
Computer Assisted Methods in Engineering and Science, 23: 69–81, 2016.
Copyright © 2016 by Institute of Fundamental Technological Research, Polish Academy of Sciences
The impact of the Dirichlet boundary conditions
on the convergence of the discretized system

of nonlinear equations for potential problems

Jan Kucwaj
Institute of Computer Science
Faculty of Physics, Mathematics and Computer Science
Cracow University of Technology
Warszawska 24, 31-155 Kraków, Poland
e-mail: jkucwaj@pk.edu.pl

The purpose of this paper is the analysis of numerical approaches obtained by describing the Dirichlet
boundary conditions on different connected components of the computational domain boundary for po-
tential flow, provided that the domain is a rectangle. The considered problem is a potential flow around
an airfoil profile. It is shown that in the case of a rectangular computational domain with two sides per-
pendicular to the speed direction, the potential function is constant on the connected components of these
sides. This allows to state the Dirichlet conditions on the considered parts of the boundary instead of
the potential jump on the slice connecting the trail edge with the external boundary. Furthermore, the
adaptive remeshing method is applied to the solution of the considered problem.

Keywords: adaptation, rate of convergence, remeshing, Delaunay triangulation, finite element method,
potential flow, Kutta-Joukovsky condition, Dirichlet condition.

1. INTRODUCTION

The main goal of this paper is to compare the convergence speed of the method to the solution
of the potential flow problem by stating formally different, but physically equivalent mathematical
formulations. The difference lies in stating the Dirichlet conditions [3, 5] on different, connected
components of a part of the rectangular computational domain boundary, which is perpendicular
to the speed direction. Assuming that the speed at infinity has a horizontal direction, the vertical
component of the speed vanishes, which means that the speed potential is constant on the vertical
component of the boundary. The value of the potential is thus chosen to satisfy the Kutta-Joukovsky
condition. The choice of the connected component acts on the speed of the convergence of the secant
method used to solve the nonlinear algebraic equation representing the Kutta-Joukovsky condition
and the speed of the Newton-Raphson method for the nonlinear algebraic system of equations
representing the finite element approximation of the considered problem. It can be mentioned that
the loop over secant method is external to the loop of the solution of nonlinear system of algebraic
equations representing a discretized form of the physical problem. The whole problem is led to the
solution of a system of two equations, i.e., a nonlinear elliptic equation of the second order and
nonlinear algebraic equation of the so-called the Kutta-Joukovsky condition [1, 15]. The parameters
defining the nonlinear algebraic equation of the Kutta-Joukovsky condition depend on the solution
of the differential equation. The algebraic system of equations is solved for every step of iteration
of the secant method used in the solution of Kutta-Joukovsky condition. An adaptive method
based on numerical grid generator with a mesh size function [6, 7] is applied. The secant method
is applied to satisfy Kutta-Joukovsky condition. Six–ten iterations of the secant method gave an
error of order 10−9.

70 J. Kucwaj

2. THE CLASSICAL FORMULATION OF THE PROBLEM

It is assumed that the flow is stationary, irrotational, compressible, and inviscid in domain Ω around
the profile P (Fig. 1). The following notations are used:
ΓP – the boundary of profile P,
Σ – the slit from A to B,
Γ∞ – external component of the boundary Ω.

Fig. 1. Computational domain.

The boundary of Ω consists of the following parts (Fig. 1):

∂Ω = Γ∞ ∪ ΓP , Γ∞ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5, (1)

whose interiors do not intersect. The curve Γ∞ is an artificially taken boundary to obtain bounded
computational domain. The boundary ΓP is the border of the contact with an obstacle, which has
vertex modelling of the trail edge [1]. The unbounded domain besides Γ∞ is introduced as

Ωc = R2/(Ω ∪ P). (2)

From the continuity equations the nonlinear differential equation is obtained [1]

div[ρ(∣∇φ∣2)∇φ] = 0 in Ω, (3)

where φ is the potential of the speed

v = ∇φ and ρ(∣∇φ∣2) = ρ0 (1 − κ − 1
2a2

0

∣∇φ∣2)
1

κ−1

is the gas density.
Here κ > 1 is the adiabatic gas constant, e.g., κ = 1.4 for dry air. The constants ρ0, a0 are the

density and the local speed of sound, respectively, for the motionless gas.

The impact of the Dirichlet boundary conditions on the convergence... 71

Classical boundary conditions

The boundary conditions are as follows [1]:

∂φ+

∂n
− ∂φ

−

∂n
= 0 on Σ (4)

where φ+ and φ− are the values of φ over upper and lower part on the slit respectively and

φ+ − φ− = β (5)

for some jump β on Σ (Fig. 2),

ρ(∣∇φ∣2)∂φ
∂n
= ρ(∣v∞∣2)v∞n∞ on Γ∞, (6)

where n∞ is the external normal to Γ∞, and ρ∞ = ρ(∣v∞∣).
To determine the jump β, we need an additional condition the so-called Kutta-Joukovsky con-

dition:

K(β) = ∣∇φ+∣2A − ∣∇φ−∣2A = 0, (7)

at the trail edge.

Fig. 2. The slit from trail edge to the domain boundary.

Weak formulation

For the weak formulation, the following functional spaces are introduced [1, 8]:

W 1,p(Ω) = {v ∈ Lp(Ω), ∂v

∂xi
∈ Lp(Ω), i = 1,2}, (8)

W 1,p(Ω̇) = {v ∈ Lp(Ω̇), ∂v

∂xi
∈ Lp(Ω̇), i = 1,2}, (9)

W 1,∞(Ω̇) = {v ∈ L∞(Ω̇), ∂v

∂xi
∈ L∞(Ω̇), i = 1,2}. (10)

Multiplying (3) by an arbitrary trial function ψ and, integrating by parts and taking into account
the Neumann boundary conditions the following weak formulation is obtained [1, 8]:

∫ ∫
Ω

ρ(∣∇φ∣)∇φ∇ψdxdy = ∫
Γ

hvdΓ, ψ ∈W 1,∞(Ω̇), (11)

72 J. Kucwaj

φ+ − φ− = β for some jump β on Σ, (12)

∣∇φ+∣2A − ∣∇φ−∣2A = 0, (13)

where

h = ρ∞φ∞n∞ on Γ∞. (14)

Here, it can be mentioned that in the weak formulation only the conditions (12) and (13) must be
taken into account. The conditions (4) and (6) are taken into account in the integration by part,
and in a numerical solution they are satisfied in an approximate way [14].

The weak formulation (11)–(14) can be equivalently formulated as a search for the extremum of
the following functional:

I(φ) = 1

2
∫ ∫

Ω̇

R(∣∇φ∣)dxdy − ∫
Γ

hvdΓ, (15)

where

R(s) = s

∫
0

ρ(s)ds. (16)

Equation (3) is directly obtained from Euler’s equations of variational calculus applied to (15). By

the substitution F (x, y,φ,φx, φy) = 1

2
R(∣∇φ∣2), the following is obtained:

I(φ) = ∫
Ω̇

F (x, y,φ,φx, φy)dΩ̇ − ∫
Γ

hvdΓ, (17)

where Ω ⊂ R2 is a domain of the variational problem.

3. EQUIVALENT FORMULATIONS

It is possible to formulate three equivalent problems of the potential flow besides the formulation
presented in the previous section (15). All of them differ from (15) by replacing the boundary
condition (5). Namely, the speed v at infinity is perpendicular to the Γ1, Γ2, Γ3 vertical parts
of the computational domain. This means that the vertical components of v are equal to 0, then
(Fig. 1)

vy = ∂φ
∂y
= 0 on Γ1 ∪ Γ2 ∪ Γ3. (18)

From this it follows:

φ = constant on Γ1,

φ = constant on Γ2,

φ = constant on Γ3.

The impact of the Dirichlet boundary conditions on the convergence... 73

Formulation I

Search for stationary point of the functional:

I(φ) = 1

2
∫ ∫

Ω̇

R(∣∇φ∣)dxdy − ∫
Γ

hvdΓ, (19)

where

R(s) = s

∫
0

ρ(s)ds. (20)

With the boundary condition and the Kutta-Joukovsky condition:

φ = β for some β on Γ1, (21)

∣∇φ+∣2A − ∣∇φ−∣2A = 0, (22)

where

h = ρ∞v∞n∞ on Γ∞. (23)

Formulation II

Search for stationary point of the functional:

I(φ) = 1

2
∫ ∫

Ω̇

R(∣∇φ∣)dxdy − ∫
Γ

hvdΓ, (24)

where

R(s) = s

∫
0

ρ(s)ds. (25)

With the boundary condition and Kutta-Joukovsky condition:

φ = β for some β on Γ2, (26)

∣∇φ+∣2A − ∣∇φ−∣2A = 0, (27)

where

h = ρ∞v∞n∞ on Γ∞. (28)

Formulation III

Search for stationary point of the functional:

I(φ) = 1

2
∫ ∫

Ω̇

R(∣∇φ∣)dxdy − ∫
Γ

hvdΓ, (29)

where

R(s) = s

∫
0

ρ(s)ds. (30)

74 J. Kucwaj

With the boundary condition and the Kutta-Joukovsky condition:

φ = β for some β on Γ3, (31)

∣∇φ+∣2A − ∣∇φ−∣2A = 0, (32)

where

h = ρ∞v∞n∞ on Γ∞. (33)

All three formulations are equivalent to the classical formulation presented in Sec. 2 such that
both partial derivatives are that same for all cases. It follows from that all physical conditions
are satisfied in all formulations including the Kutta-Joukovsky condition (32), and in all cases the
solution is unique. The potential functions usually differ from each other only by a constant.
Formal pure mathematical proof is as follows.
It is known that the solution of the classical problem exists and is unique [2]. Let C1 be the

restriction of the solution φ to the Γ1 of the classical formulation (it is a constant) e.q., φ∣Γ1=C1

.

Additionally, we assume that φ = φI , φII , φIII are the solutions appropriately for problems I, II, III.
The restriction of φI to the Γ1 is a constant too, e.q., φI ∣Γ1=C2

. It can be mentioned that adding a

constant to any of those four functions gives a function satisfying Eq. (3) and the Kutta-Joukovsky
condition (7), because both equations depend only on partial derivatives of the solution. If this
is posed for the problem I with φI ∣Γ1=C1

, then the obtained solution φ∗ = φ for the whole domain.
Additionally, φ∗ = φI +C1−C2. This follows from the uniqueness of the considered problem with the
Dirichlet boundary conditions. A very similar reasoning can be provided for the solutions φ = φI ,
φII , φIII .

4. FINITE ELEMENT METHOD DISCRETISATION

For the finite element solution to the problem, the grid T0 is generated with the given, positively
defined mesh size function [9]: γ0 ∶ Ω↦ R. Then, the approximation space is defined as

V 0 = {v ∶ n0

⋃
i=1

T
0

i ↦ R, v continuous, v∣T 0

i

is a polynomial of first order ∀i} , (34)

where T0 = {Ti ∶ i = 1, . . . n0} is the set of non-intersecting triangles covering the domain.
Introducing the finite element basis {Ui}Ni=1 in to the space V 0 the potential can be expresses as

φ =
N

∑
i=1

λiUi. The coefficients λ1, λ2, . . . , λN are found from the extremum conditions of a function

of N -variables:

gk(λ1, λ2, . . . , λN) =
∂I (N

∑
i=1

λiUi)
∂λk

= 0, for k = 1, . . . ,N. (35)

The following vector and matrix are respectively introduced:

DF = [∂F
∂φ

,
∂F

∂φx
,
∂F

∂φy
]T , (36)

DFF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2F

∂φ∂φ
,

∂2F

∂φ∂φx
,

∂2F

∂φ∂φy

∂2F

∂φx∂φ
,

∂2F

∂φx∂φx
,

∂2F

∂φx∂φy

∂2F

∂φy∂φ
,

∂2F

∂φy∂φx
,

∂2F

∂φy∂φy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (37)

The impact of the Dirichlet boundary conditions on the convergence... 75

and

U =
⎡⎢⎢⎢⎢⎢⎢⎣
U1, . . . , UN

U1,x, . . . , UN,x

U1,y, . . . , UN,y

⎤⎥⎥⎥⎥⎥⎥⎦
. (38)

The following formulas can be carried out [8]

gj = ∫
Ω

DT
Fψj dxdy =

NT

∑
e=1
∫
Te

DT
Fψj dxdy, (39)

D(g1, g2, . . . , gN)
D(λ1, λ2, . . . , λN) = [

∂gi

∂λj
] =
⎡⎢⎢⎢⎢⎢⎣
NT

∑
e=1
∫
Te

ψT
i DFFψj dxdy

⎤⎥⎥⎥⎥⎥⎦
, (40)

where ψk is the k-th column of the matrix U.
The following vector and matrix are respectively introduced:

G(Λ) = [g1(Λ), . . . , gN(Λ)]T , JG = [∂gi
∂λj
]. (41)

Provided that the set {ue1, ue2, . . . , uene
} is a set of shape functions of the element numbered by e for

e = 1, . . . ,NT , then the matrix ue is introduced:

ue =
⎡⎢⎢⎢⎢⎢⎢⎣
ue1, . . . , uene

ue1,x, . . . , uene,x

ue
1,y, . . . , uene,y

⎤⎥⎥⎥⎥⎥⎥⎦
, (42)

where ne is the number of the shape function of e-th element. By these notations the e-th element
components of the assembled matrix Ae and right-hand side vector ge are appropriately equal:

Ae ∶= uT
e DFFue, ge ∶=DT

Fue. (43)

The considered problem in the form of a search for a extremum of the functional (17) gives
a possibility to perform a general computer code giving the solution possibility of class of pro-
blems, which can lead to such a formulation. The only replacement routines would be the routines
calculating vector DF , matrix DFF and starting vector Λ for the Newton-Raphson method.

5. APPLICATION OF THE NEWTON-RAPHSON METHOD TO THE SOLUTION
OF NONLINEAR ALGEBRAIC SYSTEM OF EQUATIONS

To solve the system of nonlinear algebraic equations the Newton-Raphson [15] method is applied.
The vector G and matrix JG depend on Λ. The Newton-Raphson method consists of the following
steps:

1. Fix the initial vector Λ0, set i = 0;
2. Repeat points (a), (b), (c) until ∣∣G(Λi)∣∣ < ǫ ∣∣Λi∣∣;
(a) solve the following system of linear equations: JG(Λi)∆Λi+1 = −G(Λi);
(b) Λi+1 = Λi +∆Λi+1;

(c) i ∶= i + 1.

76 J. Kucwaj

It is assumed, that the norm in RN is defined as

∣∣x∣∣ = max
i=1,...,N

∣xi∣, where x = (x1, . . . , xN)T ∈ RN . (44)

The sequence of vectors Λ0,Λ1, . . . is convergent. At every iteration step the Jacobi matrix must
be assembled. In the presented examples, usually 8–15 iterations were sufficient to obtain the value∣∣G(Λi)∣∣ of residuum norm of order 10−9.
6. UNSTRUCTURED GRID GENERATION WITH MESH SIZE FUNCTION
IN ARBITRARY DOMAINS

The generation of a grid with arbitrary size is performed by the 2D generator [6, 9]. The main
idea of grid generation is based on the algorithm of the advancing front technique and the gener-
alization of the Delaunay triangulation for wide class of 2D domains including curved boundaries
and multiconnectivity. It is assumed that the domain is multiconnected with arbitrary numbers of
internal loops. The boundary of the domain may be composed of the following curves:

● a straight line segment,
● an arc of circle,
● a B-spline curve.
In the case of the advancing front technique combined with the Delaunay triangulation the point
insertion and triangulation can be divided into the following steps:

1. Generation of points on the boundary components of the domain boundary.

2. Generation of internal points by the advancing front technique.

3. Delaunay triangulation of the previously obtained set of points.

4. Laplacian smoothing of the obtained mesh.

An algorithm for point generation on a particular curve depends on the type of the boundary
curve [6].

7. ALGORITHM FOR REMESHING

The whole adaptation algorithm consists in successive generation of meshes {Tν} covering the
computational domain, where ν = 0,1,2, . . . , with an updated mesh size function. By using every
mesh of the sequence the problem is solved, and, next the appropriate error indicators at each point
of the mesh are calculated. Having the values of errors at nodes, a continuous error function for the
whole domain is constructed by using a piecewise linear interpolation. Clearly this is a simple plane
for each element. In each element, the error function spans three nodes. When it is extended to
all nodes, one obtains the error function for the whole domain. The error function is appropriately
transformed to obtain a multiplier for the mesh size function. The mesh size function decides how
big are the newly generated elements.

The proposed approach gives the possibility to solve the considered problem for well-conditioned
meshes and to obtain the optimally graded meshes.

The impact of the Dirichlet boundary conditions on the convergence... 77

7.1. Remeshing scheme and the whole algorithm

The algorithm for remeshing can be divided into the following steps:

1. Preparation of the information about the geometry [16] and boundary conditions of the problem
to be solved.

2. Arrangement of an initial mesh size function.

3. Mesh generation with the mesh size function.

4. Solution to the problem given by equation (35) for the generated mesh.

5. Calculation of nodal error indicator.

6. Definition of the new mesh size function by using the errors found at every point.

7. If the error is not small enough go to point 3.

8. End of computations.

In the performed numerical simulations it was sufficient to make 3 to 7 steps of adaptation.

The overall algorithm is presented in the flow chart (Fig. 3). It can be observed that three
appropriately nested iterations are executed.

Fig. 3. The flow chart of the whole algorithm.

78 J. Kucwaj

7.2. Error indicators

The applied indicators are calculated directly for every node, and not for elements like in [6, 10]:
Let ei for i = 1, . . . , nν be an error indicator at i-th apex of the mesh Tν , and Pν = {Pi, i = 1, . . . , nP }
– set of nodes. We define a patch of elements for every node Pi as

Li = {k ∶ Pi ∈ T k} for i = 1, . . . , nP . (45)

1. The first proposed error indicator is based on the discretized form of Eq. (11). At every node

partial derivatives are found
∂uh

∂x
,
∂uh

∂y
,
∂2uh

∂x2
, . . . according to the following recipe:

Having found uh(Pi) for i = 1, . . . ,NP , the recurrent formula is applied:

∂uh

∂x
(Pi) =

∑
k∈Li

∂ukh
∂x
(Pi)area(Tk)

∑
k∈Li

area(Tk) , (46)

where ukh is the restriction of the approximate solution to the k-th element. As the restriction

of ukh of the solution uh to the k-th element is a linear combination of shape functions of the
k-th element, then:

ukh =
ne

∑
j=0

λjN
k
j , what gives

∂ukh
∂x
=

ne

∑
j=0

λj
∂ (Nk

j)
∂x

, (47)

where Nk
j is a shape function of the k-th element. Formula (47) is applied at nodal points. The

derivatives found in that way
∂uh

∂x
(Pi) i = 1, . . . NP are used for calculation of second order

derivatives at the nodes in the similar way by using the recurrent formulas:

∂2uh

∂x2
(Pi) = ∂

∂x
(∂uh
∂x
)(Pi). (48)

In the similar way, it is possible to calculate derivatives of arbitrary order and apply them to
the formula (11) to obtain the value of the error indicator at i-th node.

2. In this case, it is suggested to evaluate directly the values of derivates of error indicator at every
node of the mesh in the following way:

ei =
¿ÁÁÀ ∑

k∈Li, l∈Li, l≠k

(∂ui
∂x
− ∂uk
∂x
)2 + (∂ui

∂y
− ∂uk
∂y
)2, (49)

where Li is the set of numbers of elements meeting at i-th node.

From the numerical analyses it follows that the application of both indicators causes the gener-
ation of similar meshes for both cases.

7.3. Modification of the mesh size function

The modification of the mesh size function is performed at every adaptation step for the realization
of the next one. The main idea of this part of the algorithm relies on reduction of the values of the
mesh size function by an appropriately chosen function. The chosen function is continuous, linear
and has the smallest value at the node where the value of the error indicator is maximal and the

The impact of the Dirichlet boundary conditions on the convergence... 79

greatest where the value of the error is minimal. It increases when the error decreases. To describe
the algorithm of the mesh size function modification it is necessary to use the values of the error
indicators at nodes:

α = min
k=1,2,...,NNOD

ẽk, β = max
k=1,2,...,NNOD

ẽk, (50)

where NNOD is the number of nodes. Obviously, α ≤ ẽk ≤ β for k = 1, . . . ,NNOD.
The following new values are introduced:

λ – a value indicating the greatest mesh size function reduction,
µ – a value indicating the smallest mesh size function reduction.
Usually λ and µ have positive values of less than 1, and additionally µ < λ. Let define the affine
transformation:

l ∶ [α,β] ↦ [µ,λ] (51)

satisfying conditions: l(α) = λ and l(β) = µ, where l(x) = λ − µ
α − β (x − α) + λ. By these assumptions

µ ≤ l(x) ≤ λ. Provided that
Qi = l(ẽi) for i = 1, . . . ,NNOD, (52)

then we have: µ =mini=1,2,...,NNOD
Qi, λ =maxi=1,2,...,NNOD

Qi.

Let us introduce the function r ∶ D ↦ R as follows: r(x) = Π(x), if x ∈ T s, where Π is the affine
mapping of two variables satisfying the following conditions:

Π(Pi) = Qi for i = 1,2,3, (53)

where P1, P2, P3 are the vertices of the triangle Ts of the triangulation of Ω, and appropriately
Q1, Q2, Q3 values defined by the formula (52). The function r(x) is defined for the whole domain
because the triangles {T s}ne

s=1 cover it. The new mesh size function is defined as follows:

γi+1(x) = γi(x)r(x). (54)

As µ ≤ r(x) ≤ λ then µγi(x) ≤ γi+1(x) ≤ λγi(x).
It is easy to show that: ∃x, y ∈ Ω such that: µγi(x) = γi+1(x), and γi+1(y) = λγi(y).
It can be shown that

∣∣γi+1 − γi∣∣Ω,max
≤ ∣∣γi∣∣Ω,maxmax{∣1 − µ∣, ∣1 − λ∣}, (55)

where

∣∣γ∣∣Ω,max ∶=max
x∈Ω
{∣γ(x)∣}. (56)

8. NUMERICAL RESULTS

The numerical simulations were focused on stating the Dirichlet boundary conditions on the con-
nected boundary conditions for different parts of the boundary Γ1 ∪Γ2 ∪∪Γ4 of the computational
domain (Fig. 1). The simulations were performed for a subsonic inviscid potential flow for profile
NACA0012 with angle of attack 5○ with 0.1 Mach for the speed at infinity. It is assumed that speed
has horizontal direction from left to right. In all cases, the initial meshes contained 657 elements,
but final meshes had therefore about 4000–6000 triangles.
In Fig. 4 the adapted mesh after three steps of remeshing is presented. In Table 1 the number

of iterations for the Newton-Raphson method and the number of iterations for the secant method
to the solution of Kutta-Joukovsky condition for all the three formulations are presented.

80 J. Kucwaj

Fig. 4. Final mesh for NACA0012 with angle of attack 5○.

Table 1. Number of iterations.

Number
of N–R iterations

Number
of secant method iterations

Number of points
on the Dirichlet boundary

Formulation I 15 9 123

Formulation II 13 8 147

Formulation III 8 6 312

9. CONCLUSIONS

In this paper, the new equivalent formulations are proposed. The presented numerical experiments
prove that the method is most efficient in the case of stating the Dirichlet conditions for bound-
ary Γ3. In all cases, all physical conditions are satisfied. It is proved that there exists an unique
solution for each of these three equivalent formulations. It is observed that the number of iterations
for both the Newton-Raphson and the secant method is smaller when the number of points with
the stated Dirichlet conditions is greater.
Further studies will be connected with:

● performance of more numerical simulations,
● taking into account conditioning of stiffness matrix,
● improvement of mesh generation methods especially taking into account curve generation tech-
niques,

● evolving a method for anisothropic adaptation by using the generator with mesh size function.

The impact of the Dirichlet boundary conditions on the convergence... 81

REFERENCES

[1] H. Berger, G. Warnecke, W.L. Wendland. Analysis of a FEM/BEM coupling method for transonic flow compu-
tations. Mathematics of Computation, 66(220): 1407–1440, 1997.

[2] B. Bojarski, Subsonic flow of compressible fluid, Arch. Mech., 18(4): 497–520, 1966.
[3] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, Amsterdam,
New York-Oxford, Studies in Mathematics and its Application, 1978.

[4] L. Demkowicz, J.T. Oden, W. Rachowicz, O. Hardy. Towards a universal h-p adaptive finite element strategy.
Part 1: Constrained approximation and data structure. Comp. Meth. Appl. Mech. Engrg., 77: 79–112, 1989.

[5] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux. A distributed Lagrange multiplier/fictitious domain
method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods
Appl. Mech. Engrg., 184: 241–267, 2000.

[6] J. Kucwaj. The algorithm of adaptation by using graded meshes generator. Computer Assisted Mechanics and
Engineering Sciences, 7: 615–624, 2000.

[7] J. Kucwaj. Adaptive unstructured solution to the problem of elastic-plastic hardening twist of prismatic bars.
Technical Transactions. Fundamental Sciences [in Polish: Czasopismo Techniczne. Nauki Podstawowe], 2-NP:
63–79, 2014.

[8] J. Kucwaj. Numerical investigations of the covergence of a remeshing algorithm on an example of subsonic flow.
Computer Assisted Mechanics and Engineering Sciences, 17: 147–160, 2010.

[9] J.F. Thompson, B.K. Soni, N.P. Weatherwill. Handbook of Grid Generation. CRC Press, Boca Raton, 1999.
[10] S.H. Lo. Finite element mesh generation and adaptive meshing. Progress in Structural Engineering and Materials,
4(4): 381–399, 2002.

[11] J.T. Oden. h-p adaptive finite element methods for compressible and incompressible flows. Computing Systems
in Engineering, 1(2–4): 523–534, 1990.

[12] A. Zdunek, W. Rachowicz. hp-Adaptive CEM in practical applications, Lecture Notes in Computational Science
and Engineering, 76: 339–346, 2011.

[13] A. Safjan, L. Demkowicz, D.P. Young. Compressible flow hp-adaptivity and Kutta-Joukovsky condition. The
Boeing Company Project, 2006.

[14] D. Wang, O. Hassan, K. Morgan, N. Weatherill. Enhanced remeshing from STL files with applications to surface
grid generation. Comm. in Num. Meth. in Engrg., 65: 734–751, 2006.

[15] O.C. Zienkiewicz, J.Z. Zhu. Adaptivity and mesh generation, Int. J. Num. Meth. Engng., 32: 783–810, 1991.
[16] MAdLib: an open source Mesh Adaptation Library, http://sites.uclouvain.be/madlib/, 2010.

