
Computer Assisted Methods in Engineering and Science
30(4): 427–459, 2023, doi: 10.24423/cames.578

Porting of Finite Element Integration Algorithm
to Xeon Phi Coprocessor-based HPC Architectures

Filip KRUŻEL1)∗, Krzysztof BANAŚ2), Mauro IACONO3)

1) Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
2) AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland;
e-mail: pobanas@cyf-kr.edu.pl

3) The University of Campania Luigi Vanvitelli, Viale Abramo Lincoln n. 5, 81100
Caserta, Italy; e-mail: mauro.iacono@unina2.it

∗Corresponding Author e-mail: filip.kruzel@pk.edu.pl

In the present article, we describe the implementation of the finite element numerical in-
tegration algorithm for the Xeon Phi coprocessor. The coprocessor was an extension of
the many-core specialized unit for calculations, and its performance was comparable with
the corresponding GPUs. Its main advantages were the built-in 512-bit vector registers
and the ease of transferring existing codes from traditional x86 architectures. In the ar-
ticle, we move the code developed for a standard CPU to the coprocessor. We compare
its performance with our OpenCL implementation of the numerical integration algorithm,
previously developed for GPUs. The GPU code is tuned to fit into a coprocessor by our
auto-tuning mechanism. Tests included two types of tasks to solve, using two types of
approximation and two types of elements. The obtained timing results allow comparing
the performance of highly optimized CPU and GPU codes with a Xeon Phi coprocessor
performance. This article answers whether such massively parallel architectures perform
better using the CPU or GPU programming method. Furthermore, we have compared the
Xeon Phi architecture and the latest available Intel’s i9 13900K CPU when writing this
article. This comparison determines if the old Xeon Phi architecture remains competi-
tive in today’s computing landscape. Our findings provide valuable insights for selecting
the most suitable hardware for numerical computations and the appropriate algorithmic
design.

Keywords: CPU, optimization, parallelization, vectorization, Intel Xeon Phi.
Copyright © 2023 The Author(s).
Published by IPPT PAN. This work is licensed under the Creative Commons Attribution License
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Today’s trends in developing computing architectures focus on two main
aspects. The first is connected with adding the computing cores, and the second
concerns extending vector units in the individual core. In the development of



428 F. Krużel et al.

modern computing accelerators, the first architectures were based on GPUs,
which allow processing computationally demanding fragments of calculations in
a SIMD manner with thousands of threads operating simultaneously. The second
type of accelerator combines relatively large amount of computing cores with
the extensive registers. The CELL Broadband Engine developed by IBM can be
chosen as an example of such an architecture. This architecture comprises one
general processing core and eight smaller specialized cores (Synergistic Processor
Elements) with wide 128-bit vector registers and AL units. These two solutions,
developed by Nvidia and IBM, inspired Intel, their main competitor, to search
for a solution in computing accelerators.

The wide vector registers characterising the Cell/BE architecture inspired
Intel to create Larabee’s graphics card architecture. At the same time, the com-
pany attempted to overcome the main barrier that hindered the greater spread
of accelerator programming techniques, which was the complex model and pro-
gramming method. The main advantages of the designed architecture were ex-
tensive (512-bit) vector registers, specialised texture units, coherent memory
hierarchy and compatibility with x86 architecture [47]. At the same time, Intel
was conducting Single Chip Computer and Teraflops Research Chip projects
characterised by a vast multi-core structure. Based on these projects, the Intel
MIC (Many Integrated Core) architecture was developed, which was used in the
Intel Xeon Phi coprocessors codenamed Knights Corner (KNC) [19]. The MIC
architecture was advertised as an architecture that combines GPU accelerators’
power with the ease of programming that characterises CPUs.

The next generation of the MIC architecture – Knights Landing, was offe-
red as a separate peripheral component interconnect-express (PCI-express) card
and the standalone CPU unit. Intel Xeon Phi was part of Tianhe-2, the fastest
supercomputer globally from 2013 to 2016, and allowed for achieving 33.86
petaFLOPS [48]. Even though Intel Xeon Phi architecture was officially dis-
continued [25], its evolution led to the Intel Xe graphics cards, announced in
November 2019 [24]. The new architecture was declared to avoid repeating the
Xeon Phi’s mistakes and provide a unified programming model (oneAPI), and
outstanding performance [13]. Although the architecture used in this study may
seem outdated, it will give researchers essential tips on how the hardware and
software evolution draws from its predecessors’ mistakes.

In this paper, the authors try to port the numerical integration algorithm on
Xeon Phi coprocessor and provide a detailed performance analysis. The results
will be compared with the modern Intel i9-13900K CPU, characterized by 32
available threads and a five times higher core frequency than the tested copro-
cessors. This can lead to interesting conclusions. Our previous study includes
the development of the algorithm for modern GPUs [4, 5, 34], CPUs [29], hybrid
systems [33] as well as Intel Xeon Phi [2, 3, 32] and Intel Xe [35]. This article



Porting of finite element integration algorithm. . . 429

sums up the obtained knowledge and shows the final version of the developed
numerical integration algorithm.

2. Numerical integration

One of the most demanding engineering tasks connected with accelerators
is the procedures of the finite element methods (FEMs). Numerical integration,
used to prepare elementary stiffness matrices for a system solver, is one of the
essential parts of FEM. Most studies about using the computing power of ac-
celerators focused on using the GPUs to accelerate solving the final system of
linear equations [7, 17, 18]. The solver procedure is often optimised first because
it is the most time-consuming part of the FEM. However, after optimising the
abovementioned procedure, the earlier calculation steps, such as, e.g., numerical
integration and assembling, also significantly affect execution time [37].

Previous research using Xeon Phi in the FEM procedures includes solving
a differential equation using numerical integration in total variation diminish-
ing (TVD) methods [8], elastodynamic finite integration technique [46], use the
shifted boundary method for solving the FEM problem [1] or solving partial dif-
ferential equations using hybridised discontinuous Galerkin discretisation [40].
As in the case of GPU, all this work focused on the final solution to the FEM
problem. Our approach is to provide a complex study of the numerical integra-
tion in the FEM on various architectures, including some that may be consid-
ered outdated, such as PowerXCell [30, 31], and Intel Xeon Phi. The authors
find these architectures significant predecessors of today’s hardware, and their
internal architecture will still be present in today’s and future technologies.

2.1. Finite element method

The FEM is a numerical technique used to solve partial differential equations
(PDEs) in complex geometries, often in 3D, with given boundary conditions.
The method involves dividing the computation area, denoted as Ω, into more
minor elements with simple geometry, such as tetrahedrons, cubes, or prisms.
The general form of the weak formulation for the problems analysed in this
paper is as follows [6, 27].

Find the unknown function u, belonging to a certain space of partially poly-
nomial functions, for which equation:
ˆ

Ω

∑
i

∑
j

Ci;j ∂w
∂xi

∂u
∂xj

+
∑
i

Ci;0 ∂w
∂xi

u+
∑
i

C0;iw
∂u
∂xi

+ C0;0wu

dΩ+BCL

=

ˆ

Ω

(∑
i

Di ∂w
∂xi

+ D0w

)
dΩ + BCR, (1)



430 F. Krużel et al.

is satisfied for each test function w defined in the same (or slightly modified)
function space.

In the above formula, Ci;j and Di, i, j = 0, ..., ND denote the coefficients
depending on the solved problem (ND – the number of space dimensions), and
BCR and BCL denote the right and left expressions, respectively, related to the
boundary conditions and the boundary integrals ∂Ω. In this work, the authors
focus on calculating the integral over the Ω region since the boundary integrals
are usually less computationally demanding. From the algorithmic point of view,
they repeat a similar integration scheme. The part of the computation responsible
for the boundary conditions in the authors’ code is always performed by the CPU
cores using standard FEM methods.

2.2. Numerical integration algorithm

Numerical integration in the FEM is correlated with the geometry used and
an approximation type by the given elemental shape functions. Therefore, the
suitable geometric transformation in mesh geometry used for computing should
be applied. Denoting physical coordinates in the mesh as x, a transformation
from reference element with coordinates ξ is denoted as x(ξ). Usually, it is ob-
tained through the general form of linear, multilinear, square, cubic, or other
transformations of basic geometry functions and a set of degrees of freedom.

The use of the Jacobian matrix J = ∂x
∂ξ is required to transform the coordi-

nates from the reference to a real element, and the whole process is a distinctive
part of numerical integration in the FEM. It significantly differentiates this al-
gorithm from other integration and matrix multiplication algorithms.

With the application of the variable change to the reference element Ω̂ for
the selected integral example, we get the formula:

ˆ

Ωe

∑
i

∑
j

Ci;j ∂φ
r

∂xi
∂φs

∂xj
dΩ

=

ˆ

Ω̂

∑
i

∑
j

Ci;j
∑
k

∂φ̂
r

∂ξk

∂ξk
∂xi

∑
z

∂φ̂
s

∂ξz

∂ξz
∂xj

detJ dΩ, (2)

where φ̂
r
denotes the shape functions for the reference element. This formula

uses the determinant of the Jacobian matrix detJ = det(∂x∂ξ ) and components of
the Jacobian inverse transformation matrix ξ(x), from real elements to reference
elements.

The numerical quadrature transforms the analytical integral into a sum over
integration points within the reference domain. From different possible quadra-



Porting of finite element integration algorithm. . . 431

tures, we will concentrate on the most popular Gaussian quadratures [36]. Co-
ordinates in the reference element are marked as ξQ and weights as wQ where
Q = 1, ..., NQ (NQ – the number of Gauss points that depends on the type of
element and the degree of approximation used). For integral (2), this leads to
the formula:

ˆ

Ωe

∑
i

∑
j

Ci;j ∂φ
r

∂xi
∂φs

∂xj
dΩ ≈

NQ∑
Q=1

∑
i

∑
j

Ci;j ∂φ
r

∂xi
∂φs

∂xj
detJ

∣∣∣∣∣∣
ξQ

wQ. (3)

The final form of Eq. (3) may vary depending on the approximation and
element types selected. For example, some values are constant for the entire
element for geometrically linear elements like tetrahedrons.

To standardise and describe the algorithm from the point of view of mathe-
matical computing for the most efficient implementation on the hardware, some
modifications of the above formulas have been made with the introduction of the
following indices:

• ξQ[iQ], wQ[iQ] – tables with local coordinates of integration points (Gauss
points) and weights assigned to them, iQ = 1, 2, ..., NQ, where NQ – the
number of Gauss points that depends on the geometry and the type and
degree of approximation chosen,

• Ge – table with element geometry data (related to the transformation from
reference element to real element),

• volQ[iQ] – table with volumetric elements volQ[iQ] = det
(
∂x
∂ξ

)
×wQ[iQ],

• φ[iQ][iS ][iD], φ[iQ][jS ][jD] – tables with values of subsequent local shape
functions, and their derivatives relative to a global

(
∂φiS
∂xiD

)
and local coor-

dinates
(
∂φ̂iS
∂ξiD

)
at subsequent integration points iQ,

– iS , jS = 1, 2, ..., NS , where NS – the number of shape functions that
depend on the geometry and the degree of approximation chosen,

– iD, jD = 0, 1, ..., ND, where ND – dimension of space. For iD, jD dif-
ferent from zero, the tables refer to the derivatives relative to the
coordinate at index iD, and for iD = 0 to the shape function, so
iD, jD = 0, 1, 2, 3;

• C[iQ][iD][jD][iE ][jE ] – table with values of the problem coefficients (mate-
rial data, values of degrees of freedom in previous nonlinear iterations and
time steps, etc.) at subsequent Gauss points, iE , jE = 1, 2, ..., NE , where
NE – number of vector components in the solution – e.g. NE = 3 for linear
elasticity theory where the coefficients depend on a 3× 3 stress tensor,

• D[iQ][iD][iE ] – table with di coefficient values in subsequent Gauss points,



432 F. Krużel et al.

• Ae[iS ][jS ][iE ][jE ] – an array storing the local, elementary stiffness matrix,
• be[iS ][iE ] – an array storing the local, elementary right-hand side vector.
With the use of the presented notation, general formula for the elemental

stiffness matrix was created:

Ae[iS ][jS ][iE ][jE ] =

NQ∑
iQ

ND∑
iD,jD

C[iQ][iD][jD][iE ][jE ]

×φ[iQ][iS ][iD] ×φ[iQ][jS ][jD] × volQ[iQ]. (4)

Analogically, right-hand side vector formula was created:

be[iS ][iE ] =

NQ∑
iQ

ND∑
iD

D[iQ][iD][iE ]×φ[iQ][iS ][iD]× volQ[iQ]. (5)

Through the introduced notation, we create a general numerical integration
algorithm for finite elements of the same type and degree of approximation (Al-
gorithm 1).

The algorithm’s optimal structure must include the hardware’s capabilities
for which the algorithm should be developed. For external accelerators, such as
Xeon Phi, the cost of sending data to and from the accelerator can be very high
and should be hidden by a sufficiently large number of calculations. The designed
form of Algorithm 1 in which the outer loop is a loop over all elements favours
such a situation. Also, the general form of Algorithm 1, which does not consider
the location of data at different levels of memory, allows us to treat each internal
loop as independent and change its order for optimal performance. We can also
achieve this because all necessary data can be calculated in advance and used
when needed. This allows the creation of different algorithm variants depending
on the hardware used.

3. Problems solved

The Poisson and convection–diffusion problems were chosen to test the al-
gorithm’s performance for low- and high-intensity tasks. The Poisson problem
is ideal for fine-grained algorithm testing as its exact solution is known, and
it requires relatively few resources. On the other hand, the resource-intensive
convection–diffusion–reaction problem is ideal for testing coarse-grained imple-
mentations with fewer large elements to calculate. This allows in-depth hardware
testing for tasks commonly found in FEM and scientific and technical calcula-
tions.



Porting of finite element integration algorithm. . . 433

Algorithm 1: Generalised numerical integration algorithm for elements
of the same type and degree of approximation.
1 - determine the algorithm parameters – NEL, NQ, NE , NS ;
2 - load tables ξQ and wQ with numerical integration data;
3 - load the values of all shape functions and their derivatives relative to local

coordinates at all integration points in the reference element;
4 for e = 1 to NEL do
5 - load problem coefficients common for all integration points (Array Ce);
6 - load the necessary data about the element geometry (Array Ge);
7 - initialize element stiffness matrix Ae and element right-hand side

vector be;
8 for iQ = 1 to NQ do
9 - calculate the data needed for Jacobian transformations

(
∂x
∂ξ ,

∂ξ
∂x , vol

)
;

10 - calculate the derivatives of the shape function relative to global
coordinates using the Jacobian matrix;

11 - calculate the coefficients C[iQ] and D[iQ] at the integration point;
12 for iS = 1 to NS do
13 for jS = 1 to NS do
14 for iD = 0 to ND do
15 for jD = 0 to ND do
16 for iE = 1 to NE do
17 for jE = 1 to NE do
18 Ae[iS ][jS ][iE ][jE ]+ = C[iQ[[iD][jD][iE ][jE ]×

×φ[iQ][iS ][iD]×φ[iQ][jS ][jD]×vol;
19 end
20 end
21 if iS = jS and iD = jD then
22 for iE = 0 to NE do
23 be[iS ][iE ]+ = D[iQ][iD][iE ]×φ[iQ][iS ][iD]×vol;
24 end
25 end
26 end
27 end
28 end
29 end
30 end
31 - write the entire matrix Ae and vector be;
32 end

3.1. Poisson’s equation

One of the tasks studied was a simple Poisson equation describing, e.g. sta-
tionary temperature distribution:

∇2u = f. (6)



434 F. Krużel et al.

The result for this type of task is scalar. Therefore, the number of solution
vector elements NE = 1. For Poisson’s task, convection–diffusion–reaction coef-
ficients matrices C[iQ] have the form (7) for all integration points:

C[iQ] =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

. (7)

This allows obtaining the individual words of the stiffness matrix by the
simplified formula:

(Ae)rs =

ˆ

Ωe

∑
i

∑
j

∂φr

∂xi
∂φs

∂xj
dΩ. (8)

The D[iQ] coefficients vector has the form:

D[iQ] =
[

0 0 0 Sv
]
, (9)

where Sv is a right-hand side (RHS) coefficient, different for each integration
point.

3.2. Generalized convection–diffusion–reaction problem

Another of the tasks examined was the generalised convection–diffusion–
reaction problem. To maximise the use of resources, it was assumed that the
C[iQ] matrix and the D[iQ] vector coefficients will be filled (formula (10)). Ar-
rays of this type appear, for example, in convective heat transfer problems, after
applying SUPG stabilisation:

C[iQ] =


Axx Axy Axz Tx

Ayx Ayy Ayz Ty

Azx Azy Azz Tz

Bx By Bz CR

, (10)

where Aij – diffusion coefficients, Bi, Tj – convections coefficients, CR – reaction
coefficient.

The same situation appears in the RHS vector:

D[iQ] =
[
Qx Qy Qz Sv

]
, (11)

where Qi – right side integration coefficient Sv derivatives with respect to x, y, z.
In the case of the tested convection–diffusion–reaction problem, theC[iQ] and

D[iQ] coefficients are constant for the whole element. This allows generalising
the solved problem by freeing it from the details of specific applications while
maintaining the increased computational intensity of the algorithm.



Porting of finite element integration algorithm. . . 435

4. Approximation

4.1. Finite element discretization and element types

The FEM discretises the considered continuous area into several elements.
These are usually simple geometry elements such as tetrahedrons, cubes or
prisms. In the cases considered in this work, prismatic and tetrahedral elements
were used (Fig. 1).

Fig. 1. Reference elements used.

Combining these elements makes it possible to reproduce even the most com-
plex geometry of the computational area Ω [28]. To determine the quantities
sought for the entire calculation area (and not just at the vertices of the ele-
ments), the correct shape functions for each element type should be determined
depending on the type and degree of approximation selected.

4.2. Linear approximation

For a standard first-order linear approximation, the degrees of freedom of an
element are related to its vertices. The basic shape functions for the prismatic
reference element are in a form:

Φ0 =
−z + 1

2
(1− x− y),

Φ1 =
−z + 1

2
x,

Φ2 =
−z + 1

2
y,

Φ3 =
z + 1

2
(1− x− y),

Φ4 =
z + 1

2
x,

Φ5 =
z + 1

2
y,

(12)

where x, y and z are coordinates of the given point. They are the combination of
2D function that depends on x and y, with the function dependent on z. Similarly,



436 F. Krużel et al.

for the tetrahedron reference element, the form of the base shape functions can
be represented as:

Φ0 = 1− x− y − z,
Φ1 = x,

Φ2 = y,

Φ3 = z.

(13)

The geometry of elements can be described similarly to their solution using shape
functions. Tetrahedral elements have linear geometry that simplifies Jacobian
transformations, whereas prismatic elements have more complicated polynomial
geometry. Linear approximation is often used for less precise problems due to
its simplicity and speed, while more resource-intensive problems can be tested
using the discontinuous Galerkin approximation [10].

4.3. Discontinuous Galerkin approximation

The discontinuous Galerkin approximation was chosen as an example of the
use of higher-order approximation and thus increased demand for resources. This
approximation relates an element’s degrees of freedom to its interior, and its ac-
curacy depends on the number of degrees of freedom. The convergence of the
discontinuous approximate solution to the exact solution is obtained by intro-
ducing additional terms in a weak formulation, including integrals on the sides
of the elements inside the computational area, where the solution pitch between
two elements is integrated [10–12]. In this paper’s approach, these integrals are
treated similarly to integrals related to boundary conditions in standard formu-
lations because they repeat the same integration scheme and are irrelevant for
testing the hardware. The integrals of the elements discussed in the paper are
identical for the case of continuous and discrete discretisation.

For the tested prismatic reference element, the number of shape functions
is given by the formula 1

2 (p+ 1)2 (p+ 2). The number of Gauss points needed
increases as the degree of approximation increases to maintain the convergence
of the solution [9], and for a three-dimensional (3D) prism is of the order O(p3)
as for the number of shape functions. The basic parameters of Algorithm 1
depending on the degree of approximation are presented in Table 1.

Table 1. The number of Gauss points and shape functions
in relation to the degree of approximation.

Parameter
Degree of approximation p

1 2 3 4 5 6 7
NQ 6 18 48 80 150 231 336
NS 6 18 40 75 126 196 288



Porting of finite element integration algorithm. . . 437

5. Numerical integration algorithms

The stiffness matrix components are scalar numbers for both Poisson and
convection–diffusion–reaction cases, so the NE loop in Algorithm 1 is skipped.
The linear approximation uses two types of reference elements – prismatic and
tetrahedral – and the convection–diffusion–reaction problem with discontinuous
Galerkin approximation is tested for complex prismatic elements. Parallelising
the algorithm depends on hardware resources and the type of element used.
The algorithm can be modified by moving calculations for geometrically linear
elements outside the integration point loops and changing the order of loops
over integration points and shape functions. Six variants of Algorithm 1 were
developed and named based on the element type and the order of the loops
(QSS, SQS and SSQ general and linear). To optimise the algorithm for specific
hardware, estimating the number of operations and memory accesses is necessary.

When estimating the number of operations in individual versions of the nu-
merical integration algorithm, we can specify the following calculation stages:
1. Jacobian calculations (line 9 in Algorithm 1).

• Calculation of derivatives of the basic shape functions for prismatic ele-
ments (Eq. (12)) – due to repeated calculations, we can assume that
each compiler will optimise the whole process, reducing the number of
operations to 14.

• The matrix J and its inverse, determinant and volumetric element (vol) –
18 operations for each of the geometric degrees of freedom for prisms and
nine operations for tetrahedrons when creating a Jacobian matrix + 43
operations related to its inverse and determinant for both element types.

2. Calculation of derivatives of shape functions relative to global coordinates
(line 10 of Algorithm 1) – usually performed before the double loop over
the shape functions to avoid calculation redundancy (although the version
of the algorithm with derivatives calculated inside the loop over the iS index
can be considered) – 15 operations for each shape function.

3. For the convection–diffusion problem – calculating the product of the matrix
C[iQ] coefficients with shape functions dependent on the first loop over the
shape functions (iS) – optimisation reducing the repetition of calculations
by taking jS expressions that are independent of the loop index – 28 opera-
tions for linear approximation and 22 operations for discontinuous Galerkin
approximation.

4. Calculation of the right-hand side vector (line 24 of Algorithm 1) – 3 ope-
rations for Poisson’s and 9 operations for the convection–diffusion problem.

5. Calculation of the stiffness matrix – 9 operations for convection–diffusion
and 7 for Poisson’s task.



438 F. Krużel et al.

The number of operations for each algorithm variant depends on both manual
and automatic optimizations made by the compiler. Some compilers can further
reduce operations by exploiting constant coefficients and symmetry of matrices.
Unrolling loops may also reduce the number of operations, but it may be more
difficult for prismatic elements due to separate calculations for each integration
point. For linear approximation, coefficients in Table 2 should be used to calcu-
late the final number of operations for each numerical integration stage.

Table 2. Multiplication factors for each of the stages and individual variants
of the numerical integration algorithm with standard linear approximation.

Variant
Poisson Convection–diffusion

tetra prism tetra prism

QSS

1 1 NQ 1 NQ

2 NS NS NS NS

3 0 0 NQ ∗NS NQ ∗NS
4 NQ ∗NS NQ ∗NS NQ ∗NS NQ ∗NS
5 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2

SQS

1 1 NQ ∗NS 1 NQ ∗NS
2 NS NQ ∗NS NS NQ ∗NS
3 0 0 NQ ∗NS NQ ∗NS
4 NQ ∗NS NQ ∗NS NQ ∗NS NQ ∗NS
5 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2

SSQ

1 1 NQ ∗NS2 1 NQ ∗NS2

2 NS NQ ∗NS2 NS NQ ∗NS2

3 0 0 NQ ∗NS2 NQ ∗NS2

4 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2

5 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2 NQ ∗NS2

In the case of the standard linear approximation,NQ andNS are equal to 6 for
prisms and 4 for tetrahedrons, respectively. A summary of the abovementioned
estimates for a standard linear approximation is presented in Table 3.

As can be seen from in table, SQS and SSQ algorithms for prisms cause many
redundant calculations, which can affect performance. However, it should be
noted that in the case of accelerator programming, a large number of operations
can be a significant advantage affecting the saturation of the hardware with
the appropriate number of calculations and a favourable ratio of the number of
calculations to the number of accesses to memory.

An algorithm with the QSS loops organisation and prismatic elements was
used in the tasks with discontinuous Galerkin approximation. As mentioned ear-
lier, load vector creation was omitted in this approximation type. Using the NQ



Porting of finite element integration algorithm. . . 439

Table 3. The number of operations for individual variants of numerical integration
for standard linear approximation.

Variant
Poisson Convection–diffusion

tetra prism tetra prism

QSS

1 52 990 52 990
2 60 540 60 540
3 0 0 448 1008
4 48 108 144 324
5 448 1512 576 1944∑

608 3150 1280 4806

SQS

1 52 5940 52 5940
2 60 3240 60 3240
3 0 0 448 1008
4 48 108 144 324
5 448 1512 576 1944∑

608 10 800 1280 12 456

SSQ

1 52 35 640 52 35 640
2 60 19 440 60 19 440
3 0 0 1792 6048
4 192 648 576 864
5 448 1512 576 1944∑

752 57 240 3056 63 936

and NS parameters presented in Table 1 and the coefficients from the corre-
sponding columns of Table 2, the number of operations was calculated for each
degree of approximation. The result is presented in Table 4.

Table 4. Number of operations for convection–diffusion task
with discontinuous Galerkin approximation.

Stage
Degree of approximation p

1 2 3 4 5 6 7
1 990 2970 7920 13 200 24 750 38 115 55 440
2 540 4860 28 800 90 000 283 500 679 140 1 451 520
3 792 7128 42 240 132 000 415 800 996 072 2 128 896
5 1944 52 488 691 200 4 050 000 21 432 600 79 866 864 250 822 656∑

4266 67 446 770 160 4 285 200 22 156 650 81 580 191 254 458 512

Another aspect that requires analysis is the number of accesses to RAM
and the size of data needed to store current calculations. For linear approxima-
tion, the size of the data needed is shown in Table 5.



440 F. Krużel et al.

T
a
bl

e
5.

B
as
ic

pa
ra
m
et
er
s
of

th
e
nu

m
er
ic
al

in
te
gr
at
io
n
al
go
ri
th
m
,a

lo
ng

w
it
h
m
em

or
y
re
qu

ir
em

en
ts

fo
r
di
ffe

re
nt

ve
rs
io
ns

of
th
e
pr
oc
ed

ur
e

B
as
ic

pa
ra
m
et
er
s

P
oi
ss
on

C
on

ve
ct
io
n–

di
ffu

si
on

te
tr
a

pr
is
m

te
tr
a

pr
is
m

In
te
gr
at
io
n
da

ta
(r
ef
er
en

ce
el
em

en
t)

0
(c
on

st
an

t)
3
∗
N
Q

=
1
8

0
(c
on

st
an

t)
3
∗
N
Q

=
1
8

E
ac
h
fin

it
e
el
em

en
t
I/
O

da
ta

G
eo
m
et
ri
ca
ld

at
a
(i
np

ut
)

12
18

12
18

P
ro
bl
em

da
ta

(i
np

ut
)

1
∗
N
Q

=
4

1
∗
N
Q

=
6

20
20

St
iff
ne

ss
m
at
ri
x

A
e
(o
ut
pu

t)
N
S
∗
N
S

=
1
6

N
S
∗
N
S

=
3
6

N
S
∗
N
S

=
1
6

N
S
∗
N
S

=
3
6

L
oa
d
ve
ct
or

b
e
(o
ut
pu

t)
N
S

=
4

N
S

=
6

N
S

=
4

N
S

=
6

Fo
r
ea
ch

in
te
gr
at
io
n
po

in
t
–
Q
SS

ve
rs
io
n

P
ro
bl
em

co
effi

ci
en
ts

C
an

d
D

1
1

20
20

Sh
ap

e
fu
nc
ti
on

s
an

d
th
ei
r
de

ri
va
ti
ve
s
φ

4
∗
N
S

=
1
6

4
∗
N
S

=
2
4

4
∗
N
S

=
1
6

4
∗
N
S

=
2
4

Su
m

(i
nc
lu
di
ng

A
e
an

d
b
e
)

37
67

56
86

Fo
r
al
li
nt
eg
ra
ti
on

po
in
ts

–
SQ

S
ve
rs
io
n

P
ro
bl
em

co
effi

ci
en
ts

C
an

d
D

1
∗
N
Q

=
4

1
∗
N
Q

=
6

20
20

Sh
ap

e
fu
nc
ti
on

s
an

d
th
ei
r
de

ri
va
ti
ve
s
φ

3
∗
N
S

+
1
∗
N
Q
∗
N
S

=
2
8

4
∗
N
S
∗
N
Q

=
1
4
4

3
∗
N
S

+
1
∗
N
Q
∗
N
S

=
2
8

4
∗
N
S
∗
N
Q

=
1
4
4

Su
m

(i
nc
lu
di
ng

A
e
an

d
b
e
)

52
19

2
68

20
6

Fo
r
al
li
nt
eg
ra
ti
on

po
in
ts

–
SS

Q
ve
rs
io
n

P
ro
bl
em

co
effi

ci
en
ts

C
iD

1
∗
N
Q

=
4

1
∗
N
Q

=
6

20
20

Sh
ap

e
fu
nc
ti
on

s
an

d
th
ei
r
de

ri
va
ti
ve
s
φ

4
4

8
8

Su
m

(i
nc
lu
di
ng

on
e
el
em

en
t

fr
om

A
e
an

d
b
e
)

10
12

30
30



Porting of finite element integration algorithm. . . 441

As can be seen, the number of values used ranges from several to several
hundred numbers. This can be a crucial criterion for choosing a suitable algo-
rithm for architecture. The SSQ version has the lowest resource requirements.
However, it should be considered that, e.g. for prismatic elements, the number of
operations needed increases rapidly due to repeated Jacobian calculations. On
the other hand, the QSS version, in which we avoid repeated calculations, has
very high resource requirements. The SQS version, considered a version between
the previous ones, is characterised by the fact that it requires storing only one
row of the matrix and repeating the Jacobian calculations only for it. By multi-
plying the number of data needed from Table 5 by the number of repetitions of
external loops and adding the number of integration and geometric data needed,
we obtain the estimated number of memory accesses for each version of the al-
gorithm. At the same time, it should be noted that access to the stiffness matrix
and the right-hand side vector for each algorithm takes place twice – during
reading and writing. The calculations of the memory accesses are presented in
Table 6.

Table 6. Number of memory accesses for different versions
of the numerical integration algorithm.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
QSS 240 690 256 704
SQS 288 1410 304 1424
SSQ 336 1050 416 1208

Analogically, the analysis was performed for the discontinuous Galerkin ap-
proximation, using data in Table 5 for prisms and the QSS algorithm, which
was then expanded to include a higher approximation degree. In this case, the
memory accesses for the right-hand side vector were omitted, and the number of
problem coefficients in the convection–diffusion task was reduced to 16. Also, it
should be noted that the weights associated with Gauss points are not constant
for this type of approximation. Thus, the number of integration data needed
increases to 4 ∗NQ. Table 7 presents the updated number of accesses.

As can be seen in the table, the number of memory accesses increases signif-
icantly with the degree of approximation. To illustrate the number of accesses
to the number of operations ratio for the tested algorithms, their arithmetic in-
tensity was calculated. It is defined as the number of operations to the number
of memory accesses ratio. The results of calculations for the task with linear
approximation are presented in Table 8.

Similar calculations for the discontinuous Galerkin approximation are pre-
sented in Table 9.



442 F. Krużel et al.

Table 7. Number of memory accesses for the numerical integration in convection–diffusion
and discontinuous Galerkin approximation.

Parameter
Degree of approximation p

1 2 3 4 5 6 7
Integration data 24 72 192 320 600 924 1344
Problem coefficients C 16 16 16 16 16 16 16
Geometrical data 18 18 18 18 18 18 18
φ 144 1296 7680 24 000 75 600 181 104 387 072
Ae matrix 432 11 664 153 600 90 000 4 762 800 17 748 192 55 738 368∑

634 13 066 161 506 924 354 4 839 034 17 930 254 56 126 818

Table 8. Arithmetic intensity of the algorithm with standard linear approximation.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
QSS 2.53 4.57 5.00 6.83
SQS 2.11 7.66 4.21 8.75
SSQ 2.24 54.51 7.35 52.93

Table 9. Arithmetic intensity of the algorithm with discontinuous Galerkin approximation,
convection–diffusion problem with prismatic elements.

Degree of approximation p
1 2 3 4 5 6 7

6.73 5.16 4.77 4.64 4.58 4.55 4.53

As can be seen in the tables, besides the SSQ algorithm for prismatic ele-
ments, the numerical integration algorithm is characterised by a low arithmetic
intensity, indicating the significance of the problem of adequate memory band-
width and need for the optimal data organisation.

When designing the algorithm for individual computing machines, it is neces-
sary to consider available resources and memory organization when designing al-
gorithms for computing machines. Vector memory access can reduce downloads,
but increasing data can be problematic for accelerators with separate memory
systems. Memory access is critical when developing computing accelerator ar-
chitectures to increase available resources, including memory sizes of individual
types.

6. Intel Xeon Phi

Intel Xeon Phi coprocessors are expansion cards connected to the host sys-
tem using the PCI-Express interface. They have up to 16 memory channels and



Porting of finite element integration algorithm. . . 443

a separate system management controller, which, in addition to managing data
transmission, also controls the operation of the fan (optional) and monitors the
card’s temperature. These accelerators have a proprietary Linux-based operating
system loaded into internal flash memory. Depending on the version, 57–61 cores
are available to programmers with multi-thread hardware support (4 threads per
core).

In this study, we utilised two coprocessors, 5110P and 7120P, which vary
in their core count and RAM capacity. Table 10 provides an overview of the
characteristics of the coprocessors we selected. It is worth noting that these
coprocessors come with an operating system that reserves one core and a portion
of the memory. As a result, programmers have access to 236 and 240 threads
and 5.6 GB and 12 GB of RAM, respectively [44].

Table 10. Tested Intel Xeon Phi coprocessors [23].

Parameter 5110P 7120P
Frequency 1.05 GHz 1.24 GHz

Cores 60 61
RAM 8 GB 16 GB

Threads 240 244

The architecture of KNC cores is based mainly on the Pentium 4 microar-
chitecture but is expanded with 512-bit vector registers. The compatibility with
x86 architecture should allow for easy transfer of existing codes to improve per-
formance. Each core has hardware support for four threads and two processing
pipelines. The core has 32 kB of L1 cache for data and the same amount of cache
memory for code. Additionally, it has a 512 kB second-level cache (L2). The main
feature of Intel Xeon Phi accelerator cores is a specialised vector processing unit.
Each VPU can process eight double or sixteen single-precision numbers and has
a built-in extended math unit to support transcendent operations, similar to
GPUs. The manufacturer has named the extended instruction set for the VPU
unit IMCI. Unfortunately, it is incompatible with the AVX instructions, making
transferring previously compiled vectorised codes impossible.

Each of the cores is connected by a high-speed interface, which, together
with the coherent cache memory, causes almost instant data exchange between
them. The coherence of cache memory is made possible by the tag directory for
each core directly connected to L2 memory. GDDR memory is located between
the cores, allowing more even distribution of work and promoting efficient data
division between the cores.

Both coprocessors used in this study allow for calculations in several ways.
One is the native mode, for which the whole program is run on the accelerator.



444 F. Krużel et al.

The second is offload mode, where the coprocessor calculates the code fragments
specified by the programmer. A similar mode is used with the OpenCL frame-
work, where some code is run on the coprocessor as a separate procedure (the
so-called kernel).

Intel Xeon Phi coprocessors were thought to be the next step for creating
a high-performance architecture to support scientific and technical calculations.
Some of the mechanisms first presented in them are used in the modern proces-
sors. The authors found it reasonable to check the usability of this architecture
with the numerical integration algorithm and, thus, its general suitability for
FEM calculations.

7. Development tools

7.1. Finite Element Method computational framework

As the primary tool used in research, a modular programming framework for
engineering calculations using the FEM – ModFEM was used [39]. Its modular
structure allows for the modification of individual FEM calculation fragments.
The framework includes the problem, mesh, approximation, and solver modules.
Other modules are used for work division on different hardware types. ModFEM
is suitable for distributed computing, including on accelerators and individual
computers, clusters, and supercomputers. During the research, an extension of
the approximation module was developed for accelerator support, and the prob-
lem modules were modified for testing the numerical integration algorithm with
OpenMP optimizations. The framework was also supplemented with an OpenCL
and CUDA module for testing GPUs.

7.2. Programming languages and extensions
for multi-threaded calculations

The programming language used to create the code was the C language. This
is one of the most efficient high-level languages, allowing for relatively low-level
control over the hardware and how it interprets the instructions. The C language
is also a model on which the CUDA and OpenCL programming languages are
based.

The primary compiler used by the authors was the Intel C Compiler [22],
which is a part of the Intel Parallel Studio XE package. For programming both
general-purpose processors as well as Xeon Phi accelerators, the authors used
the following libraries and language extensions:

• OpenMP – application programming interface that allows using threads
and the shared memory model. It allows for dividing work between indivi-



Porting of finite element integration algorithm. . . 445

dual threads depending on the needs. It has built-in directives to facilitate
the division of work, so it is possible to balance the load depending on the
available resources [43];

• Intel Cilk Plus – extensions of the C language, which introduce the pos-
sibility for parallelisation in a manner analogous to OpenMP. Additionally,
it introduces Intel Cilk Plus Array Notation, which facilitates the handling
of tables for the programmer and automatic vectorisation for the compiler
(Fig. 2). Thanks to language extensions, Intel Cilk Plus allows to spec-
ify fragments for vectorisation directly and align tables to match vector
registers.

Fig. 2. Cilk Plus Array Notation (right) in comparison to the standard code
(line 10 in Algorithm 1).

7.3. Accelerator programming

7.3.1. OpenCL. To compare the native algorithm implementation using
OpenMP and specialised language extensions with the previously developed
implementation for GPU accelerators [4, 5], the OpenCL language was used.
OpenCL was developed in 2008 by the Khronos Group Corporation, established
as a consortium of leading graphics processing hardware and software manu-
facturers, such as Apple, Intel, SGI, Nvidia, and ATI. Its internal structure is
based on the same pattern as Nvidia CUDA programming extensions. However,
its standard is open, allowing hardware developers to prepare their versions for
a given architecture. OpenCL allows programming virtually any multi-core and
vector machines – from modern CPUs to GPUs, through hybrid PowerXCell
units, APUs and Intel Xeon Phi accelerators. The OpenCL specification con-
tains a programming language based on the C99 standard, used to program
accelerators, and an application programming interface (API) to support the
platform (understood as a given combination of available computing hardware
and system software) and run tasks on processors [20]. Each of the devices that
can be used is, in the OpenCL model, referred to as Compute Device, and each of
its cores/multiprocessors as Compute Unit. OpenCL defines individual threads
as work-items that are grouped into work-groups. All work-groups are started
on the device as an N -dimensional calculation range (NDRange). The optimal
size of a work-group depends on the architecture. It is usually associated with its
internal structure, i.e. the number of streaming processors in the multiprocessor
or the width of vector registers. Just like in the case of the execution model,
the memory model is based on the most common structure of the graphic card



446 F. Krużel et al.

memory. Work-items working within one work-group can communicate through
local memory. Additionally, the global memory of the device and constant mem-
ory buffers are available. The appropriate number of registers, called private
memory, is available for each work-item depending on the physical resources
of the Compute Unit and the defined division of work between work-groups.
Due to the portability of OpenCL code between devices of different types, each
memory area can be physically mapped differently depending on the available
hardware resources. This causes difficulties in correctly mapping the hardware
when the architecture differs significantly from a standard GPU architecture. An-
other problem is that the actual mapping of the code to the hardware is hidden
from the programmer, depriving him of total control over the program’s execu-
tion. OpenCL includes procedures to maintain code portability between different
hardware platforms by tailoring memory and execution models to a given archi-
tecture [45]. Direct implementation on a given machine depends on the provider
of the OpenCL programming platform and the appropriate drivers.

Thanks to OpenCL technology, writing programs on many accelerator types
has become possible. However, this did not solve the performance portability
problem, as each architecture requires separate optimisations [3]. For our work,
we have created an automatic tuning system for the numerical integration algo-
rithm [5].

7.4. Execution analysis

The authors’ built-in functions and tools provided by software and hardware
suppliers were used for the code analysis.

A system for counting the number of occurrences of specific instructions has
been developed to analyse the machine code. It determines what optimisations
were used during code compilation and generates basic reports on memory access
and arithmetic operations.

To analyse the execution flow on Intel general-purpose processors and the
Intel Xeon Phi coprocessor, the Intel Vtune Amplifier profiler available in the In-
tel Parallel Studio XE package was used. This tool allows for deep code analysis,
previewing multithreading and hardware counters. This allows identifying vari-
ous problems related to program performance and more accurately using avail-
able hardware resources.

8. Obtained results

8.1. Methodology

The authors utilized their expertise in programming CPUs and GPUs to test
Xeon Phi coprocessors. Although advertised as a tool for effortless code accel-
eration using OpenMP and semi-automatic vectorization, achieving high perfor-



Porting of finite element integration algorithm. . . 447

mance on the tested coprocessor requires additional optimizations, as demon-
strated in studies by other authors [16, 42, 49, 50]. To optimize the algorithm on
the tested coprocessor, the authors ran optimized versions of the algorithm de-
veloped for Intel Xeon processors, namely Cilk and Stride algorithms, described
in detail in [29]. For the Cilk optimization, the authors aligned data tables to
64 bytes to optimize memory access, extended tables to the size divisible by
the size of a 512-bit register in the case of prismatic elements, and implemented
the algorithm using the Intel Cilk Plus array notation for easier vectorization.
The code areas to be vectorized were marked by #pragma vector and #pragma
simd. For the Stride optimization, the whole algorithm was reorganized to force
vectorization at the same level as parallelization, processing four (256-bit) or
eight (512-bit) elements at once during one loop, reducing the final loop size for
parallelization but increasing the number of local tables for temporary variables
and the complexity of input and output array indexation. Performance was also
affected by setting environmental variables KMP_AFFINITY = "granularity =
fine, compact" and MIC_USE_2MB_BUFFERS = 2M, and using the offload
model to send and retrieve data to and from the coprocessor. For the OpenCL
version, the authors set the work-group size to a multiple of 16, as recommended
in [21], to allow for automatic vectorization and reduce processing time signifi-
cantly. OpenCL memory levels are mapped to coprocessor memory, and though
the number of registers is small compared to GPU architectures, the available
L1 and L2 cache memory has increased significantly. Separate studies were per-
formed for tasks with standard linear approximation and discontinuous Galerkin
approximation.

8.2. Standard linear approximation

8.2.1. Performance model. To develop the performance model, the perfor-
mance characteristics of the tested coprocessors presented in Table 11 were used.
Benchmark values were obtained from Linpack [15] and Stream [38] benchmarks.

Table 11. Floating points processing (left) and memory performance (right)
of the tested Xeon Phi coprocessors [16, 26].

Xeon Phi version Performance [GFlops] [GB/s]

5110P
Theoretical 1011 320
Benchmark 769 165

7120P
Theoretical 1208 352
Benchmark 999 181

For performance analysis, the Intel Vtune profiler was used. For the number
of operations obtained from the profiler, the event VPU_ELEMENTS_ACTIVE



448 F. Krużel et al.

was used, following the instructions from [41]. Table 12 shows the estimated and
obtained number of operations.

Table 12. Number of operations for tested Intel Xeon Phi coprocessors.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
Estimated 608 3150 1280 4806

Cilk 595 2157 1700 1838
5110P Stride = 4 935 2451 1526 1417

Stride = 8 170 2142 1156 1154
Cilk 1020 2451 2464 1838

7120P Stride = 4 1954 6740 4334 10 417
Stride = 8 230 793 510 1225

Similarly, to calculate the number of memory accesses, the DATA_READ_
OR_WRITE event was used, which specifies the number of accesses to the
floating-point number (float or double) in the memory [41]. The obtained values
are presented in Table 13.

Table 13. Number of memory accesses for tested Intel Xeon Phi coprocessors.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
Estimated 240 690 256 704

Cilk 561 2145 756 2267
5110P Stride = 4 569 1961 493 1961

Stride = 8 467 1593 544 1900
Cilk 680 2880 952 2574

7120P Stride = 4 892 3309 1232 3789
Stride = 8 603 2696 680 3002

Based on the results obtained, it can be seen that the number of memory
accesses is comparable to the number of calculations, which means that the
arithmetic intensity of the algorithm for all its versions does not exceed 4. To
facilitate data reading, Roofline charts were created for each of the tested ac-
celerators (Figs. 3 and 4) [51]. The roofline graph defines the limiting factor of
the algorithm’s performance based on both theoretical and achieved in bench-
marks performance. At the same time, according to this model, thanks to the
calculated arithmetic intensity of the tested algorithms, it is easy to determine
whether the factor limiting performance is memory bandwidth or the speed of



Porting of finite element integration algorithm. . . 449

Arithmetic intensity [operations to access]

Pe
rfo

rm
an

ce
 [G

Fl
op

s]

Fig. 3. Roofline graph for the Xeon Phi 5110P accelerator.

Arithmetic intensity [operations to access]

Pe
rfo

rm
an

ce
 [G

Fl
op

s]

Fig. 4. Roofline graph for the Xeon Phi 7120P accelerator.

performing floating-point operations. From the created roofline charts, we can
conclude that the algorithm is limited by memory speed for all tasks with linear
approximation.

Based on the data in Table 11 (data from benchmarks) and data about the
memory access obtained from the profiler, the expected algorithm execution time
was calculated (Table 14).



450 F. Krużel et al.

Table 14. Expected execution time (in ns) of the numerical integration algorithm
for each version of the algorithm.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
Cilk 3.40 13.00 4.58 13.74

5110P Stride = 4 3.45 11.88 2.99 11.88
Stride = 8 2.83 9.66 3.30 11.51

Cilk 3.76 15.91 5.26 14.22
7120P Stride = 4 4.93 18.28 6.81 20.94

Stride = 8 3.33 14.90 3.76 16.59

8.2.2. Results. The results obtained for the version using OpenMP and the
offload model are presented in Table 15. As can be seen in the table, the best
execution times were obtained for the 5110P coprocessor and the Stride algo-
rithm with eight elements processed at once. Interestingly, the theoretically faster
7120P coprocessor obtained worse results in 67% of cases, which is consistent
with the results from the profiler, indicating higher memory use for this co-
processor. In this case, more chaotic results were observed, which, contrary to
expectations, do not point to the Stride = 8 algorithm as the best for this copro-
cessor. As can be seen, the results obtained are low compared to the expected
and amount to barely 12% of the theoretical performance.

Table 15. Obtained results (in ns) for the tested versions of the numerical integration
algorithm using OpenMP and the offload model.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
Cilk 58.61 212.53 68.50 221.00

5110P Stride = 4 56.47 166.29 61.50 170.29
Stride = 8 51.80 145.31 46.60 138.66

Cilk 46.00 312.73 67.68 170.61
7120P Stride = 4 57.24 209.10 59.07 175.35

Stride = 8 60.75 292.38 66.66 243.96

To see if the tested accelerators can be competitive against the new proces-
sor architectures, we have tested developed algorithms on the latest architec-
ture available, the Intel i9-13900K. This processor has 32 available threads and
a high-speed memory bandwidth of 89.6 GB/s. Its benchmarked performance is
1.7 TFlops, making it one of the most powerful CPUs [14]. To test the algorithms
previously prepared for the Xeon Phi, we have to change the alignment of data
to 32. The results obtained for the tested CPU show that it is average, 9.4 times



Porting of finite element integration algorithm. . . 451

faster than Xeon Phi 5110P and 11.3 times faster than 7120P (Table 16). This
indicates that this architecture seems outdated, but the OpenCL parameter tun-
ing algorithm developed earlier was also launched on the tested coprocessors for
comparative purposes. It tests the combination of various storage options in dif-
ferent types of memory and other parameters that may affect the algorithm’s
performance.

Table 16. Obtained results (in ns) for the tested versions of the numerical integration
algorithm for the Intel Core i9 CPU.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
Cilk 5.64 11.06 7.23 23.51

i9-13900K Stride = 4 5.65 21.36 7.75 16.81
Stride = 8 5.92 26.14 7.45 17.49

The best results for the tested OpenCL versions are summarised in Table 17.
As can be seen in the table, the best results were obtained for the SQS algorithm
for tetrahedron elements and QSS for prismatic ones. As much as half of the
Xeon Phi 7120P coprocessor options assume not using shared memory, which,
with a limited number of registers for this architecture, may cause chaotic and
worse results than the theoretically slower Xeon Phi 5110P.

Table 17. Summary of the best results in ns with automatic parameter tuning system for
Xeon Phi coprocessors.

Variant
Poisson Convection–diffusion

tetra prism tetra prism
QSS 17.75 44.69 27.16 46.61

5110P SQS 14.40 62.86 24.96 81.55
SSQ 17.59 129.84 25.79 175.49
QSS 22.99 49.87 32.66 54.37

7120P SQS 23.09 73.17 31.47 76.78
SSQ 24.96 109.42 31.53 171.48

The results obtained in the OpenCL model are better than those obtained
using OpenMP and the offload model. This may indicate better use of OpenCL’s
vectorisation and vector memory accesses than the classic programming method.
A comparison of the obtained results is shown in Fig. 5.

Furthermore, when comparing the results achieved by the OpenCL imple-
mentation of the code with the optimal results obtained for the Intel i9 CPU,
we can discern only slight disparities – with each coprocessor delivering 3.2 and



452 F. Krużel et al.
Ti

m
e 

[n
s]

Fig. 5. Comparison of results between the Offload and the OpenCL versions of the numerical
integration algorithm on Intel Xeon Phi coprocessors.

3.5 times worse performance, respectively. This indicates that despite nearly
a decade of development gap, the tested coprocessors are better than expected.

The results obtained and the tests show that the tested coprocessors are very
similar to GPU accelerators. In the case of numerical integration, better results
are obtained for the GPU than for the CPU-dedicated code.

8.2.3. Conclusions. The investigated Intel Xeon Phi coprocessors were con-
structions with interesting architecture and various programming methods. How-
ever, based on the old Pentium 4 architecture extended by broad vector registers,
their architecture alone was insufficient to achieve high performance for the nu-
merical integration algorithm with linear approximation. To check whether the
capabilities of the tested coprocessors will be able to use the more advanced
version of the numerical integration algorithm, tests were performed for higher
degrees of discontinuous Galerkin approximation and the generalised convection–
diffusion–reaction task for prismatic elements.

8.3. Discontinuous Galerkin approximation

8.3.1. Performance model. In the case of testing the numerical integration
with the discontinuous Galerkin approximation, an analogous analysis was per-
formed as in the case of linear approximation. The estimated number of accesses
and operations were used when developing the performance model. We were try-
ing to obtain these values from the profiler. Because the Intel Vtune profiler
caused a memory violation error for the Stride algorithm versions with band-



Porting of finite element integration algorithm. . . 453

width 4 and 8, results were obtained only for the Cilk algorithm version. Due
to the profiler version change for the Intel Xeon Phi 7120P coprocessor, the
necessary data could not be obtained. Table 18 shows the obtained number of
operations.

Table 18. Number of operations for the numerical integration algorithm
with discontinuous Galerkin approximation for Intel Xeon Phi coprocessors.

Version
Degree of approximation

3 4 5
Estimated 770 160 4 285 200 22 156 650
Profiler 392 252 5 760 291 17 440 678

As can be seen, the number of operations obtained from the profiler is very
close to estimates – only for a lower degree of approximation, it has been signif-
icantly reduced.

The number of memory accesses for the Cilk algorithm and the Xeon Phi
5110P coprocessor is shown in Table 19.

Table 19. Number of memory accesses for the Cilk algorithm
and the Xeon Phi 5110P coprocessor.

Version
Degree of approximation
3 4 5

Estimated 161 506 924 354 4 839 034
Profiler 155 448 1 059 806 3 976 271

As in the previous case, we can see significant compliance of the results ob-
tained with theoretical estimates. By dividing the received number of operations
by the number of accesses, we can notice that, analogously to linear approxima-
tion, the algorithm’s arithmetic intensity is low and does not exceed 6, which
means that it can be treated as limited by memory performance.

Using the data obtained from the profiler and Table 11, the theoretical ex-
ecution time for the Cilk algorithm was estimated (Table 20). For comparative
purposes, the Xeon Phi 7120P accelerator results were presented assuming the
same number of accesses.

Table 20. Estimated execution time for the Cilk algorithm
with discontinuous Galerkin approximation.

Xeon Phi version
Degree of approximation
3 4 5

5110P 0.94 6.42 24.10
7120P 0.86 5.86 21.97



454 F. Krużel et al.

8.3.2. Results. The results obtained for the tested versions of the algorithm
are presented in Table 21.

Table 21. Obtained results (in µs) for the tested coprocessors and numerical integration
algorithm with discontinuous Galerkin approximation.

Variant
Degree of approximation
3 4 5

Cilk 3.26 22.32 223.62
5110P Stride = 4 20.11 140.80 1017.35

Stride = 8 16.92 124.39 967.61
Cilk 2.61 21.15 203.63

7120P Stride = 4 15.70 111.08 792.89
Stride = 8 15.31 97.03 868.14

As it can be noticed, a Cilk algorithm turned out to be the best for discontinu-
ous Galerkin approximation, obtaining about 30% of the theoretical performance
for lower approximation levels 3 and 4. The Stride algorithm can achieve high
performance only for small tasks due to the limited number of wide vector regis-
ters (512-bit). Comparing the situation with standard linear approximation, we
can see a significant increase in the degree of coprocessor utilisation.

As earlier, we have run our algorithms on the Intel I9-13900K CPU. The
results of the execution are shown in Table 22. These results support our earlier
observation that the new CPU is approximately three times faster than the tested
coprocessors. The difference in performance is particularly significant for higher
degrees of approximation due to the limited resources in Xeon Phi compared
to i9-13900K. While computationally demanding tasks may provide a better
measure of the performance of the tested coprocessors, it also highlights that
the architecture of these coprocessors is outdated for modern applications.

Table 22. Obtained results (in µs) for the Intel Core i9-13900K and numerical integration
algorithm with discontinuous Galerkin approximation.

Variant
Degree of approximation
3 4 5

Cilk 1.08 7.02 34.95
i9-13900K Stride = 4 2.10 13.76 111.22

Stride = 8 2.67 29.49 197.26

As in the case of standard linear approximation, the algorithm developed in
the OpenCL for the GPU was launched on the tested Xeon Phi 5110P coproces-
sor. Due to the abovementioned software problems, this algorithm could not be



Porting of finite element integration algorithm. . . 455

run on the second coprocessor tested. The obtained execution times (in µs) are
presented in Table 23.

Table 23. Obtained execution times [µs] for OpenCL algorithm for the Intel Xeon Phi 5110P
coprocessor and discontinuous Galerkin approximation.

Xeon Phi version
Degree of approximation
3 4 5

5110P 4.87 46.22 201.17

Comparing the results from the OpenMP/offload and OpenCL model, it can
be seen that, unlike the situation with standard linear approximation, better
results were obtained for the first one, except for situations with the highest
approximation degree where the OpenCL result is slightly higher.

The OpenCL model strives to maximise the number of words of the stiff-
ness matrix processed by a single thread. This may be a factor that causes the
OpenCL version results to be worse than those from OpenMP/offload.

8.3.3. Conclusions. The tested coprocessors demonstrated higher perfor-
mance for the convection–diffusion task using the discontinuous approximation
of higher orders than for tasks with linear approximation, indicating their poten-
tial for computation. However, it is essential to note that comparable graphics
cards exhibit even better performance, and even CPUs with Haswell architecture
only slightly newer than Xeon Phi were faster [5, 29]. Moreover, the new Raptor
Lake architecture in i9-13900K performs much better in numerical integration
tasks. The results show an even more significant disparity for the highest degree
of approximation. This highlights the inadequate available resources, such as re-
gisters, to achieve high performance comparable with GPU cards or newer CPU
architectures.

8.4. Final conclusions

Although the Xeon Phi coprocessors were slower than the new i9-13900K
processor, they represented an interesting branch of accelerator development.
The research thoroughly examined the two main advantages of the tested copro-
cessors: their performance and straightforward programming model. However,
in both cases, the authors acknowledge that programming these coprocessors
is neither easy nor does it lead to staggering performance, which is consistent
with studies by other authors. The tests indicate that the design of the Xeon
Phi coprocessors appears outdated and can only compete with CPU architec-
tures from a comparable time. The main factors that limit the performance of
the numerical integration algorithm are the outdated architecture and the small



456 F. Krużel et al.

number of registers available per thread. Despite this, it is worth noting that
the results obtained for more complex tasks with approximation levels equal to
3 and 4 came close to those from the Nvidia Tesla K20m accelerator, whose
architecture was a direct competitor for the tested coprocessors. In conclusion,
while the Xeon Phi coprocessors may not perform best in modern applications,
the research provided valuable insights into their potential and limitations. The
findings suggest that while the coprocessors are not as powerful as more modern
architectures, they may still have a role to play in specific scenarios.

References

1. N.M. Atallah, C. Canuto, G. Scovazzi, The second-generation shifted boundary method
and its numerical analysis, Computer Methods in Applied Mechanics and Engineering,
372(1): 113341, 2020, doi: 10.1016/j.cma.2020.113341.

2. K. Banaś, F. Krużel, Comparison of Xeon Phi and Kepler GPU performance for finite
element numerical integration, [in:] High Performance Computing and Communications,
2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on
Embedded Software and Syst (HPCC,CSS,ICESS), 2014 IEEE Intl Conf on, pp. 145–148,
Aug 2014, doi: 10.1109/HPCC.2014.27.

3. K. Banaś, F. Krużel, OpenCL performance portability for Xeon Phi coprocessor and
NVIDIA GPUs: A case study of finite element numerical integration, [in:] Euro-Par 2014:
Parallel Processing Workshops, volume 8806 of Lecture Notes in Computer Science, pp.
158–169, Springer International Publishing, 2014, doi: 10.1007/978-3-319-14313-2_14.

4. K. Banaś, F. Krużel, J. Bielański, K. Chłoń, A comparison of performance tuning process
for different generations of NVIDIA GPUs and an example scientific computing algorithm,
[in:] R. Wyrzykowski, J. Dongarra, E. Deelman, K. Karczewski [Eds.], Parallel Processing
and Applied Mathematics, pp. 232–242, Cham, Springer International Publishing, 2018,
doi: 10.1007/978-3-319-78024-5_21.

5. K. Banaś, F. Krużel, J. Bielański, Optimal kernel design for finite element numerical
integration on GPUs, Computing in Science and Engineering, 22(6): 61–74, 2020, doi:
10.1109/MCSE.2019.2940656.

6. E.B. Becker, G.F. Carey, J.T. Oden, Finite Elements. An Introduction, Prentice Hall,
Englewood Cliffs, 1981, doi: 10.1002/nme.1620180613.

7. L. Buatois, G. Caumon, B. Levy, Concurrent number cruncher: A GPU implementation of
a general sparse linear solver, International Journal of Parallel, Emergent and Distributed
Systems, 24(3): 205–223, 2009, doi: 10.1080/17445760802337010.

8. F.L. Cabral, C. Osthoff, G.P. Costa, D. Brandao, M. Kischinhevsky, S.L. Gonzaga de
Oliveira, Tuning Up TVD HOPMOC Method on Intel MIC Xeon Phi Architectures with
Intel Parallel Studio Tools, [in:] 2017 International Symposium on Computer Architec-
ture and High Performance Computing Workshops (SBAC-PADW), pp. 19–24, 2017, doi:
10.1109/SBAC-PADW.2017.12.

9. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amster-
dam, 1978, doi: 10.1137/1.9780898719208.

https://doi.org/10.1016/j.cma.2020.113341
https://doi.org/10.1109/HPCC.2014.27
https://doi.org/10.1007/978-3-319-14313-2_14
https://doi.org/10.1007/978-3-319-78024-5_21
https://doi.org/10.1109/MCSE.2019.2940656
https://doi.org/10.1002/nme.1620180613
https://doi.org/10.1080/17445760802337010
https://doi.org/10.1109/SBAC-PADW.2017.12
https://doi.org/10.1137/1.9780898719208


Porting of finite element integration algorithm. . . 457

10. B. Cockburn, G. Karniadakis, C. Shu [Eds.], Discontinuous Galerkin Methods: Theory,
Computation and Applications, Vol. 11 of Lecture Notes in Computational Science and
Engineering, Springer, Berlin, 2000, doi: 10.1007/978-3-642-59721-3.

11. B. Cockburn, G. Karniadakis, C. Shu, The development of discontinuous Galerkin meth-
ods, [in:] Discontinuous Galerkin Methods: Theory, Computation and Applications, Vol.
11 of Lecture Notes in Computational Science and Engineering, pp. 1–14, Springer, Berlin,
2000, doi: 10.1007/978-3-642-59721-3_1.

12. B. Cockburn, C.W. Shu, The local discontinuous Galerkin finite element method for con-
vection diffusion systems, SIAM Journal on Numerical Analysis, 35: 2440–2463, 1998,
doi: 10.1137/S0036142997316712.

13. I. Cutress, Intel’s Xe for HPC: Ponte Vecchio with Chiplets, EMIB, and Foveros on 7nm,
Coming 2021, AnandTech, 2019.

14. R. Devine, Intel Core i9-13900K review: Retaking the performance crown for team blue,
XDA Developers, 2022.

15. J. Dongarra, Frequently Asked Questions on the Linpack Benchmark and Top500, 2007.

16. J. Fang, A.L. Varbanescu, H. Sips, L. Zhang, Y. Che, Ch. Xu, Benchmarking Intel Xeon
Phi to guide kernel design, 2013.

17. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, S. Turek, Towards a complete FEM-based
simulation toolkit on GPUs: Unstructured grid finite element geometric multigrid solvers
with strong smoothers based on sparse approximate inverses, Computers & Fluids, 80:
327–332, 2013, doi: 10.1016/j.compfluid.2012.01.025.

18. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Turek, Co-
processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU,
International Journal of Computational Science and Engineering, 4(4): 254–269, 2009,
doi: 10.1504/IJCSE.2009.029162.

19. R. Goodwins, Intel unveils many-core Knights platform for HPC, ZdNet, 2010.

20. A. Howes, L. Munshi, The OpenCL Specification, Khronos OpenCL Working Group, 2014,
version 2.0, revision 26.

21. Intel, OpenCL Design and Programming Guide for the Intel Xeon Phi Coprocessor, Intel
Corporation, 2014.

22. Intel, Intel C++Compiler 16.0 User and Reference Guide, Intel Corporation, 2015.

23. Intel, Dane techniczne produktu [Intel products specifications], Intel Corporation, 2017.

24. Intel, Intel Unveils New GPU Architecture with High-Performance Computing and AI
Acceleration, and oneAPI Software Stack with Unified and Scalable Abstraction for Het-
erogeneous Architectures, Intel Newsroom, 2019.

25. Intel, Product change notification 116378 – 00, July 23, 2018.

26. J. Jeffers, J. Reinders, Intel Xeon Phi Coprocessor High Performance Programming, Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st ed., 2013.

27. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, 1987, doi: 10.1007/BF00046566.

28. Y. Kallinderis, Adaptive hybrid prismatic-tetrahedral grids, International Journal for Nu-
merical Methods in Fluids, 20: 1023–1037, 1995, doi: 10.1002/fld.1650200820.

https://doi.org/10.1007/978-3-642-59721-3
https://doi.org/10.1007/978-3-642-59721-3_1
https://doi.org/10.1137/S0036142997316712
https://doi.org/10.1016/j.compfluid.2012.01.025
https://doi.org/10.1504/IJCSE.2009.029162
https://doi.org/10.1007/BF00046566
https://doi.org/10.1002/fld.1650200820


458 F. Krużel et al.

29. F. Krużel, Vectorized implementation of the FEM numerical integration algorithm on
a modern CPU, [in:] European Conference for Modelling and Simulation, Vol. 33, pp. 414–
420, 2019, doi: 10.7148/2019-0414.

30. F. Krużel, K. Banaś, Finite element numerical integration on PowerXCell processors,
[in:] PPAM’09: Proceedings of the 8th International Conference on Parallel Processing
and Applied Mathematics, pp. 517–524, Berlin, Heidelberg, Springer-Verlag, 2010, doi:
10.1007/978-3-642-14390-8_54.

31. F. Krużel, K. Banaś, Vectorized OpenCL implementation of numerical integration for
higher order finite elements, Computers and Mathematics with Applications, 66(10): 2030–
2044, 2013, doi: 10.1016/j.camwa.2013.08.026.

32. F. Krużel, K. Banaś, Finite element numerical integration on Xeon Phi coprocessor, [in:]
M. Paprzycki M. Ganzha, L. Maciaszek [Eds.], Proceedings of the 2014 Federated Con-
ference on Computer Science and Information Systems, Vol. 2 of Annals of Computer
Science and Information Systems, pp. 603–612, IEEE, 2014, doi: 10.15439/2014F222.

33. F. Krużel, K. Banaś, AMD APU systems as a platform for scientific computing, Computer
Methods in Materials Science, 15(2): 362–369, 2015.

34. F. Krużel, K. Banaś, M. Nytko, Implementation of numerical integration to high-order
elements on the GPUs, Computer Assisted Methods in Engineering and Science, 27(1):
3–26, 2020, doi: 10.24423/cames.264.

35. F. Krużel, M. Nytko, Intel Iris Xe-LP as a platform for scientific computing, [in:]
M. Ganzha [Ed.], Communication Papers of the 17th Conference on Computer Science and
Intelligence Systems, September 4–7, 2022, Sofia, Bulgaria, Vol. 32, [in:] Annals of Com-
puter Science and Information Systems, pp. 121–128, Warszawa, PTI, 2022 doi: 10.15439/
2022F132.

36. J.N. Lyness, Quadrature methods based on complex function values,Mathematics of Com-
putation, 23(107): 601–619, 1969, doi: 10.2307/2004388.

37. J. Mamza, P. Makyla, A. Dziekoński, A. Lamecki, M. Mrozowski, Multi-core and mul-
tiprocessor implementation of numerical integration in Finite Element Method, [in:] Mi-
crowave Radar and Wireless Communications (MIKON), 2012 19th International Con-
ference, Vol. 2, pp. 457–461, 2012, doi: 10.1109/MIKON.2012.6233633.

38. J.D. McCalpin, Memory bandwidth and machine balance in current high performance
computers, IEEE Technical Committee on Computer Architecture (TCCA) Newsletter,
pp. 19–25, December 1995.

39. K. Michalik, K. Banaś, P. Płaszewski, P. Cybułka, ModFEM – a computational framework
for parallel adaptive finite element simulations, Computer Methods in Materials Science,
13(1): 3–8, 2013.

40. S. Muralikrishnan, M.-B. Tran, T. Bui-Thanh, An improved iterative HDG approach for
partial differential equations, Journal of Computational Physics, 367: 295–321, 2018, doi:
10.1016/j.jcp.2018.04.033.

41. S. Naik, Best Known Method: Estimating FLOP/s for workloads running on the Intel
Xeon Phi coprocessor using Intel VTune Amplifier XE, September 2013.

42. T. Olas, W.K. Mleczko, R.K. Nowicki, R. Wyrzykowski, A. Krzyzak, Adaptation of RBM
Learning for Intel MIC Architecture, [in:] L. Rutkowski, M. Korytkowski, R. Scherer,

https://doi.org/10.7148/2019-0414
https://doi.org/10.1007/978-3-642-14390-8_54
https://doi.org/10.1016/j.camwa.2013.08.026
https://doi.org/10.15439/2014F222
https://doi.org/10.24423/cames.264
https://doi.org/10.15439/2022F132
https://doi.org/10.15439/2022F132
https://doi.org/10.2307/2004388
https://doi.org/10.1109/MIKON.2012.6233633
https://doi.org/10.1016/j.jcp.2018.04.033


Porting of finite element integration algorithm. . . 459

R. Tadeusiewicz, A.L. Zadeh, M.J. Zurada [Eds.], Artificial Intelligence and Soft Comput-
ing: Proceedings of the 14th International Conference. ICAISC 2015. Part I, Zakopane,
Poland, June 14–18, pp. 90–101, Cham, Springer International Publishing, 2015, doi:
10.1007/978-3-319-19324-3_9.

43. OpenMP Architecture Review Board, OpenMP Application Programming Interface, ver-
sion 4.5 edition, November 2015.

44. F. Roth, System Administration for the Intel Xeon Phi Coprocessor, Intel Corporation,
2013.

45. S. Rul, H. Vandierendonck, J. D’Haene, K. De Bosschere, An experimental study on perfor-
mance portability of OpenCL kernels, [in:] Application Accelerators in High Performance
Computing, 2010 Symposium, p. 3, Knoxville, TN, USA, 2010.

46. W.C. Schneck, E.D. Gregory, C.A.C. Leckey, Optimization of elastodynamic finite integra-
tion technique on Intel Xeon Phi Knights Landing processors, Journal of Computational
Physics, 374: 550–562, 2018, doi: 10.1016/j.jcp.2018.07.049.

47. L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, Larrabee: a many-
core x86 architecture for visual computing, SIGGRAPH 08: ACM SIGGRAPH 2008 pa-
pers, pp. 1–15, 2008, doi: 10.1109/MM.2009.9.

48. E. Strohmaier, J. Dongarra, S. Horst, M. Meuer, H. Meuer, Top500 The List, 2020,
http://www.top500.org.

49. Ł. Szustak, K. Rojek, P. Gepner, Using Intel Xeon Phi coprocessor to accelerate com-
putations in MPDATA algorithm, [in:] R. Wyrzykowski, J. Dongarra, K. Karczewski,
J. Waśniewski [Eds.], Parallel Processing and Applied Mathematics: 10th International
Conference, PPAM 2013. Part I, Warsaw, Poland, September 8–11, 2013, pp. 582–592,
Berlin, Heidelberg, Springer, 2014, doi: 10.1007/978-3-642-55224-3_54.

50. Ł. Szustak, K. Rojek, T. Olas, Ł. Kuczyński, K. Halbiniak, P. Gepner, Adaptation of
MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor, Scientific
Programming, 2015: 642705, 2015, doi: 10.1155/2015/642705.

51. S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Communications of the ACM, 52(4): 65–76, 2009, doi:
10.1145/1498765.1498785.

Received April 5, 2022; revised version March 14, 2023;
accepted April 6, 2023.

https://doi.org/10.1007/978-3-319-19324-3_9
https://doi.org/10.1016/j.jcp.2018.07.049
https://doi.org/10.1109/MM.2009.9
http://www.top500.org
https://doi.org/10.1007/978-3-642-55224-3_54
https://doi.org/10.1155/2015/642705
https://doi.org/10.1145/1498765.1498785

