
Computer Assisted Methods in Engineering and Science, 20: 271–278, 2013.
Copyright c© 2013 by Institute of Fundamental Technological Research, Polish Academy of Sciences
TWENTY YEARS OF THE CAMES

A shift-add algorithm for generating B-spline

Feng GU
Zhejiang Technical Institute of Economics, Hangzhou 310018, China
66 Xuezheng St., Xiasha, Hangzhou, Zhejiang, China
e-mail: coolfun630@hotmail.com, coolfun630@163.com

A CORDIC- based shift-add algorithm for generating B-spline curves is presented in this paper. This
algorithm can be realized by hardware without multiplier, or coded with assembly language and run in
the basic computing system which exists in many application systems. Convergence of the algorithm was
proved. Errors were estimated and well controlled in the algorithm. A numerical experiment was carried
out to validate algorithm. This algorithm can be used for adding complex curve plotting functions in
embedded systems.

Keywords: B-spline, CORDIC, shift-add algorithm, basic computing system.

1. INTRODUCTION

In embedded systems there were only simple graphics plotting functions (like straight line drawing
function) in their graphics device interfaces. Complex curve plotting functions are helpful for some
embedded systems like GIS/GPS handheld device, electronic engraving machines, and electronic
game machines, etc. In this paper a coordinate rotation digital computer (CORDIC) – based shift-
add algorithm for generating B-spline curves is presented. With this algorithm complex graphics
can be plotted in an embedded device.

B-spline curves are very popular in CAD/CAM and other curve fitting systems. For control
points {Pi}n0 , B-spline function B(t) of order k (degree k-1) can be expressed by the de Boor-Cox
recursive procedure,





Ni,1(t) =

{
1 ti ≤ t < ti+1

0 Otherwise

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1 i = 0, 1, ..., n; k > 1,

B(t) =

n∑

i=0

PiNi,k(t),

Here we define
0

0
= 0,

(1)

Ni,k(t) is a B-spline basis function of order k (degree k-1).

B-spline curves were easily generated in an advanced computing system [1–3, 9]. In this paper
we discuss how to generate B-spline curves in a basic computing system. A basic computing system
deals only with shift, add and logical operations. Basic computing systems exist in many applica-
tion systems such as industrial control systems, military application systems, medical application
systems, etc.

272 F. Gu

CORDIC algorithms are well-known shift-add algorithms for computing a wide range of ele-
mentary functions including trigonometric, hyperbolic, linear and logarithmic functions [5–7]. Gen-
eralization, convergence and error estimation of CORDIC algorithms have been discussed [4, 10].
These fast united shift-add algorithms can be implemented in hardware system without multipliers
[8], or be coded with assembly language.

2. DESCRIPTION OF THE ALGORITHM

A sign function and a positive number series [4] are defined as

sg (x) =

{
1 x ≥ 0,

−1 x < 0,

{δi}∞0 =
{
2−i
}∞
0
.

Let {Pi = (P x
i , P

y
i)}

n
0 be control points, N

k
i (t)(i = 0, 1, . . ., n) be B-spline basis functions, ε be the

error limit. The shift-add algorithm for generating a B-spline curve consists of one main program
and three subprograms. Pseudo codes of the algorithm are shown below.
Subprogram1 MulDiv(u, v, ε, flag).

1◦ if v = 0 then
if flag=0 then result:=0 else result:=false. Exit.
if u = 0 then result:=0. Exit.

2◦ s := 1.
if u < 0 then {s := −s; u := −u.}
if v < 0 then {s := −s; v := −v.}.

3◦ m := 0;
while u > 2 do {u := 2−1 × u; m := m+ 1.}.

4◦ N := 1; ε := 2−m−1 × ε;
if flag=0 then v0 := v;
while v0 > 1 do {ε := 2−1 × ε; v0 := 2−1 × v0;}
while δN−1 > ε do N := N + 1.

5◦ if flag=0 then {i := 1;x1 := u, y1 := v, z1 := 0.}
else {i := 1;x1 := 0, y1 := v, z1 := u.}.

6◦ while i < N do
{if flag=0 then si := sg(xi) else si := −sg(zi);

xi+1 := xi + si × δi; zi+1 := zi + si × δi × y1; i := i+ 1;}.

7◦ if flag=0 then {zN := s× 2m × zN ; result:=zN .}
else {xN := s× 2m × xN ; result:=xN .}
Stop.

Subprogram2 B Basis(k, t, {tj}n0 , ε).

1◦ if (t < t0 or t > tn) then result:=false; Stop.
i := 0;
while t > ti do i := i+ 1; i := i− 1.

2◦ N1
i := 1;
for l := 1 to k−1 do {N l

i−l := 0; N l
i+1 := 0;}.

A shift-add algorithm for generating B-spline 273

3◦ if k = 2 then ε2 := ε;
if k = 3 then {if ε > 1 then ε := 1; ε2 := ε× 2−2;}
if k = 4 then { if ε > 0.24 then ε := 0.24; ε2 := ε× 2−3;}
ε1 := ε2 × 2−2.

4◦ for m := 2 to k do
for l := i−m+ 1 to i do
if (tl+m−1 = tl and tl+m = tl+1) then N

m
l := 0

else if tl+m−1 = tl then
{r2 = MulDiv(tl+m − t, tl+m − tl+1, ε1, 1) N

m
l := MulDiv(r2, N

m−1
l+1 , ε1, 0);}

else if tl+m = tl+1 then
{r1 = MulDiv(t− tl, tl+m−1 − tl, ε1, 1); N

m
l := MulDiv(r1, N

m−1
l , ε1, 0);}

else {r1 = MulDiv(t− tl, tl+m−1 − tl, ε1, 1); r2 = MulDiv(tl+m − t, tl+m − tl+1, ε1, 1);
Nm

l := MulDiv(r1, N
m−1
l , ε1, 0) +MulDiv(r2, N

m−1
l+1 , ε1, 0);}.

5◦ Output Nk
j , j = i− k + 1, . . . , i. Stop.

Subprogram3 B S(k, t, {P u
j }n0 , ε).

1◦ ε2 = ε;
if P u

i−k+1 < 0 then S = −P u
i−k+1 else S := P u

i−k+1;
for j := i− k + 2 to i do { if P u

j < 0 then S = S − P u
j else S := S + P u

j ;}
S := S + k × 2−2;
while S > 1 do { S := S × 2−1; ε2 := ε2 × 2−1;}
ε1 := ε2 × 2−2.

2◦ B Basis(k, t, {P u
j }n0 , ε2);

Bu := MulDiv(P u
i−k+1, N

k
i−k+1, ε1);

for j := i− k + 2 to i do Bu := Bu +MulDiv(P u
j , N

k
j , ε1).

3◦ Output P u. Stop.

Main Program. B Spline(k, t, (P x
j , P

y
j)

n
0 , ε)

1◦ Bx := B S(k, t, {P x
j }n0 , ε).

2◦ By := B S(k, t, {P y
j }n0 , ε).

3◦ Output Bx, By. Stop.

3. NOTES ON THE ALGORITHM

3.1 Only operations shift (i.e., 2−i × t) and add were concerned in the algorithm.
3.2 When flag=0, Subprogram1 MulDiv(u, v, ε, flag) multiplies u by v with error limit ε. When
flag=1, divides u by v with error limit ε.

{δi}∞0 = {2−i}∞0 is a normal series with measurement radius R(δ) =
∞∑
i=0

δi = 2 [4]. U decomposes

into 2m × U0 (U0 is stored in U variable in algorithm) with U0 < 2 in 3◦ of MulDiv(u, v, ε, flag).

This ensures U0 < R(δ) =
∞∑
i=0

δi = 2 and so it can be expressed as U0 ≈ FN (U0, δ) =
N∑
i=0

sg(ui)δi.

4◦ of MulDiv(u, v, ε, flag) adjusts error limit according to 3◦ and determines the number of
iterations N based on Theorem 1 in 4.

5◦, 6◦ and 7◦ of MulDiv(u, v, ε, flag) are from CORDIC algorithm [4, 5].

274 F. Gu

3.3 Subprogram2 B Basis(k, t, {tj}n0 , ε) is for calculating values of B-spline basis functions of order
k for t with error limit ε.

1◦ of B Basis(k, t, {tj}n0 , ε) is to find the interval [ti, ti+1) where t is in.

2◦ of B Basis(k, t, {tj}n0 , ε) assigns values for B-spline basis functions
{
N1

j (t)
}i+1

i−1
,
{
N j

i−j(t)
}k−1

1
,

{
N j

i+1(t)
}k−1

1
.

3◦ of B Basis(k, t, {tj}n0 , ε) re-assigns value of error limit (like 0.24 in B Basis(k, t, {tj}n0 , ε)) based
on Theorem 2 in Sec. 4.

4◦ of B Basis(k, t, {tj}n0 , ε) calculates values of B-spline basis functions N l
j(t) (l = 2 to k, j =

i− l + 1 to i). Other N l
j(t) are 0.

0

0
is defined as 0.

3.4 Subprogram3 B S(k, t, {P u
j }n0 , ε) is for calculating coordinates of B(t) on the B-spline curve

with n+1 control points. Based on Theorem 3, calculation error limit is ε.

3.5. The main operation of the algorithm is run in MulDiv(u, v, ε, flag). 4◦ of MulDiv(u, v, ε, flag)
shows that when calculating error of MulDiv(u, v, ε, flag) is halved, the number of iterations N
increases by one. Experience shows that MulDiv(u, v, ε, flag) usually runs not more than 40 steps.

4. CONVERGENCE AND ERROR ESTIMATION OF THE ALGORITHM

{δi}∞0 = {2−i}∞0 is a normal series with measurement radius R(δ) =
∞∑
i=0

δi = 2 [4].

5◦ and 6◦ of Subprogram1 MulDiv(u, v, ε) in 2 is based on iterative process (1).

Theorem 1. Let {δi}+∞
0 = {2−i}+∞

0 , x ∈ (−R(δ), R(δ)) = (−2, 2). For Subprogram1 MulDiv(u,
v, ε, flag) there are,
(a) in the case of flag=0, {zi} converges to u× v, |zN − u× v| < ε;
(b) when flag=1, {xi} converges to x/y, |xN − u/v| < ε.

Proof:
(a) From 2◦ ∼ 4◦ of MulDiv(u, v, ε, flag), for u 6= 0 and v 6= 0, there is

δN−1 < min(|u|−1 , 1)min(|v|−1 , 1)ε.

Conclusion can be deduced from theorem 7 of [4].
(b) Same as above, by pre-process in 4◦ of Subprogram1 MulDiv(u, v, ε, flag) and based on Theo-
rem 8 of [4], result can be obtained.

Theorem 2. Theorem 2. Nk
j (j = i − k + 1, ..., i) in Subprogram2 B Basis(k, t, {tj}n0 , ε) are cal-

culated values of B-spline basis functions of order k with t ∈ [ti, ti+1]. The calculation error limit
is ε.

Proof:
Let real value of B-spline basis function be N

k
i (t), ε

(k) = maxi,t

∣∣∣Nk
i −N

k
i (t)

∣∣∣, ε1 be error limit of
MulDiv(u, v, ε1, flag). From iterative process (1), Theorem 1, and 0 ≤ N

k
i (t) ≤ 1, there is

A shift-add algorithm for generating B-spline 275

∣∣∣Nk
i −N

k
i (t)

∣∣∣ =
∣∣∣
[
MulDiv

(
MulDiv (t− ti, ti+k−1 − ti, ε1, 1) , N

k−1
i , ε1

)

+ MulDiv
(
MulDiv (ti+k − t, ti+k − ti+1, ε1, 1) , N

k−1
i+1 , ε1

)]

−
[t− ti
ti+k−1 − ti

N
k−1
i (t) +

ti+k − t

ti+k − ti+1
N

k−1
i+1 (t)

]∣∣∣

≤
∣∣∣
[
MulDiv (t− ti, ti+k−1 − ti, ε1, 1)N

k−1
i +MulDiv (ti+k − t, ti+k − ti+1, ε1, 1)N

k−1
i+1

]

−
[

t− ti
ti+k−1 − ti

N
k−1
i (t) +

ti+k − t

ti+k − ti+1
N

k−1
i+1 (t)

]∣∣∣+ 2ε1

≤ |MulDiv (t− ti, ti+k−1 − ti, ε1, 1)|
∣∣∣Nk−1

i −N
k−1
i (t)

∣∣∣

+

∣∣∣∣
t− ti

ti+k−1 − ti
−MulDiv (t− ti, ti+k−1 − ti, ε1, 1)

∣∣∣∣N
k−1
i (t)

+ |MulDiv (ti+k − t, ti+k − ti+1, ε1, 1)|
∣∣∣Nk−1

i+1

]
−N

k−1
i+1 (t)

∣∣∣

+

∣∣∣∣
ti+k − t

ti+k − ti+1
− UV (ti+k − t, ti+k − ti+1, ε1, 1)

∣∣∣∣
∣∣∣Nk−1

i+1 (t)
∣∣∣+ 2ε1

≤
(∣∣∣∣

t− ti
ti+k−1 − ti

∣∣∣∣+ ε1

)
ε(k−1)+

(∣∣∣∣
ti+k − t

ti+k − ti+1

∣∣∣∣+ ε1

)
ε(k−1)+4ε1 ≤ 2(1+ε1)ε

(k−1)+4ε1,

or ε(k) ≤ 2(1 + ε1)ε
(k−1) + 4ε1.

Note that ε(1) = 0, ε1 ≤
ε

4
, ε(2) ≤ 4ε1 ≤ ε and

ε(k) ≤
(
2 +

ε

2

)
ε(k−1) + ε ≤ . . . ≤

(
2 +

ε

2

)k−2
ε(2) +

[(
2 +

ε

2

)k−2
− 1

]
ε

≤
(
2 +

ε

2

)k−2
ε +

[(
2 +

ε

2

)k−2
− 1

]
ε =

[
2
(
2 +

ε

2

)k−2
− 1

]
ε.

When k = 3 and ε ≤ 2

(
5

2
− 2

)
= 1, ε(3) ≤ 4ε.

When k = 4 and ε ≤ 2

(√
9

2
− 2

)
= 0.2426, ε(4) ≤ 8ε.

3◦ of B Basis(k, t, {tj}n0 , ε) pre-controls error according to discussion above. k > 4 are seldom
used. Result is proved.

Theorem 3. The calculation error limit of Bu in B S(k, t, {P u(tj)}n0 , ε) is ε.

Proof:
Let true value of B-spline function be B

u
(t), true value of B-spline basis function be N

k
i (t), ε1 be

error limit of MulDiv(u, v, ε1, flag), ε2 be error limit of B Basis(k, t, {tj}n0 , ε2). There is

∣∣Bu −B
u
(t)
∣∣ =

∣∣∣∣∣∣

i∑

j=i−k+1

[
MulDiv(P u(tj), N

k
j , ε1)− P u(tj)×N

k
j (t)

]
∣∣∣∣∣∣

≤

∣∣∣∣∣∣

i∑

j=i−k+1

[
P u(tj)

(
Nk

j −N
k
j (t)

)]
∣∣∣∣∣∣
+ kε1 ≤




i∑

j=i−k+1

|P u(tj)|


 ε2 + kε1.

276 F. Gu

Referring to Subprogram2 B Basis(k, t, {tj}n0 , ε), we can set ε1 = 2−2ε2. There is

∣∣Bu −B
u
(t)
∣∣ ≤




i∑

j=i−k+1

|P u(tj)|+ 2−2k


 ε2.

1◦ of B S(k, t, {P u(tj)}n0 , ε) guaranteed precision.

5. THE NUMERICAL EXPERIMENT

For 10 control points (0, 0.5), (1, 1), (2, 1.5), (3, 2), (4, 2.5), (5, 2.5), (6, 2), (7, 1.5), (8, 1), (9, 0.5),
where ti = xi, and error limit ε = 5× 10−8, t = 2.8, the algorithm was used to generate a B-spline
curve. Results are shown below. The number of iterations in Subprogram1 MulDiv(u, v, ε) was not
more than 40 steps.

Table 1. Calculation of B-basis functions.

B-spline basis function Calculated value for t = 2.8
with the algorithm

True value
for t = 2.8

Error

N1
2 (t) 1 1 0

N2
1 (t) 0.199999999953 0.2 −4.7× 10−11

N2
2 (t) 0.800000000047 0.8 4.7× 10−11

N3
0 (t) 0.019999999967 0.02 −3.3× 10−11

N3
1 (t) 0.659999999902 0.66 −9.8× 10−11

N3
2 (t) 0.32000000013 0.32 1.3× 10−10

N i
j(t) for other i ∈ {1, 2, 3} & j ∈ {0, ..., 9} 0 0 0

Coordinates of 8 points on the B-spline curve were calculated and shown below.

Table 2. 8 points on the B-spline curve.

t Calculated value of Bx
3 (t) True value of B

x

3(t) Error

2.2 0.7000000032 0.7 3.2× 10−9

2.8 1.3000000011 1.3 1.1× 10−9

3.4 1.90000000095 1.9 9.5× 10−10

4.0 2.49999999959 2.5 4.1× 10−10

4.6 3.10000000038 3.1 3.8× 10−10

5.2 3.70000000027 3.7 2.7× 10−10

5.8 4.30000000019 4.3 1.9× 10−10

6.4 4.90000000023 4.9 2.3× 10−10

t Calculated value of By
3 (t) True value of B

y

3(t) Error

2.2 0.85000000085 0.85 8.5× 10−10

2.8 1.1500000010 1.15 1.0× 10−9

3.4 1.33000000093 1.33 9.3× 10−10

4.0 1.00000000023 1 2.3× 10−10

4.6 0.40000000062 0.4 6.2× 10−10

5.2 −0.20000000017 −0.2 −1.7× 10−10

5.8 −0.8000000011 −0.8 −1.1× 10−9

6.4 −1.32000000095 −1.32 −9.5× 10−10

A shift-add algorithm for generating B-spline 277

It showed that calculation errors were under control. Data points of the B-spline curve are shown
below. Black points are control points. White points are points on B-spline curve generated by the
algorithm with t = 2.2, 2.8, 3.4, 4.0, 4.6, 5.2, 5.8, 6.4.

Fig. 1. Data points of the B-spline curve.

6. CONCLUSION

In this paper a CORDIC based shift-add algorithm for generating B-spline curves is presented. It
can be realized by hardware without multiplier, or coded with assembly language and run in the
basic computing system which exists in many application systems.
The algorithm is composed of three subprograms and a main program. Convergence of the

algorithm was proved. Errors of every subprogram and the main program were estimated. The
error of the algorithm is well controlled. Main iteration process in the algorithm usually runs no
more than 40 steps. A numerical experiment was presented to validate the algorithm. This is an
effective and efficient algorithm and can be used for complex curve plotting in an embedded system.

APPENDIX

Definition in [4]. A normal series {δi}∞0 is a positive number series which decreases monotonically
and has a finite sum R(δ) =

∞∑
i=0

δi. For all x ∈ {x : |x| ≤ R(δ)} there is |x− Fn(x, δ)| ≤ δn, where

Fn(x, δ) is defined as

x0 = x, xi+1 = xi − sgn(xi)× δi, i = 0, 1, . . .

Fn(x, δ) =

n∑

i=0

sgn(xi)× δi.

{
2−i
}∞
0
is a normal series.

Lemma 1 of [4]. For a normal series {δi}∞0 there is δn+1 <
∞∑

i=n+1
δi ≤ δn.

Proof. Let x =
∞∑
i=0

δi. There is Fn(x, δ) =
n∑

i=0
δi. From the definition of the normal series there is

|x− Fn(x, δ)| =
∞∑

i=n+1

δi ≤ δn.

Left in equation is apparent. Lemma is proved.
Define an iterative process as




x1 = 0, y1 = y, z1 = 0,

si = sgn (xi) ,

xi+1 = xi − si × 2−i,

zi+1 = zi + si × 2−i × y1, i = 1, 2, . . .

xn+1 ≈ 0, zn+1 ≈ x× y.

(A1)

278 F. Gu

Theorem 7 of [4]. {zi} defined in iterative process (A1) converges to x × y, and there is
|zn+1 − x× y| ≤ 2−n |y|.

Proof. From iterative process (A1) there is zi+k − zi ≤ y
i+k−1∑
j=i

2−jsj.

From Lemma 1 there is |zi+k − zi| ≤ |y|
i+k−1∑
j=i

2−j ≤ |y|
∞∑
j=i

2−j ≤ |y| 2−i+1. {zi} is a Cauchy

series. The design of iterative process (A1) makes zi → x × y. Let i = n + 1 and k → ∞ there is
|zn+1 − x× y| ≤ 2−n |y|.
Define another iterative process as





x1 = 0, y1 = x, z1 = −y,

si = −sgn (zi) ,
xi+1 = xi + si × 2−i,

zi+1 = zi + si × 2−i × y1, i = 1, 2, . . .

xn+1 ≈ y/x, zn+1 ≈ 0.

(A2)

Theorem 8 of [4]. {xi} defined in iterative process (A2) converges to y/x, and there is

|xn+1 − y/x| ≤ 2−n.

Proof. Similar as proof of Theorem 7.

ACKNOWLEDGEMENTS

I would like to acknowledge with appreciation the support received. This work was supported by Sci-
entific Research Fund of Zhejiang Provincial Education Department [Grant Number Y201223296],
China.

REFERENCES

[1] G. Aumann. Corner cutting curves and a new characterization of Bézier and B-spline curves. Computer Aided
Geometric Design – CAGD, 14(5): 449–474, 1997.

[2] C. de Boor. Splines as linear combinations of B-splines, Approximation Theory II, G.G. Lorentz, C.K. Chui and
L.L. Schumaker [Eds.], pp. 1–47, Academic Press, New York, 1976.

[3] C. de Boor, K. Höllig. B-splines without divided differences, in Geometric Modeling, G. Farin [Ed.], SIAM,
pp. 21–27, 1987.

[4] GU Feng. Convergence and Error Estimation of Coordinate Rotating Algorithm and Its Expansion. Chinese
Journal of Numerical Mathematics and Applications, 28(2): 1–9, 1987.

[5] J.E. Volder. The CORDIC Computing Technique, IRE Transactions on Electronic Computers, EC-8(9): 330–334,
1959.

[6] J.M. Muller. Elementary Functions, Algorithms and Implementation, Birkhauser Boston, 1st edition, 1997. 2nd
edition, 2006, pp. 133–156.

[7] N. Eklund. CORDIC: Elementary Function Computation Using Recursive Sequences. International Conference
on Technology in Collegiate Mathematics (ICTCM), 11, 1998.

[8] R. Andraka. A Survey of CORDIC Algorithms for FPGA Based Computers. Proceedings of the 1998
ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays (FPGA), pp. 191–200, 1998.

[9] W. Bohm, G. Farin, J. Kahmann. A survey of curve and surface methods in CAGD, Computer Aided Geometric
Design, 1: 1–60, 1985.

[10] X. Hu, R. Harber, S. Bass. Expanding the Range of Convergence of the CORDIC Algorithm. IEEE Transactions
on Computers, 40: 13–21, 1991.

