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The paper contains some estimates of an approximation to the solution of the problem of acoustic waves’s
scattering by an elastic obstacle in two dimensions. The problem is approximated by the isogeometric
adaptive method based on the known NURBS functions. The estimates show how the error of an approx-
imation depends on the size of intervals and the degree of functions.
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1. INTRODUCTION

The isogeometric method, inaugurated by T.J.R. Hughes et al. [7] is the subject of intensive devel-
opment in the last few years. There were organized special conferences and workshops dedicated to
this area, e.g., HOFEIM in June 2011 in Cracow, Poland and CIME Summer School “IsoGeometric
Analysis: a New Paradigm in the Numerical Approximation of PDEs” in June 2012 in Cetraro,
Italy. The method concerns the application of non-uniform rational B-splines (NURBS) to approx-
imation of curves and surfaces. Its undoubtful advantage is the high but adaptable regularity of
these functions at the boundary points of intervals and exact reproduction of many curves, e.g.,
conics, what is unavailable for finite elements, even in their isoparametric version. Some a-priori
error estimates for this method were given in [2] and [3]. The aim of the presented paper is the
extension of these estimates to the problem of elastic scattering of acoustic waves.

The phenomenon of propagation of acoustic waves in the space is described mathematically by
the Helmholtz differential equation in the whole (unbounded) domain and the Sommerfeld condition
at infinity. One of used approaches, apart from replacing the problem by the one in a bounded
domain, is the boundary integral equation method (BIEM). These equations are discretized with
the boundary elements. Theoretical aspects of this method were given e.g., in [5, 8, 9]. There are
many publications concerning the adaptive boundary element methods, e.g., [6, 14, 16–18].

The question arises, whether approximation of the shape of the boundary and the solution of
the BIEM by NURBS, instead of the boundary elements, could give better results. The research
presented below was done to answer this question in a theoretical way. Author is going to complete
it in the future by numerical convergence tests.

2. CONSTRUCTION OF NURBS

In this part, we present some definitions of NURBS given in [7, 12] and [15]. More detailed expla-
nations and examples may be found there.
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• Bernstein polynomials
For any integer d ≥ 0, d + 1 Bernstein polynomials of the degree d on the interval [0, 1] are
defined by the formula:

Bd
i (t) =

(
d

i

)
ti(1− t)d−i, t ∈ [0, 1], i = 0, . . . , d. (1)

For i 6∈ {0, . . . , d} Bd
i (t) ≡ 0. The polynomials fulfil the following recurrence relation:

Bd
i (t) = (1− t)Bd−1

i (t) + tBd−1
i−1 (t), d ≥ 1, i = 0, . . . , d. (2)

The first derivative of this function is

d

dt
Bd

i = d(Bd−1
i−1 −Bd−1

i ). (3)

Derivatives of higher orders could be evaluated analogously.

• Bezier curves
To construct such a curve in ℜn we need a sequence of control points

Pi ∈ ℜn, i = 0, . . . , d.

The Bezier curve of a degree d is then defined as

C(t) =
d∑

i=0

Bd
i (t)Pi. (4)

Derivatives of Bezier curves have the form:

d

dt
C(t) =

d∑

i=0

d

dt
Bd

i (t)Pi =
d−1∑

i=0

dBd−1
i (t)∆Pi,

dk

dtk
C(t) =

d−k∑

i=0

d!

(d− k)!
Bd−k

i (t)∆kPi,

where

∆1Pi = ∆Pi = Pi+1 − Pi,

∆k+1Pi = ∆kPi+1 −∆kPi.

Calculation of the k-th derivative at the endpoint t = 0, where only Bd
0(0) 6= 0 or t = 1, where

Bd
d(1) 6= 0 involves then k + 1 neighbouring control points. The Bezier curve can be defined
on any [α, β] interval. Then, we need an invertible affine transformation t : [α, β] → [0, 1]. The
curve is described by the formula:

C(t(τ)) =
d∑

i=0

Bd
i (t(τ))Pi, τ ∈ [α, β]. (5)

To increase the degree of the curve we have to take Bernstein polynomials of a degree d+1 and
add one more control point. To preserve the shape of the curve we have to change all points
using the following formula for their coordinates

P ∗
i =

d+ 1− i

d+ 1
Pi +

i

d+ 1
Pi−1, i = 0, . . . , d+ 1.
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A Bezier curve may be stuck together with another Bezier curve keeping Ck-regularity in the
sticking point. The derivatives of both functions, including the derivative of order 0, i.e., a func-
tion itself, up to the order k, should be equal there. It means that the k + 1 control points of
both curves have to fit on themselves, especially ∆kPi should be equal or proportional to the
intervals of their arguments.

• B-spline curves
B-spline curves of a degree d may be built by sticking Bezier curves, but there is a much simpler
method. At first we choose a vector consisting of r + 1 (r ≥ d) real numbers ξi, named knots:

Ξ = {ξ0, ξ1, . . . , ξn}, a = ξ0 ≤ ξ1 ≤, . . . ,≤ ξr = b,

where [a, b] ∈ ℜ. B-spline basis functions are defined as follows:

Ni,0(ξ) =

{
1 if ξ ∈ [ξi, ξi+1],

0 in the other case.
(6)

If ξi = ξi+1 then Ni,0 ≡ 0. Recursively, for k = 1, . . . , d

Ni,k(ξ) =
ξ − ξi

ξi+k − ξi
Ni,k−1(ξ) +

ξi+k+1 − ξ

ξi+k+1 − ξi+1
Ni+1,k−1(ξ),

i = 0, . . . , r(k) = r − k − 1.

(7)

It may be easily seen that for ξ0 = . . . = ξd = 0, ξd+1 = . . . = ξ2d+1 = 1 functions Ni,d(ξ) are
simply Bernstein polynomials of a degree d. If we construct a B-spline curve with a knot vector

Ξ = {ξ0, ξ1, . . . , ξ3d+2},

ξ0 = . . . = ξd = 0, ξd+1 = . . . = ξ2d+1 = 1, ξ2d+2 = . . . = ξ3d+2 = 2,

we obtain two independent sets of basis functions, one on [0, 1], and the other on [1, 2]. They may
be sticked together by removing one or more equal knots between them. Removal of any such
knot increases the sticking regularity by 1. In this way we are able to stick basis functions, and
next, the curves with any regularity but smaller than the degree of polynomials on both sides.
If both basis functions are of degree d, d is called the degree of the spline. If ξi+1 − ξi = const
for i = 0, . . . , r − 1, we say that the knots are uniform, otherwise they are non-uniform.

Some knots may be repeated. If ξj−1 < ξj = . . . = ξj+l−1 < ξj+l, we say that the multiplicity of
the knot ξj is equal to l. We associate to the knot vector Ξ = (ξ0, . . . , ξr) a vector of intervals
Z = (ζ0, . . . , ζρ) in which all knots are of multiplicity 1:

ζ0 = ξ0. (8)

If ζi = ξj then

ζi+1 = min{ξk : ξk > ξj}, i = 0, . . . , ρ− 1. (9)

In this way, 0 = ζ0 < ζ1 < . . . < ζρ = 1, each ζi coincides with an ξj and intervals (ζi, ζi+1) are
not empty for all i = 0, . . . , ρ− 1.

In the following we assume that the knot vector is open, i.e., if the degree of the corresponding
B-spline functions is d then the first and the last knots, ξ0 and ξr, are of multiplicity d+ 1. We
introduce the regularity of the knot ki = d− l+1 being a number of matching values of B-spline
functions and their derivatives at ζi (l is the multiplicity of the knot ζi). By the definition, for
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each knot 0 ≤ ki ≤ d. 0 means discontinuity, and d means full regularity. We introduce the
notation

kmin = min ki, kmax = max ki (10)

for knots ζ1, . . . ζρ−1, which will be used in the following sections.

Example 1. Let the open knot vector be Ξ = (0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 5) and p = 2. The B-spline
basis functions of degree 2 are

N0,2(ξ) =

{
(1− ξ)2 if ξ ∈ [0, 1),

0 if ξ ∈| [0, 1),

N1,2(ξ) =





2ξ − 1.5ξ2 if ξ ∈ [0, 1),

0.5(2 − ξ)2 if ξ ∈ [1, 2),

0 if ξ ∈| [0, 2),

N2,2(ξ) =





0.5ξ2 if ξ ∈ [0, 1),

4ξ − 1.5ξ2 − 2 if ξ ∈ [1, 2),

0 if ξ ∈| [0, 2),

N3,2(ξ) =





0.5(ξ − 1)2 if ξ ∈ [1, 2),

0.5(3 − ξ)2 if ξ ∈ [2, 3),

0 if ξ ∈| [1, 3),

N4,2(ξ) =





8ξ − 1.5ξ2 − 10 if ξ ∈ [2, 3),

0.5(4 − ξ)2 if ξ ∈ [3, 4),

0 if ξ ∈| [2, 4),

N5,2(ξ) =





0.5(ξ − 2)2 if ξ ∈ [2, 3),

7ξ − ξ2 − 11.5 if ξ ∈ [3, 4),

0.5(5 − ξ)2 if ξ ∈ [4, 5),

0 if ξ ∈| [2, 5),

N6,2(ξ) =





0.5(ξ − 3)2 if ξ ∈ [3, 4),

13ξ − 1.5ξ2 − 27.5 if ξ ∈ [4, 5),

0 if ξ ∈| [3, 5),

N7,2(ξ) =

{
(ξ − 4)2 if ξ ∈ [4, 5),

0 if ξ ∈| [4, 5).
The basis functions are shown in Fig. 1.

B-spline curves are built using B-spline basis functions and control points Pi ∈ ℜn:

C(ξ) =

r(d)∑

i=0

Ni,d(ξ)Pi. (11)
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Fig. 1. B-spline basis functions.

Control points may play a part of degrees of freedom in a problem of fitting a B-spline curve to
a fixed curve or to a set of points.

Example 2. Let us construct a spline curve using Example 1. We choose the control points
P0 = (1, 3), P1 = (4, 1), P2 = (5, 5), P3 = (8, 7), P4 = (12, 7), P5 = (15, 5), P6 = (16, 1),
P7 = (19, 3) and construct the curve using the formula (11). The curve is shown in Fig. 2.

Fig. 2. The B-spline curve for Example 2.



294 A. Karafiat

• Non-uniform rational B-spline curves (NURBS)
Additional shapes of the B-spline curves in ℜ2, called rational B-spline curves may be obtained
as follows: let control points be given in ℜ3, P̂i = (p̂i,1, p̂i,2, p̂i,3), where p̂i,3 are called weights.
A new control point Pi on the plane x3 = 1 is defined by its coordinates pi,j = p̂i,j/p̂i,3, for
j = 1, 2. The rational B-spline curve is defined using the B-spline basis functions (7):

C(ξ) =

r(d)∑

i=0

Ni,d(ξ)p̂i,3
∑r(d)

j=0 Nj,d(ξ)p̂j,3
Pi. (12)

It is a projection of the 3D curve

C(ξ) =

r(d)∑

i=0

Ni,d(ξ)Pi (13)

onto the plane x3 = 1. This construction allows one to obtain some other curves, e.g., the conic
curves.

Remark 1. Many regular, closed curves may be presented as NURBS. An example of a circle as
a NURBS curve is given in [7].

3. ADAPTATION TECHNIQUES FOR NURBS

There are three kinds of refinements: knot insertion (h-refinement), order elevation (p-refinement)
and k-refinement. In their descriptions we partially follow [7] and [12].

• Knot insertion
The knot vector Ξ = {ξ0, ξ1, . . . , ξr}, the set of basis functions Ni,d, control points Pi and the
curve C(ξ) of the order d are given. When a new knot ξ ∈ [ξk, ξk+1) is added, the new set of
basis functions Ni,d is defined by the formulas (7). Redefinition of the control points as follows:

P̃i = αiPi + (1− αi)Pi−1, (14)

αi =





1 for 1 ≤ i ≤ k − d,

ξ − ξi
ξi+d − ξi

for k − d+ 1 ≤ i ≤ k,

0 for k + 1 ≤ i ≤ r(d) + 1.

(15)

allows us to keep the shape of the curve without changes.

Example 3. In Example 1 we insert a new knot ξ̂ = 2.5. Then ξ̂ ∈ [ξ5, ξ6) then k = 5 in the

formula (15). We obtain a new knot vector Ξ̃ = (ξ̃0, . . . ξ̃11) = (0, 0, 0, 1, 2, 2, 2.5, 3, 4, 5, 5, 5).

The basis functions after the insertion are Ñ0,2 = N0,2, Ñ1,2 = N1,2, Ñ2,2 = N2,2, Ñ7,2 = N6,2,

Ñ8,2 = N7,2 and

Ñ3,2(ξ) =





0.5(ξ − 1)2 if ξ ∈ [1, 2),

4(2.5 − ξ)2 if ξ ∈ [2, 2.5),

0 if ξ ∈| [1, 2.5),

Ñ4,2(ξ) =





19ξ − 4ξ2 − 22 if ξ ∈ [2, 2.5),

2(3 − ξ)2 if ξ ∈ [2.5, 3),

0 if ξ ∈| [2, 3),
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Ñ5,2(ξ) =





2(ξ − 2)2 if ξ ∈ [2, 2.5),

56

3
ξ − 10

3
ξ2 − 76

3
if ξ ∈ [2.5, 3),

2

3
(4− ξ)2 if ξ ∈ [3, 4),

0 if ξ ∈| [2, 5),

Ñ6,2(ξ) =





1

3
(2ξ − 5)2 if ξ ∈ [2.5, 3),

25

3
ξ − 7

6
ξ2 − 85

6
if ξ ∈ [3, 4),

0 if ξ ∈| [2.5, 4).

The basis functions are shown in Fig. 3.

Fig. 3. B-spline basis functions for the inserted knot.

New control points are obtained by the formula (14): P̃0 = P0, . . . , P̃3 = P3, P̃4 = (10, 7),

P̃5 = (12.75, 6.50), P̃6 = P5, P̃7 = P6, P̃8 = P7. It may be verified that the curve remains the
same.

• Knot removal
Let us assume that a Bezier curve C(ξ) of a degree d is defined by a knot vector Ξ̃ = (ξ̃0, . . . , ξ̃r),

B-spline basis functions Ñi,d, i = 0, . . . , r(d) and control points P̃0, . . . , P̃r(d). Assume that the

knot ξ̃k = · · · = ξ̃k+j is repeated j + 1 times. It implies that C(ξ) may be d − (j + 1) times
differentiable at this point. Let also assume that C is one more differentiable at this point.
This means that at least one knot is not needed there and may be removed. Following Subsec.
5.3.4 [12], we show the removal of the ’last’ equal knot, ξ′ = ξ̃k+j. Then, the knot vector becomes
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Ξ = (ξ0, . . . , ξr−1). Functions Ni,d should be redefined and control points P0, . . . , Pr(d)−1 fulfil
the system of equations

Pi = P̃i, for i = 0, . . . , k + j − d, (16)

Pi = P̃i+1, for i = k + j − d+ 1, . . . , r(d)− 1. (17)

If C(ξ) is d − j times differentiable at the repeated knot, then the shape of the curve remains
unchanged. The procedure of the removal of more than one knot is given in [12].

• Order elevation
The process of order elevation is more complicated. To perform it, a B-spline curve should be
divided into independent Bezier curves by successive knot insertion in the places of their sticking,
then the degree of each Bezier curve should be elevated. Finally, the additional knots should be
removed.

• k-refinement
k-refinement is an algorithm combining the h- and p-refinements. Shortly speaking, the algorithm
elevates the degree first and then inserts knots. This order gives efficient savings of degrees of
freedom, in contrary to the inverse order of refinements.

A valuable advantage of NURBS application for curves’ approximation or a construction of test
function spaces is that higher continuity at the limits of elements is easily attainable in the NURBS
modeling, in spite of finite elements, where the C1-continuity is a maximal and expensive result.

4. APPROXIMATION OF FUNCTIONS BY NURBS

General assumptions: On the reference interval [0, 1] we establish

• the open knot vector Ξ = (ξ0, . . . , ξr);

• the regularity ki at each knot ζi;
• the B-spline basis functions N0,d(ξ), . . . , Nr(d),d(ξ) of a degree d;

• their weights w0, . . . , wr(d) and the global weighting function w, like in the equation (12):

w =

r(d)∑

i=0

wiNi,d;

• the NURBS basis functions

Ri =
wiNi,d

w
;

• the NURBS space

Nh =



nh =

r(d)∑

i=0

viRi



 ;

• the bijective parametrization F of the curve Γ ⊂ ℜ2, F : [0, 1] → Γ. F – C1-continuous with
its inverse, derivatives of F and its inverse F−1 along the curve, i.e., the tangent derivative
∂F−1/∂τ are bounded by fixed positive constants m0,M0:

0 < m0 ≤ |∇F | ,
∣∣∂F−1/∂τ

∣∣ ≤ M0; (18)

its approximation Fh : [0, 1] → ℜ2, Fh = (F 1
h , F

2
h ), F

i
h ∈ Nh,

m0 ≤ ‖∇F i
h‖ ≤ M0, i = 1, 2;
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• the NURBS space on Γ i.e. the usual push-forward of Nh through Γ:

Vh = {vh = nh ◦ F−1, nh ∈ Nh} (19)

(NURBS of Vh and Nh may be different). In what follows, we will denote by c a positive constant
which may be different at each occurrence.

On the interval [0, 1] divided by the knots 0 = ξ0 ≤ ξ1 ≤ . . . ≤ ξr−1 ≤ ξr = 1 and the
corresponding ζ0 < ζ1 < . . . < ζρ−1 < ζρ = 1 (cf. (9)) we are able to define the bent Sobolev space

Hm[0, 1] = {v : [0, 1] → ℜ : ∀i = 0, . . . , ρ− 1, v ∈ Hm(ζi, ζi+1),

ζi = ξj = ξj+1 = . . . = ξj+k ⇔ v ∈ Cd−k(ζi)},
(20)

where Hm(ξi, ξi+1) is the usual Sobolev space on the interval (ξi, ξi+1). It is assumed that in a
knot which is k times repeated, the derivatives up to the order d − k at both sides coincide. The
corresponding seminorms are defined as sums of seminorms over each interval

| · |2m,[0,1] =

ρ−1∑

i=0

| · |2m,[ζi,ζi+1]
, (21)

‖ · ‖2m,[a,b] =

m∑

k=0

| · |2k,[a,b], (22)

| · |m,[a,b] = | · |Hm([a,b]), (23)

| · |∞,[a,b] = | · |L∞([a,b]). (24)

We denote by Qi = [ζi, ζi+1] the i-th subinterval of [0, 1], Ti = Fh(Qi) its range by the approximate
mapping Fh, hi = diam(Ti) length of Ti, i = 0, . . . ρ−1, hT = max{hi, i = 0, . . . , ρ−1} its maximal
value. Let ΠN,h be a projection of L

2[0, 1] into Nh and ΠV,h be a projection of L
2(Ω) into Vh, defined

as

ΠV,h = (ΠN,h(v ◦ F )) ◦ F−1.

We cite the following theorems on approximation, which estimate the interpolation error of NURBS
by the Sobolev norm of the approximated function. They are analogous to the corresponding error
estimates for the finite element method, cf., e.g., [4], Ch. 3.

Theorem 1. [2], Th.3.2. Let d be a degree of NURBS, 0 ≤ t ≤ s ≤ d+1 (integer indices). Suppose
that v ∈ Hs(Γ). By the above assumptions

∑

Ti

|v −ΠVh
v|2t,Ti

≤ c
∑

Ti

h
2(s−t)
i

s∑

i=0

‖∇F‖2(i−s)
∞,Qi

|v|2i,Ti
∀v ∈ Hs(Γ). (25)

This result may be shortly summed up using the definition of the norm in the bent Sobolev
space. By the assumption (18) and definitions of Sobolev norms (21)–(24):

Corollary 1.

|v −ΠVh
v|t,Γ ≤ c hs−t

T m−s
0 ‖v‖s,Γ. (26)

In [3] an estimate depending on h and d is given for a two-dimensional physical domain. If we
reduce it to one-domain case we obtain, by our general assumptions listed on the beginning of this
chapter:

Theorem 2. [3], Th. 7. For fixed non-negative integers: d ≥ 2kmax− 1, t ≤ kmin, s ∈ [kmax, d+1]
and for any function v ∈ Hs(Γ)

|v −ΠVh
v|t,Γ ≤ c (d− kmax + 1)t−shs−t

T ‖v‖s,Γ. (27)
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5. APPROXIMATION OF THE BOUNDARY

We consider a bounded domain Ωi ∈ ℜ2, its boundary Γ and the external domain Ωe = ℜ2\(Ωi∪Γ).
The boundary is parametrized by the function F : [0, 1] → Γ, F (τ) = (F 1(τ), F 2(τ)). We assume
that F ∈ Hs(0, 1) × Hs(0, 1) with the corresponding norm and seminorm |F |2m,[0,1] = |F 1|2m,[0,1] +

|F 2|2m,[0,1]. Let Fh be an approximation of F , i.e., let F
i
h be an approximation of F

i in the sense

of Sec. 4 and Γh = Fh[0, 1] be the range of this approximation. Let Wd be the space of vector
interpolants of the order d:

Wd =
{
Fh = (F 1

h , F
2
h ), F

i
h ∈ Nh[0, 1]

}
. (28)

We assume next that dF i/dξ, dF i
h/dξ are bounded from below and from above, i.e., there are

positive constants m0 and M0 independent on ξ ∈ [0, 1] such that

0 < m0 ≤
∣∣∣∣
dF i

dξ

∣∣∣∣ ,
∣∣∣∣
dF i

h

dξ

∣∣∣∣ ≤ M0 ∀ξ ∈ [0, 1], (29)

and they fulfil the Lipschitz condition:

∣∣∣∣
dF i

dξ
(ξ +∆ ξ)− dF i

dξ
(ξ)

∣∣∣∣ ≤ M1|∆ ξ| ∀ξ, (ξ +∆ξ) ∈ [0, 1] (30)

and analogous inequality for F i
h.

In the following some lemmas are proved. They estimate the boundary approximation error in
the L∞ norm (Lemma 1) or give some auxiliary estimates of some elements of the expression for
the general approximation error in the proof of the Lemma 6 (Lemmas 2-4).

Lemma 1. By the general assumptions of Sec. 4 and Theorem 2 we have the following estimates
for the boundary approximation as a simple consequence of Theorem 2:

inf
Fh∈Wd

‖F − Fh‖t,[0,1] ≤ c hs−t(d− kmax + 1)t−s‖F‖s,[0,1], (31)

inf
Fh∈Wd

∥∥∥∥
dF i

dξ
− dF i

h

dξ

∥∥∥∥
t,[0,1]

≤ c hs−t−1(d− kmax + 1)1+t−s‖F‖s,[0,1]. (32)

For this “optimal” approximation Fh of F we obtain

sup
ξ∈[0,1]

|F (ξ)− Fh(ξ)| ≤ c hs−1(d− kmax + 1)1−s‖F‖s,[0,1], (33)

sup
ξ∈[0,1]

∣∣∣∣
dF i

dξ
(ξ)− dF i

h

dξ
(ξ)

∣∣∣∣ ≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]. (34)

To prove inequalities (33) and (34) on the basis of (31) and (32) it is sufficient to recall, that
for the fixed interval [0, 1], the space H1(0, 1) is compactly embedded in L∞(0, 1), i.e., there is a
constant c, independent of any function v, for which

‖v‖∞,[0,1] ≤ c‖v‖1,[0,1] ∀v ∈ H1(0, 1), (35)

cf. [4]. Next, we estimate left-hand sides of inequalities (33), (34) by the left-hand sides of inequal-
ities (31), (32) assuming t = 1 and applying inequality (35).
We suppose then that any function v ∈ C1(Γ) may be extended onto some neighbourhood UΓ

of the boundary Γ and therefore we are able to define the tangent derivative of v: ∂v/∂τ on Γ. Let
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in expressions like dv/ds, dx/ds etc. s means the arc length parameter of Γ. We have then at any
arbitrary point x ∈ Γ

∂v

∂τ
(x) =

∂v

∂s
(x).

This function v may be copied on Γh using push-forward and pull-back:

v(xh) = (v ◦ F ◦ F−1
h )(xh). (36)

It means that

v(xh(ξ)) = v(x(ξ)) ∀ξ ∈ [0, 1]. (37)

Let in the same way in expressions like dsh/ds, dv/dsh etc. sh means the arc length parameter of
Γh. We define similarly ∂v/∂τh(x) = ∂v/∂sh(x). The function v ◦ F is approximated by functions
vh ◦ Fh ∈ Vh.

Lemma 2. By the previous assumptions there is a constant c = c(s) such that

sup
ξ∈[0,1]

∣∣∣∣1−
dsh
ds

(ξ)

∣∣∣∣ ≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1], (38)

sup
ξ1,ξ2∈[0,1]

∣∣∣∣1−
dsh
ds

(ξ1)
dsh
ds

(ξ2)

∣∣∣∣ ≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1], (39)

∥∥∥∥
dv

dτ
(x)− dv

dτh
(xh)

∥∥∥∥
−1/2,Γ

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖v‖1/2,Γ, (40)

∥∥∥∥
dyh

dτy
(y)

dqh
dτx

(x)− dvh
dτyh

(yh)
dqh
dτxh

(xh)

∥∥∥∥
−1/2,Γ

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖v‖1/2,Γ. (41)

Proof. By the Eqs. (29), (34) and (35)

dsh
ds

=

∣∣∣∣
dFh

dξ

∣∣∣∣ ·
∣∣∣∣
dF

dξ

∣∣∣∣
−1

,

sup
ξ∈[0,1]

∣∣∣∣1−
dsh
ds

∣∣∣∣ = sup
ξ∈[0,1]

∣∣∣∣∣

(∣∣∣∣
dF

dξ

∣∣∣∣−
∣∣∣∣
dFh

dξ

∣∣∣∣
)
·
∣∣∣∣
dF

dξ

∣∣∣∣
−1
∣∣∣∣∣

≤ c

∥∥∥∥∥

(∣∣∣∣
dF

dξ

∣∣∣∣−
∣∣∣∣
dFh

dξ

∣∣∣∣
)
·
∣∣∣∣
dF

dξ

∣∣∣∣
−1
∥∥∥∥∥
1,[0,1]

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1],

sup
ξ1,ξ2∈[0,1]

∣∣∣∣1−
dsh
ds

(ξ1)
dsh
ds

(ξ2)

∣∣∣∣ ≤
∥∥∥∥1−

dsh
ds

(ξ1)
dsh
ds

(ξ2)

∥∥∥∥
1,[0,1]

=

∥∥∥∥
(
1− dsh

ds
(ξ2)

)
+

(
1− dsh

ds
(ξ1)

)
· dsh
ds

(ξ2)

∥∥∥∥
1,[0,1]

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1],
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∥∥∥∥
dv

dτ
(x)− dv

dτh
(xh)

∥∥∥∥
−1/2,Γ

=

∥∥∥∥
dv

ds
(x)− dv

dsh
(xh)

∥∥∥∥
−1/2,Γ

=

∥∥∥∥
∂v

ds
(x) ·

(
1− dsh

ds
(x)

)∥∥∥∥
−1/2Γ

= sup
q∈H1/2(Γ)

∫

Γ

dv

ds

(
1− dsh

ds

)
(x)q(x)ds ·

(
‖q‖1/2,Γ

)−1

≤ sup
ξ∈[0,1]

∣∣∣∣1−
dsh
ds

∣∣∣∣
∥∥∥∥
dv

ds

∥∥∥∥
−1/2,Γ

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖v‖1/2,Γ,

∥∥∥∥
dv

dτ
(x)− dv

dτh
(xh)

∥∥∥∥
−1/2,Γ

=

∥∥∥∥
dv

ds
(x)− dv

dsh
(xh)

∥∥∥∥
−1/2,Γ

=

∥∥∥∥
∂v

ds
(x) ·

(
1− dsh

ds
(x)

)∥∥∥∥
−1/2Γ

= sup
q∈H1/2(Γ)

∫

Γ

dv

ds

(
1− dsh

ds

)
(x)q(x)ds ·

(
‖q‖1/2,Γ

)−1

≤ sup
ξ∈[0,1]

∣∣∣∣1−
dsh
ds

∣∣∣∣
∥∥∥∥
dv

ds

∥∥∥∥
−1/2,Γ

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖v‖1/2,Γ,

∥∥∥∥
dvh
dτy

(y)
dqh
dτx

(x)− dvh
dτyh

(yh)
dqh
dτxh

(xh)

∥∥∥∥
−1/2,Γ

≤
∣∣∣∣
dvh
dτy

(y)

∣∣∣∣ ·
∣∣∣∣
dqh
dτx

(x)− dqh
dτxh

(xh)

∣∣∣∣+
∣∣∣∣
dqh
dτxh

(xh)

∣∣∣∣ ·
∣∣∣∣
dvh
dτy

(y)− dvh
dτyh

(yh)

∣∣∣∣

≤ c hs−2(d − kmax + 1)2−s‖F‖s,[0,1]‖v‖1/2,Γ.

At any point x ∈ Γ we define a local tangential-normal coordinate system with unit vectors τx

and nx and at y analogously τy and ny. We assume that for each such x there is its neighbourhood
Ux in which the boundary Γmay be described in this coordinate system by a function f ∈ C1(a1, a2)
whose derivative is Lipschitz-continuous there:

(y1,y2) ∈ Ux ⇒ y1 ∈ (a1, a2), where a1 < 0 < a2,

(y1,y2) ∈ Ux ∩ Γ ⇔ y2 = f(y1), f(0) = 0,

∣∣∣∣
df

dy1
(y1)

∣∣∣∣ ≤ L0y1, ∀y1 ∈ (a1, a2).

Lemma 3. For such a function f and vectors τx, τy, nx, ny in the local system, where x = (0, 0):
∣∣∣∣n

x · y

|y|

∣∣∣∣ ≤ L0|y|, (42)

|τx − τy| ≤ L0|y|, (43)

|τx(τx − τy)| ≤ 0.5L0|y|2. (44)

The Lemma was proved in [11].

Lemma 4. We choose two points x,y ∈ Γ and their approximations

xh,yh ∈ Γh.
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We denote

r = x− y, r = |r|, rh = xh − yh, rh = |rh|.

Like in Lemma 3 we introduce τxh , n
x
h τyh , n

y
h at the points xh, yh. By the previous assumptions

about approximation the following estimates hold:

|r − rh| ≤ |r− rh| ≤ Crhs−1(d− kmax + 1)1−s‖F‖s,[0,1], (45)

|τx − τxh | ≤ Chs−2(d− kmax + 1)2−s‖F‖s,[0,1], (46)

|τxτy − τxh τ
y
h | ≤ Chs−2(d− kmax + 1)2−s‖F‖s,[0,1], (47)

|nx · r/r − nx
h · rh/rh| ≤ Crhs−2(d− kmax + 1)2−s‖F‖s,[0,1], (48)

∣∣ny · r/r − n
y
h · rh/rh

∣∣ ≤ Crhs−2(d− kmax + 1)2−s‖F‖s,[0,1]. (49)

Proof.

|r − rh| ≤ |r− rh| ≤ Cr by the triangle inequality,

|r− rh| = |(x− y)− (xh − yh)| = |(x− xh)− (y − yh)|

≤ ‖x− xh‖1,[0,1] + ‖(y − yh‖1,[0,1] ≤ Chs−1(p− kmax + 1)1−s‖F‖s,[0,1].

|τx − τxh | =
∣∣∣∣
dx

ds
− dxh

dsh

∣∣∣∣ ≤
∣∣∣∣
dx

ds
− dx

dsh

∣∣∣∣+
∣∣∣∣
dx

dsh
− dxh

dsh

∣∣∣∣

=

∣∣∣∣
dx

dsh

dsh
ds

− dx

dsh

∣∣∣∣+
∣∣∣∣
(
dx

dξ
− dxh

dξ

)
· dξ

dsh

∣∣∣∣ ≤
∣∣∣∣
dx

dsh

∣∣∣∣ ·
∣∣∣∣
dsh
ds

− 1

∣∣∣∣+
∣∣∣∣
dx

dξ
− dxh

dξ

∣∣∣∣
∣∣∣∣
dξ

dsh

∣∣∣∣

≤ C

(
1 +

1

m

)
hs−2(d − kmax + 1)2−s‖F‖s,[0,1].

|τxτy − τxh τ
y
h | = |τxτx + τx (τy − τx)− τxh τ

x
h − τxh τ

x
h −

(
τyh − τxh

)
|

= |τx (τy − τx)− τxh
(
τyh − τxh

)
| = | (τx − τxh ) (τ

y − τx) + τxh
[(
τy − τyh

)
− (τx − τxh )

]
|

≤ Chs−2(d − kmax + 1)2−s‖F‖s,[0,1].

∣∣∣∣
nx · r
r

− nx
h · rh
rh

∣∣∣∣ ≤
∣∣∣∣
nx · r
r

− nx · rh
rh

∣∣∣∣+
∣∣∣∣
nx · rh
rh

− nx
h · rh
rh

∣∣∣∣

≤ |nx| ·
∣∣∣∣
rrh − rrh

rrh

∣∣∣∣+ |nx − nx
h|

|rh|
rh

≤ 1

rrh
[|r| · |rh − r|+ r · |r− rh|]

≤ Chs−2(d − kmax + 1)2−s‖F‖s,[0,1].

It was proved in Corollary 3.1.2 [9], that |nx ·r| ≤ Cr2 for f ∈ C1(a1, a2) with Lipschitz continuous
derivatives. This completes the proof of (48). The estimate (49) can be proved analogously.
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6. THE ACOUSTIC WAVE SCATTERING PROBLEM IN THE 2-D SPACE

Let us recall the classical formulation of the acoustic wave scattering problem on an elastic body
immersed in a fluid. We denote by Ωi ∈ ℜ2 a regular, bounded domain occupied by the body, Γ is
its boundary and Ωe is the unbounded external domain around the body filled with a fluid. We
look for a function p : Ωe → ℜ which describes the total pressure of the wave in the fluid. It is a
sum of the incident and scattered wave pressure:

p(x) = pinc(x) + ps(x). (50)

The total pressure fulfils the Helmholtz differential equation (k is the wavenumber):

−∆p(x)− k2p(x) = 0 for each x ∈ Ωe, (51)

a boundary condition on Γ:

∂p

∂nx
= εp(x) for x ∈ Γ (52)

and the scattered pressure fulfils the Sommerfeld condition at infinity:
∣∣∣∣
∂ps

∂r
− ikps

∣∣∣∣ = o(r−0.5) for r = |x| → ∞, (53)

where i is the imaginary unit. The boundary condition (52) corresponds to a spring-like scatterer,
which models a rubber layer on the surface of the body. For details of this model see [8] or [9]. The
fundamental solution of the Helmholtz equation (51) in the plane is

Φ(x,y) = 0.25iH1
0 (k|x− y|), (54)

where H1
n(x) is the Hankel function of the first kind of the order n.

The elastic scattering problem (50)–(53) may be formulated in a function space V = H0.5(Γ)
being the Sobolev space on the boundary Γ with the corresponding scalar product and norm. This
boundary-value problem is replaced there by a variational boundary integral equation using the
Burton-Miller formulation with coefficient α ∈ [0, 1]. It is expected to find a function p ∈ Γ such
that

a(p, q) = l(q), ∀q ∈ V. (55)

The continuous, sesquilinear form a : V × V → C is defined by the formula

a(p, q) = 0.5α

∫

Γ

p(x)q(x)ds(x) + 0.5(1 − α)k−1εi

∫

Γ

p(x)q(x)ds(x)

+ α

∫

Γ

∫

Γ

[
εΦ(x,y)p(y)q(x) − ∂Φ

∂ny
(x,y)p(y)q(x)

]
ds(y)ds(x)

+ (1− α)k−1i

∫

Γ

∫

Γ

[
Φ(x,y)

∂p

∂τy
(y)

∂q

∂τx
(x)− k2Φ(x,y)p(y)q(x)τyτx

+ ε
∂Φ

∂ny
(x,y)p(y)q(x)

]
ds(y)ds(x) (56)

and the continuous, semilinear form l : V → C by

l(q) = α

∫

Γ

pinc(x)q(x)ds(x) + (1− α)k−1i

∫

Γ

∂pinc

∂nx
(x)q(x)ds(x). (57)



Convergence estimates for the acoustic scattering problem approximated by NURBS 303

a fulfils the G̊arding inequality

Re[a(q, q) + c(q, q)] ≥ γ‖v‖2, ∀v ∈ V, (58)

where c is a fixed sesquilinear, compact form and γ a fixed positive constant. For details see [1, 5,
8, 9, 18].

7. CONVERGENCE ESTIMATES

We know that the Hankel functions are interrelated by the equation

H1
1 (x) = − d

dx
H1

0 (x), (59)

cf. [13]. For n = 0, 1, x, y > 0 the following estimate was proved in Lemma 5 [11]:

∣∣∣∣1−
H1

n(y)

H1
n(x)

∣∣∣∣ ≤ C
|x− y|

y
. (60)

Lemma 5. There is a constant c(s) independent on different points x, y ∈ Γ such that for these
points and their approximations xh, yh ∈ Γh:

|Φ(x,y) − Φ(xh,yh)| ≤ c|Φ(x,y)| · c hs−1(d− kmax + 1)1−s‖F‖s,[0,1], (61)

∣∣∣∣
∂Φ

∂ny
(x,y) − ∂Φ

∂ny
h

(xh,yh)

∣∣∣∣ ≤ c

[∣∣∣∣
∂Φ

∂ny
(x,y)

∣∣∣∣ + 1

]
hs−2(d− kmax + 1)2−s‖F‖s,[0,1]. (62)

Proof. To prove the inequality (61) we need the above (60) formula. To the numerator of its
right-hand side we apply the estimate (45), what provides the expected result.
To prove (62) we need the definition (54) of the function Φ and the property (59).

∂Φ

∂ny
(x,y) =

i

4

d

dr
H1

0 (kr) ·
r · ny

r
=

k

4i
H1

1 (kr)
r · ny

r
. (63)

Then we are able to estimate the following

∣∣∣∣
∂Φ

∂ny
(x,y) − ∂Φ

∂ny
h

(xh,yh)

∣∣∣∣ ≤
k

4

∣∣∣∣
[
H1

1 (kr)−H1
1 (krh)

] r · ny

r

∣∣∣∣

+
k

4
H1

1 (kr)

∣∣∣∣
r · ny

r
− rh · ny

h

rh

∣∣∣∣ ≤ cH1
1 (kr)

∣∣∣∣
r · ny

r

∣∣∣∣
|r − rh|

rh

+ cH1
1 (kr)rh

s−2(d − kmax + 1)2−s‖F‖s,[0,1]. (64)

H1
1 (kr)r is bounded, cf. (61). Equations (45) and (49) imply the inequality (62).
In computations we use approximate values of the forms a and l obtained on the approximate

boundary Γh using numerical integration. In fact we obtain an approximate solution ph ∈ Vh of the
equation

ah(ph, qh) = lh(qh), ∀qh ∈ Vh. (65)

Vh is defined by (19).

Theorem 3. We accept the following regularity assumptions and approximation tools:

• the solution p of the equation (55) belongs to the space Hσ(Γ) for an integer σ ≥ 2;
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• the parametrization F of Γ belongs to Hs[0, 1] ×Hs[0, 1] for an integer s > σ;

• its approximation Fh ∈ Nh ×Nh with B-spline basis functions of degree d ≥ s;

• the approximate shape- and test functions ph, qh ∈ Vh;

• the assumptions of Theorem 2 are fulfilled;

• incident pressure functions pinc and ∂pinc/∂nx are replaced by their approximations pinch and
∂pinch /∂nx

h on Γh.

Then there is a positive constant c = c(s, σ), for which

‖p − ph‖0.5,Γ ≤ c

[
‖pinc − pinch ‖−0.5,Γ +

∥∥∥∥
∂pinc

∂nx
− ∂pinch

∂nx
h

∥∥∥∥
−0.5,Γ

]

+ c
[
hs−2(d− kmax + 1)2−s

(
‖F‖s,[0,1]‖p‖0.5Γ + ‖p‖s,Γ

)]
. (66)

Proof. We can use the second Strang Lemma in the version proved in Theorem 4.3 [10].

Lemma 6. By the assumptions of Theorem 3, for p ∈ V , ph ∈ Vh there is a constant c for which

‖p − ph‖ ≤ c

{
inf

vh∈Vh

[
‖p− vh‖+ sup

qh∈Vh

|ah(vh, qh)− a(vh, qh)|
‖qh‖

]
+ sup

qh∈Vh

|lh(qh)− l(qh)|
‖qh‖

}
. (67)

Proof of Theorem 3
We start from the first term

|ah(vh, qh)− a(vh, qh)| ≤

∣∣∣∣∣∣∣

∫

Γh

[
αvh(xh) + i(1− α)k−1εvh(xh)

]
qh(xh)ds(x)

+

∫

Γh

∫

Γh

{
αεΦ(xh,yh)vh(yh)qh(xh)− α

∂Φ

∂ny
h

(xh,yh)vh(yh)qh(xh)

+ i(1 − α)k−1ε
∂Φ

∂nx
h

(xh,yh)vh(yh)qh(xh)− i(1− α)kΦ(xh,yh)τ
x
h τ

y
hvh(yh)qh(xh)

+ i(1− α)k−1Φ(xh,yh)
∂vh
∂τyh

(yh)
∂qh
∂τxh

(xh)

}
ds(y)ds(x)

−
∫

Γ

[
αvh(x) + i(1− α)k−1εvh(x)

]
qh(x)ds(x)

−
∫

Γ

∫

Γ

{
αεΦ(x,y)vh(y)qh(x)− α

∂Φ

∂ny
(x,y)vh(y)qh(x)

+ i(1− α)k−1ε
∂Φ

∂nx
(x,y)vh(y)qh(x)− i(1− α)kΦ(x,y)τxτyvh(y)q(x)

+ i(1− α)k−1Φ(x,y)
∂vh
∂τy

(y)
∂qh
∂τx

(x)

}
ds(y)ds(x)

∣∣∣∣ . (68)
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We remember that vh(y) = vh(y)h, qh(x) = qh(xh), cf. (37).

(68) ≤

∣∣∣∣∣∣∣

∫

Γh

(
αvh(x) + i(1− α)k−1εvh(x)

)
qh(x)

[
1− dsh(xh)

ds(x)

]
ds(x)

+

∫

Γ

∫

Γ

{
αεΦ(x,y)vh(y)qh(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]

+ αε [Φ(xh,yh)− Φ(x,y)] vh(y)qh(x)
dsh(yh)

ds(y)

dsh(xh)

ds(x)

− α
∂Φ

∂ny
(x,y)vh(y)qh(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]

− α

[
∂Φ

∂ny
(x,y) − ∂Φ

∂ny
h

(xh,yh)

]
vh(y)qh(x)

dsh(yh)

ds(y)

dsh(xh)

ds(x)

+ i(1 − α)k−1ε

(
∂Φ

∂nx
h

(xh,yh)vh(y)qh(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]

+

[
∂Φ

∂nx
(x,y) − ∂Φ

∂nx
h

(xh,yh)

]
vh(y)qh(x)

dsh(yh)

ds(y)

dsh(xh)

ds(x)

)

− i(1− α)k

(
Φ(x,y)τxτyvh(y)qh(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]

− Φ(x,y)
[
τxτy − τxh τ

y
h

]
vh(y)qh(x)

dsh(yh)

ds(y)

dsh(xh)

ds(x)

+ [Φ(xh,yh)−Φ(x,y)] τxh τ
y
hvh(y)qh(x)

dsh(yh)

ds(y)

dsh(xh)

ds(x)

)

+ i(1 − α)k−1

(
Φ(x,y)

∂vh
∂τy

(y)
∂qh
∂τx

(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]

+ Φ(x,y)

[
∂vh
∂τy

(y)
∂qh
∂τx

(x)− ∂vh
∂τyh

(yh)
∂qh
∂τxh

(xh)

]
dsh(yh)

ds(y)

dsh(xh)

ds(x)

+ [Φ(xh,yh)− Φ(x,y)]
∂vh
∂τy

(y)
∂qh
∂τx

(x)
dsh(yh)

ds(y)

dsh(xh)

ds(x)

)}
ds(y)ds(x)

∣∣∣∣ . (69)

Terms in square brackets in each line are bounded by c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]. The single
and double layer potentials with the adjoint one are linear and continuous in respective spaces:

V (v)(x) =

∫

Γ

Φ(x,y)v(y)ds(y), V : H−0.5(Γ) → H0.5(Γ), (70)

K(v)(x) =

∫

Γ

∂Φ

∂ny
(x,y)v(y)ds(y), K : H0.5(Γ) → H0.5(Γ), (71)

K ′(v)(x) =

∫

Γ

∂Φ

∂nx
(x,y)v(y)ds(y), K ′ : H0.5(Γ) → H0.5(Γ). (72)
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To estimate the first term of the previous expression (69) we use the Schwarz inequality
∣∣∣∣∣∣∣

∫

Γh

(
αvh(x) + i(1− α)k−1εvh(x)

)
qh(x)

[
1− dsh(xh)

ds(x)

]
ds(x)

∣∣∣∣∣∣∣
≤ c hs−2(d − kmax + 1)2−s‖F‖s,[0,1]‖vh‖0.5,Γ‖qh‖0.5,Γ (73)

and to the next ones we use properties of the potentials (70)–(72), e.g.,
∣∣∣∣∣∣

∫

Γ

∫

Γ

αεΦ(x,y)vh(y)qh(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]
ds(y)ds(x)

∣∣∣∣∣∣

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖V (vh)‖0,Γ‖qh‖0,Γ

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖vh‖0.5,Γ‖qh‖0.5,Γ, (74)
∣∣∣∣∣∣

∫

Γ

∫

Γ

α
∂Φ

∂ny
(x,y)vh(y)qh(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]
ds(y)ds(x)

∣∣∣∣∣∣

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖K(vh)‖0,Γ‖qh‖0,Γ

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖vh‖0.5,Γ‖qh‖0.5,Γ, (75)
∣∣∣∣∣∣

∫

Γ

∫

Γ

∂Φ

∂nx
h

(xh,yh)vh(y)qh(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]
ds(y)ds(x)

∣∣∣∣∣∣

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖K ′(vh)‖0,Γ‖qh‖0,Γ

≤ c hs−2(d − kmax + 1)2−s‖F‖s,[0,1]‖vh‖0.5,Γ‖qh‖0.5,Γ, (76)
∣∣∣∣∣∣

∫

Γ

∫

Γ

Φ(x,y)
∂vh
∂τy

(y)
∂qh
∂τx

(x)

[
1− dsh(yh)

ds(y)

dsh(xh)

ds(x)

]
ds(y)ds(x)

∣∣∣∣∣∣

≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]
∥∥∥∥V
(
∂vh
∂τy

)∥∥∥∥
0.5,Γ

∥∥∥∥
∂qh
∂τx

∥∥∥∥
−0.5,Γ

≤ c hs−2(d − kmax + 1)2−s‖F‖s,[0,1]‖vh‖0.5,Γ‖qh‖0.5,Γ. (77)
We have obtained then

|ah(vh, qh)− a(vh, qh)| ≤ c hs−2(d− kmax + 1)2−s‖F‖s,[0,1]‖vh‖0.5,Γ‖qh‖0.5,Γ. (78)

The term |lh(qh)− l(qh)| may be estimated analogously. Substituting it to the Eq. (67) and applying
the general estimate for approximation by NURBS (27) we obtain the expected (66) estimate.

Corollary 2. If pinc and ∂pinc/∂nx are hp-approximated like p, the final estimate of Theorem 3
will have the form

‖p − ph‖0.5,Γ ≤ c hs−2(d− kmax + 1)2−s

×
(
‖F‖s,[0,1]‖p‖0.5Γ + ‖p‖s,Γ + ‖pinc‖s,Γ +

∥∥∥∥
∂pinc

∂nx

∥∥∥∥
s,Γ

)
. (79)
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8. CONCLUSIONS

In comparison to an analogous estimate obtained for the considered problem approximated in two
dimensions by the boundary element method [11], it can be easily seen that the predicted order of
convergence of both methods, i.e., the isogeometric method and the boundary element method, is
the same if kmax = 1, 2 (cf. (10)). If kmax depends on the degree of approximation in the sense that
d− kmax = const., then the estimate (79) does not give the errors reduction velocity as high as the
boundary element method. Numerical tests should verify the effectivity of both methods, comparing
the accuracy, number of degrees of freedom, time of execution and size of the problem. They may
clearly answer the question, whether the isogeometric method is in practice more effective for the
problem described above.
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