes its shape from the symmetrical triangle to the
symmetrical trapezoid.
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Fig. 14. Membership function in the shape of an asymmetrical trapezoid.
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7. Final remarks and conclusion

Temperature monitoring and analysis are essential issues in many branches
of technology and engineering. This paper shows the achievements of the bound-
ary element method and is a continuation of the work described, among others,
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in [1, 2]. The paper presents the concept of the compartmental algebraic sys-
tem constructed on the basis of new perturbation numbers introduced in [10]
and [12], which may be applied for temperature distribution and heat conduc-
tion analysis, which, in turn, may be applied to real object (e.g., buildings or
electrical equipment) diagnostics.

The advantages of the proposed ε-algebraic system are:
• simplification of the activities carried out so far by way of analysis,
• most of the numerical algorithms can be easily adapted to the new algebraic

system.
The methodology allows for the analysis of complex tasks with very var-

ied uncertainties. The computational capabilities of the new method have been
tested in the potential boundary analysis task (heat conduction task). The use
of the ε-algebraic system has allowed the development of a new variant of the
fuzzy boundary elements method called ε-FBEM.

Calculations for different examples illustrating the use of ε-FBEM were car-
ried out with the use of the Fortran PowerStation computer program. For this
purpose, the calculation procedures were developed by the authors. The applied
programming methodology in the proposed algebraic system allows one to cal-
culate two-dimensional heat flows with the following assumptions:

• boundary conditions ũ0, q̃0 may be fuzzy, with any membership function,
• internal sources ξ̃ may be fuzzy, with any membership function,
• fundamental solution ũ∗ (·) may be fuzzy, with any membership function,

for an isotropic medium,
• task definition area must be single-sided, of any area Ω̃ that may be fuzzy

at the boundary Γ̃.
All of the above elements of the fuzzy boundary task may occur simultane-

ously, and their independence or interactions may be freely programmed. One
can include any dependency of a bounded function on fuzzy parameters. More-
over, the generalization of the problem to the three-dimensional problem and the
various types of orthotropy does not pose much of a problem as is in the classical
BEM. The proposed variant of the ε-FBEMs can be used to consider technical
tasks with high computational complexity under uncertainty of all parameters.
Operations on perturbation numbers are equivalent to activities performed in
perturbation methods with approximations limited to first order, so one can try
to extend the proposed method to higher-order approximations.

Appendix

Fortran script (fragment) for the case: disturbance of the area boundary and
boundary conditions perturbation (for 16 nodes).
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HEAT FLOW EXAMPLE (16 CONSTANT ELEMENTS)
DATA

NUMBER OF BOUNDARY ELEMENTS = 16
NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED = 5
COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS
POINT X Y
1 .00E+00 .10E+00 .00E+00 .00E+00 .20E+00 .00E+00
2 .15E+01 .10E+00 .00E+00 .00E+00 .20E+00 .00E+00
3 .30E+01 .10E+00 .00E+00 .00E+00 .20E+00 .00E+00
4 .45E+01 .10E+00 .00E+00 .00E+00 .20E+00 .00E+00
5 .60E+01 .10E+00 .00E+00 .00E+00 .20E+00 .00E+00
6 .60E+01 .13E+00 .00E+00 .15E+01 .17E+00 .00E+00
7 .60E+01 .15E+00 .00E+00 .30E+01 .15E+00 .00E+00
8 .60E+01 .18E+00 .00E+00 .45E+01 .12E+00 .00E+00
9 .60E+01 .20E+00 .00E+00 .60E+01 .10E+00 .00E+00

10 .45E+01 .20E+00 .00E+00 .60E+01 .12E+00 .00E+00
11 .30E+01 .20E+00 .00E+00 .60E+01 .15E+00 .00E+00
12 .15E+01 .20E+00 .00E+00 .60E+01 .17E+00 .00E+00
13 .00E+00 .20E+00 .00E+00 .60E+01 .20E+00 .00E+00
14 .00E+00 .18E+00 .00E+00 .45E+01 .20E+00 .00E+00
15 .00E+00 .15E+00 .00E+00 .30E+01 .20E+00 .00E+00
16 .00E+00 .13E+00 .00E+00 .15E+01 .20E+00 .00E+00
. . .
BOUNDARY NODES
X Y DERIVATIVE POTENTIAL ERROR
.75 .00 .00000E+00 .00000E+00 .00000E+00

2.25 .00 .00000E+00 .00000E+00 .00000E+00
3.75 .00 .00000E+00 .00000E+00 .00000E+00
5.25 .00 .00000E+00 .00000E+00 .00000E+00
6.00 .75 .27678E+01 −.21209E+01 .17589E+01
6.00 2.25 −.78430E+00 −.19532E+01 .16405E+01
6.00 3.75 −.78444E+00 −.20237E+01 .16405E+01
6.00 5.25 .27678E+01 −.32122E+01 .17589E+01
5.25 6.00 .00000E+00 .00000E+00 .00000E+00
3.75 6.00 .00000E+00 .00000E+00 .00000E+00
2.25 6.00 .00000E+00 .00000E+00 .00000E+00
.75 6.00 .00000E+00 .00000E+00 .00000E+00
.00 5.25 −.27855E+01 −.65932E+00 −.17595E+01
.00 3.75 .81195E+00 .25660E+01 −.16396E+01
.00 2.25 .81174E+00 .22815E+01 −.16396E+01
.00 .75 −.27852E+01 .27973E+01 −.17595E+01

ERROR DFI_MAX = 2.785511+eps1* 6.593236E-01+eps2* 1.759512
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