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Application of support vector machine in geodesy
for the classification of vertical displacements
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The article presents basic rules for constructing and training neural networks, called the Support Vector
Machine technique. SVM networks can mainly be used for solving tasks of classification of linearly and
nonlinearly separable data and regression as well as identifying signals and recognising increases.
In this paper SVM networks have been used for classifying linearly separable data in order to formulate

a model of displacements of points representing a monitored object. The problem of learning networks
requires the use of quadratic programming in search of an optimum point of a Lagrange function with
respect to optimised parameters. Estimated parameters determine the location of the hyperplane which
maximises the separation margin of both classes.
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1. INTRODUCTION

SVM classifiers, called the SVM technique, were invented by Vapnik [10]. They are a new approach
to constructing and training networks. SVM networks belong to a group of unidirectional networks,
they usually have a two-layer structure and can use different types of activation function [7, 11]. In
comparison with MLP (Multi Layer Perceptron) networks, SVM networks do not have the faults
typical of MLP networks, i.e. the possibility that the minimisation process stops at one of many
local minima, or an initially adopted arbitrary architecture of the network, which determines its
future generalisation abilities.

Generally speaking, in the case of linearly separable data, SVM networks make it possible to find
an optimum separation hyperplane which separates classes with a possibly maximum separation
margin (Fig. 1). In the case of linearly inseparable data, we find a curvilinear classification bound-
ary. A separation margin is the distance between an optimum hyperplane and the closest vector.
The paper presents the problem of the use of an SVM network for the classification of linearly
separable data, which will be illustrated by measurements of height differences between points in
a measurement and control network. The measurement and control network has been set up on
a building located on expansive soil. In addition, a case of the measurement of deviations in the
horizontal and vertical plane of components of civil engineering structures will be discussed.

2. LINEAR SVM NETWORK IN A CLASSIFICATION TASK

If we assume that a set of training pairs (xi, di), i = 1, . . . , p undergoes classification, where xi is
an input vector, and the setpoint di equals 1 or −1, then the equation of a hyperplane separating
the two classes will be written as

g(x) = wTx+ b = 0, (1)
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where N -dimensional weight vector w = [w1, w2, . . . , wN ], the input vector x = [x1, x2, . . . , xN ],
and the weight b is polarisation.
The equation that enables the determination of a point’s membership in a particular class takes

the form

wTxi + b > 0 → di = 1,

wTxi + b < 0 → di = −1.
(2)

An optimum hyperplane g(x) = wT
o x+ bo = 0 is one for which the separation margin is maximum

(Fig. 1).

Fig. 1. Optimum hyperplane with a maximum separation margin.

In order to define and determine the separation margin it is necessary to find the distance
between any point x and an optimum hyperplane. This distance is expressed by formula

r(x) =
g(x)

‖wo‖
. (3)

After the normalisation of the Eqs. (2), the decisive equations determining the membership of data
in a particular class take the form

wTxi + b ≥ 1 → di = 1,

wTxi + b ≤ −1 → di = −1.
(4)

If a pair of points (xi, di) satisfies Eq. (4) with the equation mark, then a supporting vector xsv is
created, the distance between which and the hyperplane is expressed by the formula [1, 7]

τ =
g (xsv)

‖x‖ =





1

‖w‖ for g (xsv) = 1,

− 1

‖w‖ for g (xsv) = −1.

(5)

The separation margin between two classes k will be designated as k = 2τ . It is worth emphasising
that supporting vectors are points located closest to the hyperplane, and for this reason they are
the most difficult to classify, but they determine the location of the hyperplane and the width of
the separation margin [2, 9].
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3. TRAINING AN SVM NETWORK

Training an SVM network consists in choosing its weights in such a way as to have a maximum
separation margin for linearly separable data, which satisfies condition (4). This kind of problem
is called a primary problem, which will be written as

min

{
1

2
wTw

}
(6)

with the restrictions

di(w
Txi + b) ≥ 1. (7)

The primary (optimisation) problem is a problem of quadratic programming with linear restrictions
on weights. This kind of problem may be solved by means of Lagrange multipliers through the
minimisation of the Lagrange function [1, 4]

J(w, b,α) =
1

2
wTw −

p∑

i=1

αi

[
di(w

Txi + b)− 1
]
. (8)

The subsequent multipliers αi i = 1, . . . , p, whose values correspond to particular restrictions, are
the coordinates of the vector of Lagrange multipliers α. The minimisation of function (8) with
respect to the optimised parameters (w, b,α) consists in finding a saddle point of the function
J(w, b,α), assuming that it has been minimised with respect to vector w and parameter b, and
maximises with respect to all the values of multipliers αi. The conditions for optimality with respect
to w and b can be written as

∂J (w, b,α)

∂w
= 0 → w −

p∑

i=1

αidixi = 0, (9)

∂J (w, b,α)

∂b
= 0 →

p∑

i=1

αidi = 0, (10)

which leads to a solution in the form

w =

p∑

i=1

αidixi. (11)

While analysing formula (11) one can say that vector w is a linear combination of supporting
vectors. Parameter b is determined by putting dependencies (9), (10) and (11) into formula (8),
and a solution at the saddle point of the Lagrangean is obtained [13]

wTxsv + b = 1 → b = 1−wTxsv. (12)

By putting dependence (11) into the basic form of the Lagrange function (8), the values of
the unknowns in the form of vector w and parameter b are eliminated. Thus, the task of learning
the network consists in maximising the Lagrange function with respect to multipliers αi, and the
primary problem is converted into a dual problem, which can be written as follows:

max





p∑

i=1

αi −
1

2

p∑

i=1

p∑

j=1

αiαjdidjx
T
i xj



 (13)
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with the restrictions

αi ≥ 0 and

p∑

i=1

αidi = 0. (14)

In typical practical applications most Lagrange multipliers αi equal zero. The data points (xi, di),
for which the corresponding Lagrange multipliers satisfy the condition αi > 0, will constitute
supporting vectors xsv.

Example 1. Let us analyse the procedure for determining a hyperplane and supporting vectors for
the data in Table 1.

Table 1. Data points for the illustrative example.

X Y

1.25 2.33 1

1.75 0.55 1

3.82 3.07 1

4.85 0.25 −1

5.76 1.78 −1

The formulation of the problem of data classification by means of an SVM network consists in
solving a quadratic programming task with respect to Lagrange multipliers (the minimisation of
function (8)). In the first step a matrix H will be found, whose components (i, j) will be defined as

H(i, j) = yiyjx
T
i xj, (15)

where

yiyj =




1 1 1 −1 −1

1 1 1 −1 −1

1 1 1 −1 −1

−1 −1 −1 1 1

−1 −1 −1 1 1



,

xT
i xj =




6.9914 3.4690 11.9281 6.6450 11.3474

3.4690 3.3650 8.3735 8.6250 11.0590

11.9281 8.3735 24.0173 19.2945 27.4678

6.6450 8.6250 19.2945 23.5850 28.3810

11.3474 11.0590 27.4678 29.3810 36.3460




i.e.

H =




6.9914 3.4690 11.9281 −6.6450 −11.3474

3.4690 3.3650 8.3735 −8.6250 −11.0590

11.9281 8.3735 24.0173 −19.2945 −27.4678

−6.6450 −8.6250 −19.2945 23.5850 28.3810

−11.3474 −11.0590 −27.4678 29.3810 36.3460



.

Next, by means of quadratic programming, the equation of the hyperplane specified by the optimum
weight vector

wT =
[
−0.7490 0.4753 2.2715

]
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and the parameter b = 1 will be determined. The values of the Lagrange multipliers are as follows:

αT =
[
0.0000 0.0000 0.3685 0.0000 0.3685

]
.

The Lagrange multipliers αi will be used to determine supporting vectors, which will be created
exactly at the points for which αi 6= 0.
In the example above the width of the separation margin k equals

k = 2/ ‖w‖ = 2/ ‖0.7370‖ = 2.71.

Fig. 2. Graphical representation of illustrative example.

4. LINEARLY INSEPARABLE DATA

The task of linearly inseparable data classification is an extremely difficult problem. When there is
linear inseparability, the idea behind the SVM method is to construct an optimum hyperplane not
in the input space but in a certain multidimensional space of the characteristics [9]. Therefore, the
linearly inseparable data from an N – dimensional space (original space) will be transformed into
a space of characteristics, which is a K – dimensional space, and K > N . While transforming the
data from the original space to a space of characteristics the dimensionality is raised. The problem
of data transformation has been shown in Fig. 3.

Fig. 3. Transformation of linearly inseparable data.

It is worth emphasising that raising the dimensionality allows one to find a separating hyperplane
located in the space of characteristics whose picture can be seen in the original space. The equation
of a hyperplane in the space of characteristics is written as the following formula

g(x) =
N∑

i=1

αidiK(x,xi) + b, (16)
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where K(x,xi) is a scalar symmetric function called a kernel function. The kernel functions used
most frequently are linear functions, polynomial functions, and radial and sigmoidal functions [8].
Depending on the kernel function used, there can be a slightly different data classification boundary.
Examples of the kernel functions are shown in Table 2.

Table 2. Examples of kernel function.

Kernel type Equation K(x, xi) Comment

Linear K (x,xi) = xTx

Polynomial K (x,xi) =
(
xTx+ 1

)b
b – degree of the polynomial

Radial K (x,xi) = exp
[
−
(
1
/
2σ2
) (

‖x− xi‖2
)]

σ – common to all kernel

Sigmoidal K (x,xi) = xTx constrains to β0 and β1

5. NUMERICAL EXAMPLE

Civil engineering structures located on expansive soils are subjected mainly to vertical forces. In
this case the problem of geodetic measurements focuses on examining the foundation settlement
[3]. The object studied is represented by eleven controlled points stabilised on the building’s walls
at a height of about 0.50 m above the ground level. The layout of the measurement points was
determined by the geological and engineering factors [6]. Each periodical measurement provided
information on the changes in the behaviour of the object in the form of twenty-two observations
carried out with the same structure of the measurement and control network. A principle had been
adopted that measurement accuracy for relative displacements should not be less than ±0.3 mm.
Using the notion of the reference system proposed by the author a model of displacements of

controlled points has been formulated. The model a basis for making a two value decision about
the linear separability of two classes of points with different directions of displacements. At the
same time, it is necessary to avoid introducing decisions such as “reject”, because it is not a two
value decision if a particular point does not belong to either class. Now that the information about
membership of the points in one of the two classes is available, the problem of the classifier consists
in searching for a hyperplane separating the two classes with a maximum separation margin. As
a result of the use of the SVM method, three supporting vectors have been determined, created
at points with numbers 3, 7, 8, for which Lagrange coefficients are different from zero and the
classifier forms a separation margin of about 2 m. The separation margin may help to make the
right decision about the method of protecting a building subjected to uneven settlement.

Fig. 4. Classification of points in a measurement and control network with SVM method.
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In order to compare the results obtained with the SVM method, a geometrical displacement
model has been created with the classic method. It makes use of an algorithm for the minimisation
of absolute deviations and a criterion for a critical value of the increment of the square of the norm
for the vector of corrections to the observations [3]. A graphic interpretation of the displacement
values has been presented in Fig. 5.

Fig. 5. Geometrical displacement model.

Fig. 6. Geometrical displacement model and classification of controlled points.
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The comparison of the results obtained with the SVM method presented in Fig. 4 and those
obtained with the classic method (Fig. 5), indicates an agreement between the identification of the
points with “upwards” directed displacements and the identification of the points with “downwards”
directed displacements.
The presented procedure of solving the classification task in the form of a two-value decision can

be used as a starting point for the assessment of deviation of a surface in the horizontal and vertical
plane in such objects as buildings and bridge and viaduct piers. The directions of the vectors of
deviations determine the membership of characteristic points in either class 1 or class 2. The object
for which displacements in the horizontal and vertical plane were assessed was Our Most Holy Lady
Church in Toruń, whose walls deviat inward towards the nave as a result of the modernisation works
on the roof. The classification of controlled points and a geometrical displacement model have been
presented in Fig. 6.

6. CONCLUSIONS

The linear SVM network presented in the article can be used for classifying separable and insepa-
rable data, and also for solving regression tasks. This network, similarly to other networks taught
under monitoring (e.g. MLP networks), plays the role of a universal training data approximator.
Its advantage is good generalisation and a relatively low sensitivity to the amount of training data,
which is particularly important while solving tasks with a limited amount of data (e.g., in the case
of measurements of displacements of civil engineering objects).
It is worth emphasising that the results obtained with SVM classification are in agreement

with the results obtained with the traditional geodetic method used to determine vertical displace-
ments. This approach makes it possible to determine an optimum hyperplane separating points
in a measurement and control geodetic network into two classes, which can be a basis for making
decisions about the type and place of possible work needed to protect an object subjected to uneven
settlement and deviations in the horizontal and vertical plane.
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